PHYS 501
 HANDOUT 6-Fourier Series

1. Obtain a Fourier series for the function $f(x)$ defined as follows:

$$
f(t)=\left\{\begin{array}{cc}
1 & 0<x<\pi \\
0 & \pi<x<2 \pi
\end{array} \quad \text { period } 2 \pi\right.
$$

(Adv. Math. p. 313)
2. Obtain a Fourier series for the function given by

$$
f(t)=\left\{\begin{array}{cc}
1+(2 x / \pi) & -\pi<x \leq 0 \\
1-(2 x / \pi) & 0 \leq x<\pi
\end{array} \quad \text { period } 2 \pi\right.
$$

(Adv.Math, p. 314)
3. An alternating current after passing through a rectifier has the form

$$
i=\left\{\begin{array}{ll}
I_{0} \sin \theta & 0<\theta \leq \pi \\
0 & \pi \leq \theta<2 \pi
\end{array} \quad \text { period } 2 \pi\right.
$$

Express it in a Fourier series.
(Adv. Math. p. 315)
4. Expand $\sin ^{2} x$ in the range $0<x<\pi$, (i) in a sine series, (ii) in a cosine series.
(Adv. Math. p. 319)
5. Find a sine series to represent the trapezoidal function :

$$
f(x)=\left\{\begin{array}{ccc}
4 x / l & & 0 \leq x<l / 4 \\
1 & l / 4 & \leq x<3 l / 4 \\
4(1-x / l) & l / 4 & \leq x<l
\end{array}\right.
$$

(Adv. Math. p. 322)
6. Find the Fourier series for the function:

$$
f(t)=\left\{\begin{array}{cc}
-1 & -T / 2<t<0 \\
1 & 0<t<T / 2
\end{array} \quad \text { period } T\right.
$$

7. Find the Fourier series for the function:

$$
f(t)=\left\{\begin{array}{cc}
0 & -\pi<t<0 \\
t / \pi & 0<t<\pi
\end{array} \quad \text { period } 2 \pi\right.
$$

(Sch.p. 7)
8. Find the Fourier series for the function:

$$
f(t)=\left\{\begin{array}{ll}
1+(4 t / T) & -T / 2<t \leq 0 \\
1-(4 t / T) & 0 \leq t<T / 2
\end{array} \quad \text { period } T\right.
$$

(Sch.p.14)
9. Find the Fourier series for the function:

$$
f(t)=\left\{\begin{array}{cc}
0 & -T / 2<t \leq 0 \\
A \sin \omega_{0} \mathrm{t} & 0 \leq t<T / 2
\end{array} \quad \text { period } T\right.
$$

(Sch. p. 15)
10. Expand $f(t)=\sin ^{5} t$ in Fourier series.
(Sch.p.16)
11. In the analysis of a complex waveform (ocean tides. Earthquakes, musical tones, etc.) it might be more convenient to have the Fourier series written as:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n x-\theta_{n}\right)
$$

Show that this is equivalent to a Fourier series with

$$
\begin{array}{ll}
a_{n} \rightarrow a_{n} \cos \theta_{n}, & a_{n}^{2} \rightarrow a_{n}^{2}+b_{n}^{2} \\
b_{n} \rightarrow a_{n} \sin \theta_{n}, & \tan \theta_{n}=b_{n} / a_{n}
\end{array} .
$$

12. A function $f(x)$ is expanded in an exponential Fourier series

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

If this function is real, what restriction is imposed on the coefficients c_{n} ?
13. Apply the summation technique to show that

$$
\sum_{n=1}^{\infty} \frac{\sin n x}{n}=\left\{\begin{array}{rr}
(\pi-x) / 2, & 0<x \leq \pi \\
-(\pi+x) / 2, & -\pi \leq x<\pi
\end{array} .\right.
$$

14. Find a Fourier series to represent x in the range $(-\pi, \pi)$.
(Adv.Math.p.311)
15. Find the complex Fourier series of the sawtooth function defined by

$$
f(t)=A t / T, \quad 0<t<T, \quad \text { period } T .
$$

16. Find the complex Fourier series of the rectified sine wave periodic functions defined by

$$
\begin{equation*}
f(t)=A \sin \pi t, \quad 0<t<1, \quad \text { period } 1 . \tag{Sch.p.48}
\end{equation*}
$$

17. Show that a time displacement τ in a periodic function has no effect on the magnitude spectrum, but changes the phase spectrum.
(Sch.p. 50)
18. Expand the function

$$
f(x)=x^{2}, \quad-\pi<x<\pi,
$$

and show that it is related to the so called Riemann zeta function.
(Arf. p. 772)
19. Expand the function

$$
f(x)= \begin{cases}1 & x^{2}<x_{0}^{2} \\ 0 & x^{2}<x_{0}^{2}\end{cases}
$$

in the interval $[-\pi, \pi]$.
20. Find the Fourier series representation of

$$
f(x)= \begin{cases}0, & -\pi<x<0 \\ x, & 0 \leq x<\pi\end{cases}
$$

From your Fourier series show that

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots
$$

(Arf. p. 777)
21. Show that the integration of the Fourier expansion of $f(x)=x$, $-\pi<x<\pi$, leads to

$$
\frac{\pi^{2}}{12}=\sum_{n=1}^{\infty}(-1)^{n+1} n^{-2}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\ldots
$$

22. Prove the power content relation.
