

Thermodynamics of Quantum-Corrected Black Holes

Phys 499 Graduation Project

Asma Alfawzan Supervisor: Dr Salwa Alsaleh May 24, 2017

Outline

- 1. Introduction
- 2. Geometric flows
- 3. Statistical mechanics of geometric flows
- 4. Quantum-corrected black holes
- 5. Conclusion

Introduction

• The connection between thermodynamics and geometry has became a key aspect of studying quantum gravity.

Introduction

- The connection between thermodynamics and geometry has became a key aspect of studying quantum gravity.
- It was shown by Jacobson [1] that Einstein equations of general relativity (GR) can be retrieved from the second law of thermodynamics dE = dS/T, using Raychaudhuri equation (RE).

Introduction

- The connection between thermodynamics and geometry has became a key aspect of studying quantum gravity.
- It was shown by Jacobson [1] that Einstein equations of general relativity (GR) can be retrieved from the second law of thermodynamics dE = dS/T, using Raychaudhuri equation (RE).
- Inspired by Jacobson's formalism, Das [2] and followed by Alsaleh *et. al* [3] thought of RE as a fundamental equation of gravity instead of Einstein equations.

Later, RE was canonically quantized. Leading to a discovery of a new dynamical system for gravity called **Geometric flows** [3]. Studying quantum geometric flows lead to proving rigorously that singularities only exist as a classical limit of the quantum space-time [4].

Outline

- 1. Introduction
- 2. Geometric flows
- 3. Statistical mechanics of geometric flows
- 4. Quantum-corrected black holes
- 5. Conclusion

We start by Studying the congruence of test particles moving on an n + 1 dimensional space-time \mathcal{M} . We can use the proper time for the test particles λ as a dynamical foliation parameter, such that we foliate the space-time

Figure: The dynamic foliation of the space-time $\ensuremath{\mathcal{M}}$ by the flow of geodesic congruences.

The dynamical system resembling the geometric flow is the cross-section of the congruence σ_{λ} , and the dynamical degree of freedom is the volume of this cross-section, given by the square of the dynamical variable χ

The dynamical system resembling the geometric flow is the cross-section of the congruence σ_{λ} , and the dynamical degree of freedom is the volume of this cross-section, given by the square of the dynamical variable χ

The dynamical variable χ posses the Lagrangian:

$$L = \frac{n}{2} \dot{\chi}^2 - \frac{1}{2} \Re \chi^2 - \Sigma,$$
 (1)

with $\mathcal R$ being the Raychaudhuri scalar and Σ is the shear potential

The canonically-conjugate momentum (CCM) to χ can be found from the Lagrangian (1), and called ϖ , it is related to the expansion parameter θ of RE, by the relation $\theta = \frac{\varpi}{\chi}$.

The canonically-conjugate momentum (CCM) to χ can be found from the Lagrangian (1), and called ϖ , it is related to the expansion parameter θ of RE, by the relation $\theta = \frac{\varpi}{\chi}$. Using the CCM, we can write the Hamiltonian:

$$H = \frac{1}{2n} \, \varpi^2 + \left(\frac{1}{2} \Re \chi^2 + \Sigma\right). \tag{2}$$

The canonically-conjugate momentum (CCM) to χ can be found from the Lagrangian (1), and called ϖ , it is related to the expansion parameter θ of RE, by the relation $\theta = \frac{\varpi}{\chi}$. Using the CCM, we can write the Hamiltonian:

$$H = \frac{1}{2n} \, \varpi^2 + \left(\frac{1}{2} \Re \chi^2 + \Sigma\right). \tag{2}$$

Raychaudhuri equation can be recovered from Hamilton's equation

$$\{\theta, H\} = -\dot{\theta} = -\frac{1}{n}\hat{\theta}^2 - \mathcal{R} - 2\sigma^2.$$
 (3)

Quantisation

We can now quantise the system by introducing the operators $\hat{\chi}$ and $\hat{\omega}$, that obey the CCR:

$$[\hat{\chi}, \hat{\varpi}] = i\hbar^{-1/2}\hat{l}.$$
 (4)

Quantisation

We can now quantise the system by introducing the operators $\hat{\chi}$ and $\hat{\omega}$, that obey the CCR:

$$[\hat{\chi},\hat{\omega}] = i\hbar^{-1/2}\hat{I}.$$
(4)

In the χ representation, we define the geometric flow wavefunctionals $\Psi[\chi; \lambda]$ that obey the Schrödinger-Raychudhri-Das (SRD) equation:

$$\left(\frac{-\hbar^2}{2n}\frac{\delta^2}{\delta\chi^2} + \frac{1}{2}\Re\chi^2 + \Sigma\right)\Psi[\chi;\lambda] = i\hbar\frac{\partial}{\partial\lambda}\Psi[\chi;\lambda]$$
(5)

Figure: A plot of the probability density function $|\Psi|^2$ vs $\rho = \chi^2$ obtained by solving (5) with $\Re = \Sigma = 0$. The plot indicates that the probability density function rapidly decreases as $\rho \to 0$ and vanishes identically at the singularity.

Figure: Analytically continued probability current density showing the flow of probability around the singularity. It can bee seen that there is no probability flow at the singularity.

Outline

- 1. Introduction
- 2. Geometric flows
- 3. Statistical mechanics of geometric flows
- 4. Quantum-corrected black holes
- 5. Conclusion

Horizons as ensembles of geometric flows

We can assign a single particle geodesic to a geometric flow degree of freedom. Hence, geometric flows play the role of subsystems in Jacobson's formalism [1].

Figure: A region of space-time, enclosed by a horizon generated by null geodesics.

The null generators correspond to an ensemble of *N* geometric flows. The number *N* is bounded by the Bekenstein limit [6] for the number of events or objects enclosing an area A.

$$N \sim \frac{A}{4\hbar}$$
(6)

The null generators correspond to an ensemble of N geometric flows. The number N is bounded by the Bekenstein limit [6] for the number of events or objects enclosing an area A.

$$N \sim \frac{A}{4\hbar}$$
 (6)

Since the classical Schwarzschild geometry is Ricci flat, we may assume a time-independent quantum fluctuations of geometry. Manifesting themselves as a constant \mathcal{R} .

The null generators correspond to an ensemble of *N* geometric flows. The number *N* is bounded by the Bekenstein limit [6] for the number of events or objects enclosing an area *A*.

$$N \sim \frac{A}{4\hbar}$$
 (6)

Some certain the classical Schwarzschild geometry is Ricci flat, we may assume a time-independent quantum fluctuations of geometry. Manifesting themselves as a constant \mathcal{R} . With this assumption, the SRD equation becomes an equation of SHO with half potential, with angular frequency $\omega = (\mathcal{R}/n)^{1/2}$.

Statistical mechanics of geometric flows

Thus, we may calculate the partition function of the quantum geometric flows ensemble

$$Z = \frac{e^{-\frac{3}{2}\beta N\hbar\omega}}{(1 - e^{-\beta\hbar\omega})^{N}},$$
(7)

from which we can fully characterise the statistical mechanics of geometric flows.

Statistical mechanics of geometric flows

We can calculate the entropy of the horizon using (7)

$$S = N\left(1 + \ln(\frac{T\hbar}{\omega}) + \frac{\omega^2\hbar^2}{24T^2} + \dots\right).$$
 (8)

Statistical mechanics of geometric flows

We can calculate the entropy of the horizon using (7)

$$S = N\left(1 + \ln(\frac{T\hbar}{\omega}) + \frac{\omega^2\hbar^2}{24T^2} + \dots\right).$$
 (8)

Moreover, we define the BH mass as its average energy $M = \langle E \rangle$, that is given by

$$\langle E \rangle = M = N \left(2T + \frac{\omega^2 \hbar^2}{6T} + \dots \right).$$
 (9)

Outline

- 1. Introduction
- 2. Geometric flows
- 3. Statistical mechanics of geometric flows
- 4. Quantum-corrected black holes
- 5. Conclusion

Recovering black hole thermodynamics

Taking the leading term of (8), we can recover the Area-Entropy law

$$S = \frac{A}{4\hbar}$$
(10)

Recovering black hole thermodynamics

Taking the leading term of (8), we can recover the Area-Entropy law

$$S = \frac{A}{4\hbar}$$
(10)

By taking the leading term, we also recover the relation between the BH mass and its temperature

$$T = \frac{\hbar}{8\pi M} \tag{11}$$

Quantum-corrected black hole

Using the sub-leading terms in (8) and (9), implementing the results into the standard calculations of black hole thermodynamics [7], we find the quantum-corrected Schwarzschild metric to be

$$ds^{2} = -\left(1 - \frac{2M}{r} + \frac{4\pi^{2}\sqrt{\Re}\hbar}{r^{2}}\right)dt^{2} + \left(1 - \frac{2M}{r} + \frac{4\pi^{2}\sqrt{\Re}\hbar}{r^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2} \quad (12)$$

Quantum-corrected temperature

From the above metric we find the quantum-corrected thermodynamics

• Temperature

$$T = \frac{\sqrt{M^2 - 4\pi^2 \sqrt{\Re}\hbar}}{2\pi \left(\sqrt{M^2 - 4\pi^2 \sqrt{\Re}\hbar} + M\right)^2},$$
 (13)

Quantum-corrected temperature

From the above metric we find the quantum-corrected thermodynamics

• Temperature

$$T = \frac{\sqrt{M^2 - 4\pi^2 \sqrt{\Re}\hbar}}{2\pi \left(\sqrt{M^2 - 4\pi^2 \sqrt{\Re}\hbar} + M\right)^2},$$
 (13)

• Entropy, using the relation $S = \int dM/T$.

$$S = 2\pi \left(M\sqrt{M^2 - 4\pi^2 \sqrt{\Re}\hbar} + M^2 \right).$$
 (14)

Quantum-corrected temperature

• Heat capacity, using
$$C = T \frac{\partial S}{\partial T}$$

$$C = -\frac{2\pi\sqrt{M^2 - 4\pi^2\sqrt{\Re}\hbar}\left(M + \sqrt{M^2 - 4\pi^2\sqrt{\Re}\hbar}\right)^2}{2\sqrt{M^2 - 4\pi^2\sqrt{\Re}\hbar} - M} \quad (15)$$

Figure: A graph of M vs T for classical (blue) and quantum (red) black holes. assumed area fluctuation of Plankian order $\omega > 1$. The graph indicates the existence of remnant for the quantum black hole.

Figure: Graph M vs S, for classical (blue) and quantum (red) black holes. We assumed area fluctuation of Planckian order $\omega \sim 1$. The graph indicates the existence of remnant for the quantum black hole.

Figure: A graph of heat capacity *C* vs mass *M*, obtained from the relation $C = T \partial S / \partial T$. For classical (blue) and quantum (red) black hole. Remnant can also be observed at a critical mass

Outline

- 1. Introduction
- 2. Geometric flows
- 3. Statistical mechanics of geometric flows
- 4. Quantum-corrected black holes
- 5. Conclusion

Conclusion

We can see from the previous graphs.

- The quantum correction to Schwarzschild geometry using the statistical mechanics of geometric flows reproduces the same quantum corrections obtained in [5], by considering the the quantum Raychaudhuri equation (QRE) [2].
- Indicating that the initial conjecture about the space-time being an ensemble of geometric flows is true. Moreover, inducting a logarithmic correction to entropy, as seen in all quantum gravity programs.

Conclusion

• Recovering the standard formulae for BH temperature and entropy is a great test for creditability of quantum geometric flows as a potential approach for quantum gravity.

However, there is a lot to be done with geometric flows, it would be interesting to consider a more realistic model for quantum black holes with time-dependent area fluctuations, for example.

Thank You !

References

[1] T. Jacobson,

"Thermodynamics of space-time: The Einstein equation of state," Phys. Rev. Lett. **75** (1995) 1260

[2] S. Das,

"Quantum Raychaudhuri equation," Phys. Rev. D 89 (2014) no.8, 084068

- [3] S. Alsaleh, L. Alasfar, M. Faizal, and A. Farag Ali, "Geometric Flows and implication to quantum gravity" Accepted in Phys. Lett. B
- [4] S. Alsaleh, L. Alasfar, M. Faizal and A. F. Ali, "Quantum no-singularity theorem from geometric flows," arXiv:1705.00977 [hep-th]. Accepted in Phys. Rev. Lett.
- [5] A. F. Ali and M. M. Khalil, "Black Hole with Quantum Potential," Nucl. Phys. B 909 (2016) 173
- [6] J. D. Bekenstein, "A Universal Upper Bound on the Entropy to Energy Ratio for Bounded Systems," Phys. Rev. D 23 (1981) 287.
- [7] A. Dabholkar and S. Nampuri, "Quantum black holes,"

Lect. Notes Phys. 851 (2012) 165