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Introduction

• The connection between thermodynamics and geometry has
became a key aspect of studying quantum gravity.

• It was shown by Jacobson [1] that Einstein equations of general
relativity (GR) can be retrieved from the second law of
thermodynamics dE = dS/T, using Raychaudhuri equation (RE).

• Inspired by Jacobson’s formalism, Das [2] and followed by
Alsaleh et. al [3] thought of RE as a fundamental equation of
gravity instead of Einstein equations.
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Later, RE was canonically quantized. Leading to a discovery of a new
dynamical system for gravity called Geometric flows [3].
Studying quantum geometric flows lead to proving rigorously that
singularities only exist as a classical limit of the quantum
space-time [4].
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Geometric flows
We start by Studying the congruence of test particles moving on an
n+ 1 dimensional space-timeM. We can use the proper time for the
test particles λ as a dynamical foliation parameter, such that we
foliate the space-time

Figure: The dynamic foliation of the space-timeM by the flow of geodesic
congruences. 5/28



Geometric flows

The dynamical system resembling the geometric flow is the
cross-section of the congruence σλ, and the dynamical degree of
freedom is the volume of this cross-section, given by the square of
the dynamical variable χ

The dynamical variable χ posses the Lagrangian:

L =
n

2
χ̇2 −

1

2
Rχ2 − , (1)

with R being the Raychaudhuri scalar and  is the shear potential
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Geometric flows

The canonically-conjugate momentum (CCM) to χ can be found from
the Lagrangian (1), and called ϖ, it is related to the expansion
parameter θ of RE, by the relation θ = ϖ

χ
.

Using the CCM, we can write the Hamiltonian:

H =
1

2n
ϖ2 +

(︂ 1

2
Rχ2 + 

)︂
. (2)

Raychaudhuri equation can be recovered from Hamilton’s equation

{θ ,H } = −θ̇ = −
1

n
θ̂2 −R− 2σ2. (3)
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Quantisation

We can now quantise the system by introducing the operators χ̂
and ϖ̂, that obey the CCR:

[ χ̂ , ϖ̂ ] = i h̄−1/2 Î. (4)

In the χ representation, we define the geometric flow
wavefunctionals Ψ[χ;λ] that obey the
Schrödinger-Raychudhri-Das (SRD) equation:(︃

− h̄2

2n

δ2

δχ2
+

1

2
Rχ2 + 

)︃
Ψ[χ;λ] = i h̄

∂

∂λ
Ψ[χ;λ] (5)
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Figure: A plot of the probability density function |Ψ|2 vs ρ = χ2 obtained by
solving (5) with R =  = 0. The plot indicates that the probability density
function rapidly decreases as ρ→ 0 and vanishes identically at the
singularity.
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Figure: Analytically continued probability current density showing the flow
of probability around the singularity. It can bee seen that there is no
probability flow at the singularity.
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Horizons as ensembles of geometric flows

We can assign a single particle geodesic to a geometric flow degree
of freedom. Hence, geometric flows play the role of subsystems in
Jacobson’s formalism [1].

Figure: A region of space-time, enclosed by a horizon generated by null
geodesics.
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The null generators correspond to an ensemble of N geometric flows.
The number N is bounded by the Bekenstein limit [6] for the number
of events or objects enclosing an area A.

N ∼
A

4 h̄
(6)

Since the classical Schwarzschild geometry is Ricci flat, we may
assume a time-independent quantum fluctuations of geometry.
Manifesting themselves as a constant R.
With this assumption, the SRD equation becomes an equation of
SHO with half potential, with angular frequency ω = (R/n)1/2.

13/28



The null generators correspond to an ensemble of N geometric flows.
The number N is bounded by the Bekenstein limit [6] for the number
of events or objects enclosing an area A.

N ∼
A

4 h̄
(6)

Since the classical Schwarzschild geometry is Ricci flat, we may
assume a time-independent quantum fluctuations of geometry.
Manifesting themselves as a constant R.

With this assumption, the SRD equation becomes an equation of
SHO with half potential, with angular frequency ω = (R/n)1/2.

13/28



The null generators correspond to an ensemble of N geometric flows.
The number N is bounded by the Bekenstein limit [6] for the number
of events or objects enclosing an area A.

N ∼
A

4 h̄
(6)

Since the classical Schwarzschild geometry is Ricci flat, we may
assume a time-independent quantum fluctuations of geometry.
Manifesting themselves as a constant R.
With this assumption, the SRD equation becomes an equation of
SHO with half potential, with angular frequency ω = (R/n)1/2.

13/28

Asmaa
Highlight
هنا اشكل علي قليلا فهم هذه النقطة. كيف اعتبرنا التموجات الكمومية ثابتة مع الزمن؟

salwams
Sticky Note
التموجات الكمومية في المساحة تؤدي لانحناء ، يمثل بقيمة ل R بما أن R هنا ثابتة ( ليست تابعة للزمن) اعتبرنا أن التموجات لا تعتمد على الزمن.هذا نوع من التقريب ( اضطرابات غير معتمدة /  لا تتغير مع الزمن).



Statistical mechanics of geometric flows

Thus, we may calculate the partition function of the quantum
geometric flows ensemble

Z =
e−

3
2βN h̄ω

(1− e−β h̄ω)N
, (7)

from which we can fully characterise the statistical mechanics of
geometric flows.
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Statistical mechanics of geometric flows

We can calculate the entropy of the horizon using (7)

S = N

(︃
1+ ln(

T h̄

ω
) +

ω2 h̄2

24T2
+ . . .

)︃
. (8)

Moreover, we define the BH mass as its average energy M = 〈 E 〉,
that is given by

〈 E 〉 =M = N

(︃
2T +

ω2 h̄2

6T
+ . . .

)︃
. (9)
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Recovering black hole thermodynamics

Taking the leading term of (8), we can recover the Area-Entropy law

S =
A

4 h̄
(10)

By taking the leading term, we also recover the relation between the
BH mass and its temperature

T =
h̄

8πM
(11)
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Quantum-corrected black hole

Using the sub-leading terms in (8) and (9), implementing the results
into the standard calculations of black hole thermodynamics [7], we
find the quantum-corrected Schwarzschild metric to be

ds2 = −

(︃
1−

2M

r
+

4π2
p
R h̄

r2

)︃
dt2

+

(︃
1−

2M

r
+

4π2
p
R h̄

r2

)︃−1

dr2 + r2dΩ2 (12)
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Quantum-corrected temperature

From the above metric we find the quantum-corrected
thermodynamics

• Temperature

T =

√︀
M2 − 4π2

p
R h̄

2π
(︁√︀

M2 − 4π2
p
R h̄+M

)︁2 , (13)

• Entropy, using the relation S =
∫
dM/T.

S = 2π
(︂
M
√︁
M2 − 4π2

p
R h̄+M2

)︂
. (14)
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Quantum-corrected temperature

• Heat capacity, using C = T
∂S

∂T

C = −
2π
√︀
M2 − 4π2

p
R h̄
(︀
M+

√︀
M2 − 4π2

p
R h̄
)︀2

2
√︀
M2 − 4π2

p
R h̄−M

(15)
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Figure: A graph ofM vs T for classical (blue) and quantum (red) black holes.
We assumed area fluctuation of Plankian order ω ∼ 1. The graph indicates
the existence of remnant for the quantum black hole.
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Figure: GraphM vs S, for classical (blue) and quantum (red) black holes. We
assumed area fluctuation of Planckian order ω ∼ 1. The graph indicates the
existence of remnant for the quantum black hole.
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Figure: A graph of heat capacity C vs massM, obtained from the relation
C = T∂S/∂T. For classical (blue) and quantum (red) black hole. Remnant can
also be observed at a critical mass
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Conclusion

We can see from the previous graphs.

• The quantum correction to Schwarzschild geometry using the
statistical mechanics of geometric flows reproduces the same
quantum corrections obtained in [5], by considering the the
quantum Raychaudhuri equation (QRE) [2].

• Indicating that the initial conjecture about the space-time being
an ensemble of geometric flows is true. Moreover, inducting a
logarithmic correction to entropy, as seen in all quantum gravity
programs.
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Conclusion

• Recovering the standard formulae for BH temperature and
entropy is a great test for creditability of quantum geometric
flows as a potential approach for quantum gravity.

However, there is a lot to be done with geometric flows, it would be
interesting to consider a more realistic model for quantum black
holes with time-dependent area fluctuations, for example.

26/28



Thank You !
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