PHYSICS 404

FALL 2019
$1^{\text {st }}$ HOMEWORK

Dr. V. Lempesis

Hand in: Tuesday $24^{\text {th }}$ of September 2019

1. Use the Rodrigues formula and find the Legendre polynomial $P_{4}(x)$.

Solution

The Rodriguez formula is given by:

$$
P_{n}(x)=\frac{1}{2^{n} n!}\left(\frac{d}{d x}\right)^{n}\left(x^{2}-1\right)^{n}
$$

Thus
$P_{4}(x)=\frac{1}{2^{4} 4!}\left(\frac{d}{d x}\right)^{4}\left(x^{2}-1\right)^{4}=\frac{1}{384}\left(\frac{d}{d x}\right)^{4}\left(x^{8}-4 x^{6}+6 x^{4}-4 x^{2}+1\right)=$
$\frac{1}{384}\left(\frac{d}{d x}\right)^{3}\left(8 x^{7}-24 x^{5}+24 x^{3}-8 x\right)=\frac{1}{384}\left(\frac{d}{d x}\right)^{2}\left(56 x^{6}-120 x^{4}+72 x^{2}-8\right)=$
$\frac{1}{384}\left(\frac{d}{d x}\right)\left(336 x^{5}-480 x^{3}+144 x\right)=\frac{1}{384}\left(1680 x^{4}-1440 x^{2}+144\right)=$
$\frac{1680}{384} x^{4}-\frac{1440}{384} x^{2}+\frac{144}{384}=\frac{105}{24} x^{4}-\frac{90}{24} x^{2}+\frac{12}{32}=\frac{35}{8} x^{4}-\frac{30}{8} x^{2}+\frac{3}{8}=$
$\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right)$
2. Show that:

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)
$$

Hint: use the recurence relations: $\quad P_{n+1}^{\prime}(x)=(n+1) P_{n}(x)+x P_{n}^{\prime}(x)$ and $P_{n-1}^{\prime}(x)=-n P_{n}(x)+x P_{n}^{\prime}(x)$.

Solution

$$
\begin{equation*}
P_{n+1}^{\prime}(x)=(n+1) P_{n}(x)+x P_{n}^{\prime}(x) \underset{n \rightarrow n-1}{\Rightarrow} P_{n}^{\prime}(x)=n P_{n-1}(x)+x P_{n-1}^{\prime}(x) \tag{1}
\end{equation*}
$$

Also

$$
\begin{equation*}
P_{n-1}^{\prime}(x)=-n P_{n}(x)+x P_{n}^{\prime}(x) \Rightarrow x P_{n-1}^{\prime}(x)=-n x P_{n}(x)+x^{2} P_{n}^{\prime}(x) \tag{2}
\end{equation*}
$$

Adding (1) and (2) two we have

$$
P_{n}^{\prime}(x)+x P_{n-1}^{\prime}(x)=n P_{n-1}(x)+x P_{n-1}^{\prime}(x)+-n x P_{n}(x)+x^{2} P_{n}^{\prime}(x)
$$

$$
\left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)
$$

3. Calculate the integral $\int_{-1}^{1}\left(x^{2}-1\right) P_{n}^{\prime}(x) P_{n+1}(x) d x$. (Hint: use the first and last recurrence relations in slide 15 of Lecture 1)

Solution:

From the last recurrence relation we have:
$\left(1-x^{2}\right) P_{n}^{\prime}(x)=n P_{n-1}(x)-n x P_{n}(x)$
Thus

$$
\int_{-1}^{1}\left(x^{2}-1\right) P_{n}^{\prime}(x) P_{n+1}(x) d x=\int_{-1}^{1}\left[n P_{n-1}(x)-n x P_{n}(x)\right] P_{n+1}(x) d x=
$$

$$
n \int_{-1}^{1} P_{n-1}(x) P_{n+1}(x) d x-n \int_{-1}^{1} x P_{n}(x) P_{n+1}(x) d x
$$

Since $P_{\mathrm{n}-1}(x)$ and $P_{\mathrm{n}+1}(x)$ are orthogonal the first integral is zero, thus
$\int_{-1}^{1}\left(x^{2}-1\right) P_{n}^{\prime}(x) P_{n+1}(x) d x=-n \int_{-1}^{1} x P_{n}(x) P_{n+1}(x) d x$

From the first recurrence relation in slide 15 we have
$(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+n P_{n-1}(x) \Rightarrow x P_{n}(x)=\frac{1}{(2 n+1)}\left[(n+1) P_{n+1}(x)+n P_{n-1}(x)\right]$
$\Rightarrow x P_{n}(x)=\frac{(n+1)}{(2 n+1)} P_{n+1}(x)+\frac{n}{(2 n+1)} P_{n-1}(x)$

So we have

$$
\begin{aligned}
& \int_{-1}^{1}\left(x^{2}-1\right) P_{n}^{\prime}(x) P_{n+1}(x) d x=-n \int_{-1}^{1} x P_{n}(x) P_{n+1}(x) d x= \\
& -n \int_{-1}^{1}\left[\frac{(n+1)}{(2 n+1)} P_{n+1}(x)+\frac{n}{(2 n+1)} P_{n-1}(x)\right] P_{n+1}(x) d x= \\
& -\frac{n(n+1)}{(2 n+1)} \int_{-1}^{1}\left[P_{n+1}(x)\right]^{2} d x-\frac{n^{2}}{(2 n+1)} \int_{-1}^{1} P_{n-1}(x) P_{n+1}(x) d x= \\
& -\frac{n(n+1)}{(2 n+1)} \int_{-1}^{1}\left[P_{n+1}(x)\right]^{2} d x=-\frac{n(n+1)}{(2 n+1)} \frac{2}{2(n+1)+1}=-\frac{2 n(n+1)}{(2 n+3)(2 n+1)}
\end{aligned}
$$

4. Find the general solution of the differential equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+6 y=0$

Solution:

The equation can be written as

$$
\begin{aligned}
& \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 \cdot 3 y=0 \Rightarrow\left(1-x^{2}\right) y^{\prime \prime}+\left(1-x^{2}\right)^{\prime} y^{\prime}+2 \cdot(2+1) y=0 \Rightarrow \\
& {\left[\left(1-x^{2}\right) y^{\prime}\right]^{\prime}+2 \cdot(2+1) y=0}
\end{aligned}
$$

This is the Legendre diff. equation for $n=2$, and thus it has the general solution

$$
y(x)=A P_{2}(x)+B Q_{2}(x) .
$$

