PHYS 502

HANDOUT 7

1. A uniform beam with insulated surface has length equal to 3 units and coefficient of thermal conductivity equal to 2 units. If both ends of the beam are at zero temperature. If the initial temperature was 25 degrees Celsius find the temperature of the beam $u(x, t)$.
(Sch.p. 38)
2. A circular disc of radius a has its surface insulated. The upper half of the disk has a constant temperature T_{1} and the lower has a constant temperature T_{2}. Find the steady state temperature of the disk.
(Sch. p.39)
3. The three sides of the following plate are kept at zero temperature, the other one is kept at a constant temperature T_{1}. Find the temperature of the plate at the steady state.
(Sch. p. 42)

4. If in problem 3, all the sides are kept at constants temperatures T_{1}, T_{2}, T_{3} and T_{4} respectively, could you suggest a way to find the temperature of the plate at the steady state?
(Sch.p. 42)
5. A plate of infinite length and width L has its parallel sides at zero temperature and the lower side at temperature T_{0} as shown in figure below. Find the steady state temperature of the plate.
(Sch.p.49)

6. Calculate the steady state temperature in a compact cube in which the side $x y$ is kept at temperature $u=f(x, y)$ while the rest are kept at zero temperature.
(Sch.p. 50)

7. Find the steady state temperature of the following wedge-like plate with the boundary conditions show in the figure.
(Sch.p. 51)

8. Sound waves in a pipe are described by the following wave equation:

$$
u_{x x}-\frac{1}{c^{2}} u_{t t}=0
$$

where $u(x, t)$ the displacement from the equilibrium position of the air molecules which at time t are found in the cross section at point x, while $c=\sqrt{p_{0} / p}$ is the propagation speed of the sound waves in the pipe (p_{0} is the normal air pressure and ρ its density).
a) Assuming that the air inside the pipe behaves like an ideal gas where $p V=$ constant, show that pressure variation Δp which is
created by the sound wave is related to the molecules displacement by $\Delta p=-p_{0} u_{x}$.
b) Denoting, for simplicity reasons, that $\Delta p \equiv p$ show that the pressure variation satisfies the wave equation:

$$
p_{x x}-\frac{1}{c^{2}} p_{t t}=0
$$

c) Calculate the eigenfrequencies of a pipe of length L : i) closed at both ends, ii) closed at one end and iii) open at both ends
9. An infinitely long metallic beam of square cross section, with side L, and initial temperature T_{0} in all its bulk, is immersed in a cooling liquid of zero temperature. Show that, after time t, the temperature distribution in any cross section of the beam will be given by

$$
u(x, y, t)=\frac{16 T_{0}}{\pi^{2}} \sum_{\substack{n, m \\ \text { odd }}} \frac{1}{n m} \sin \frac{n \pi x}{L} \sin \frac{m \pi y}{L} e^{-\left(n^{2}+m^{2}\right) \tau^{2} t / L^{2}}
$$

10. Show that the solution of the two-dimensional Laplace equation in theinterior of a semi-circular disk of radius a with the following boundary conditions: $0<\theta<\pi, u(a, \theta)=1, u(\rho, 0)=u(\rho, \pi)=0$, is given by

$$
u(\rho, \theta)=\frac{4}{\pi} \sum_{n \text { odd }} \frac{1}{n}\left(\frac{\rho}{a}\right)^{n} \sin n \theta \frac{n \pi x}{L}
$$

