PHYS 111 $1^{\text {ST }}$ semester 1439-1440
 Dr. Nadyah Alanazi

Lecture 8

25.3 Electric Potential and Potential Energy Due to Point Charges

- The total electric potential at some point P due to several point charges is the sum of the potentials due to the individual charges.

$$
V=k_{e} \sum_{i} \frac{q_{i}}{r_{i}}
$$

- Note that the sum is an algebraic sum of scalars rather than a vector sum.

25.3 Electric Potential and Potential Energy Due to Point Charges

- We now consider the potential energy of a system of two charged particles.
- If V_{2} is the electric potential at a point P due to charge q_{2}, then the work an external agent must do to bring a second charge q_{1} from infinity to P is $q_{1} V_{2}$.
- The potential energy of the system

$$
U=k_{e} \frac{q_{1} q_{2}}{r_{12}}
$$

- If we have removed the charge q_{1}, a

(a)

(b) potential due to charge q_{2} as

$$
V=U / q_{1}=k_{e} q_{2} / r_{12}
$$

Example 25.3 The Electric Potential Due to Two Point Charges

A charge $q_{1}=2.00 \mu \mathrm{C}$ is located at the origin, and a charge $q_{2}=-6.00 \mu \mathrm{C}$ is located at $(0,3.00) \mathrm{m}$, as shown in Figure 25.12a.
(A) Find the total electric potential due to these charges at the point P, whose coordinates are $(4.00,0) \mathrm{m}$.

Solution For two charges, the sum in Equation 25.12 gives

$$
\begin{aligned}
V_{P}= & k_{e}\left(\frac{q_{1}}{r_{1}}+\frac{q_{2}}{r_{2}}\right) \\
V_{P}= & \left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \\
& \times\left(\frac{2.00 \times 10^{-6} \mathrm{C}}{4.00 \mathrm{~m}}-\frac{6.00 \times 10^{-6} \mathrm{C}}{5.00 \mathrm{~m}}\right) \\
= & -6.29 \times 10^{3} \mathrm{~V}
\end{aligned}
$$

(a)

Example 25.3 The Electric Potential Due to Two Point Charges

(B) Find the change in potential energy of the system of two charges plus a charge $q_{3}=3.00 \mu \mathrm{C}$ as the latter charge moves from infinity to point P (Fig. 25.12b).

Solution When the charge q_{3} is at infinity, let us define $U_{i}=0$ for the system, and when the charge is at P, $U_{f}=q_{3} V_{p}$; therefore,

$$
\begin{aligned}
\Delta U & =q_{3} V_{P}-0=\left(3.00 \times 10^{-6} \mathrm{C}\right)\left(-6.29 \times 10^{3} \mathrm{~V}\right) \\
& =-1.89 \times 10^{-2} \mathrm{~J}
\end{aligned}
$$

(b)

SUMMARY

When a positive test charge q_{0} is moved between points A and B in an electric field E, the change in the potential energy of the charge-field system is

$$
\begin{equation*}
\Delta U=-q_{0} \int_{A}^{B} \mathbf{E} \cdot d \mathbf{s} \tag{25.1}
\end{equation*}
$$

The electric potential $V=U / q_{0}$ is a scalar quantity and has the units of J / C, where $1 \mathrm{~J} / \mathrm{C} \equiv 1 \mathrm{~V}$.

The potential difference ΔV between points A and B in an electric field E is defined as

$$
\begin{equation*}
\Delta V \equiv \frac{\Delta U}{q_{0}}=-\int_{A}^{B} \mathbf{E} \cdot d \mathbf{s} \tag{25.3}
\end{equation*}
$$

The potential difference between two points A and B in a uniform electric field E, where s is a vector that points from A to B and is parallel to E is

$$
\begin{equation*}
\Delta V=-E d \tag{25.6}
\end{equation*}
$$

where $d=|\mathbf{s}|$.
An equipotential surface is one on which all points are at the same electric potential. Equipotential surfaces are perpendicular to electric field lines.

If we define $V=0$ at $r_{A}=\infty$, the electric potential due to a point charge at any distance r from the charge is

$$
\begin{equation*}
V=k_{e} \frac{q}{r} \tag{25.11}
\end{equation*}
$$

We can obtain the electric potential associated with a group of point charges by summing the potentials due to the individual charges.

The potential energy associated with a pair of point charges separated by a distance r_{12} is

$$
\begin{equation*}
U=k_{e} \frac{q_{1} q_{2}}{r_{12}} \tag{25.13}
\end{equation*}
$$

This energy represents the work done by an external agent when the charges are brought from an infinite separation to the separation r_{12}. We obtain the potential energy of a distribution of point charges by summing terms like Equation 25.13 over all pairs of particles.

Chapter 26

Capacitance and Dielectrics

26.1 Definition of Capacitance

- Consider two conductors carrying charges of equal magnitude and opposite sign.
- Such a combination of two conductors is called a capacitor.
- The conductors are called plates.
- A potential difference ΔV exists between the conductors due to the presence of the charges.

Figure 26.1 A capacitor consists of two conductors. When the capacitor is charged, the conductors carry charges of equal magnitude and opposite sign.

The capacitance C of a capacitor is defined as the ratio of the magnitude of the charge on either conductor to the magnitude of the potential difference between the conductors:

$$
\begin{equation*}
C \equiv \frac{Q}{\Delta V} \tag{26.1}
\end{equation*}
$$

26.1 Definition of Capacitance

- The SI unit of capacitance is the farad (F)

$$
1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}
$$

- The farad is a very large unit of capacitance. In practice, typical devices have capacitances ranging from microfarads $\left(10^{-6} \mathrm{~F}\right)$ to picofarads $\left(10^{-12} \mathrm{~F}\right)$.

Quick Quiz 26.1 A capacitor stores charge Q at a potential difference ΔV. If the voltage applied by a battery to the capacitor is doubled to $2 \Delta V$, (a) the capacitance falls to half its initial value and the charge remains the same (b) the capacitance and the charge both fall to half their initial values (c) the capacitance and the charge both double (d) the capacitance remains the same and the charge doubles.

26.1 Definition of Capacitance

- Let us consider a capacitor formed from a pair of parallel plates.
- Each plate is connected to one terminal of a battery, which acts as a source of potential difference.
- The plate connected to the negative terminal of the battery. The electric field applies a force on electrons in the wire.
- This force causes the electrons to move onto the plate. This movement continues until the plate, the wire, and the terminal are all at the same electric potential.
- Once this equilibrium point is attained, a potential difference no longer exists between the terminal and the plate, and as a result no electric field is present in the wire, and the movement of electrons stops.
- The plate now carries a negative charge.
- A similar process occurs at the other capacitor plate, with electrons moving from the plate to the wire
- Finally, the potential difference across the capacitor plates is the same as that between the terminals of the battery.

26.2 Calculating Capacitance

- For example, imagine a spherical charged conductor.
- The electric potential of the sphere of radius R is simply $k_{e} Q / R$, and setting $V=0$ for the infinitely large shell, we have

$$
C=\frac{Q}{\Delta V}=\frac{Q}{k_{e} Q / R}=\frac{R}{k_{e}}=4 \pi \epsilon_{0} R
$$

- This expression shows that the capacitance of an isolated charged sphere is proportional to its radius and is independent of both the charge on the sphere and the potential difference.

Parallel-Plate Capacitors

- Two parallel metallic plates of equal area A are separated by a distance d. One plate carries a charge Q, and the other carries a charge $-Q$.
- The surface charge density on either plate is $\sigma=Q / A$.
- If the plates are very close together, we can assume that the electric field is uniform between the plates.

$$
E=\frac{\sigma}{\epsilon_{0}}=\frac{Q}{\epsilon_{0} A}
$$

- The magnitude of the potential difference between the plates

$$
\Delta V=E d=\frac{Q d}{\epsilon_{0} A}
$$

- The capacitance is

$$
C=\frac{Q}{\Delta V}=\frac{Q}{Q d / \epsilon_{0} A} \quad C=\frac{\epsilon_{0} A}{d}
$$

- The capacitance of a parallel-plate capacitor is proportional to the area of its plates and inversely proportional to the plate separation

Parallel-Plate Capacitors

Example 26.1 Parallel-Plate Capacitor

A paralle-plate capacitor with air between the plates has an area $A=2.00 \times 10^{-4} \mathrm{~m}^{2}$ and a plate separation $d=1.00 \mathrm{~mm}$. Find its capacitance.

Solution From Equation 26.3, we find that

$$
\begin{aligned}
C & =\frac{\epsilon_{0} A}{d}=\frac{\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2}\right)\left(2.00 \times 10^{-4} \mathrm{~m}^{2}\right)}{1.00 \times 10^{-3} \mathrm{~m}} \\
& =1.77 \times 10^{-12} \mathrm{~F}=1.77 \mathrm{pF}
\end{aligned}
$$

