PHYS 111 $1^{\text {ST }}$ semester 1439-1440
 Dr. Nadyah Alanazi

Lecture 6

HW Problem (Electric Force)

- Three point charges are located at the corners of an equilateral triangle as shown in the Figure. Calculate the resultant electric force on the $7.00 \mu \mathrm{C}$ charge.

23.4 The Electric Field

$$
\mathbf{E}=k_{e} \frac{q}{r^{2}} \hat{\mathbf{r}}
$$

Quick Quiz 23.6 A test charge of $+3 \mu \mathrm{C}$ is at a point P where an external electric field is directed to the right and has a magnitude of $4 \times 10^{6} \mathrm{~N} / \mathrm{C}$. If the test charge is replaced with another test charge of $-3 \mu \mathrm{C}$, the external electric field at P (a) is unaffected (b) reverses direction (c) changes in a way that cannot be determined

Example

- Three charges are placed on three corners of a square, as shown in the figure. Each side of the square is 30.0 cm . Calculate the electric field strength at point A. What would be the force on a $6.00 \mu \mathrm{C}$ charge placed at the point A ?

$$
\begin{aligned}
& \begin{array}{l}
E_{A 1}=\frac{k q_{1}}{r_{1}^{2}}=\frac{\left(9.0 \times 10^{9}\right)\left(8.00 \times 10^{-6}\right)}{\left(42.4 \times 10^{-2}\right)^{2}}=4.00 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1} \quad q_{1}=8.00 \mu \mathrm{C} \\
E_{A 2}=\frac{k q_{2}}{r_{2}^{2}}=\frac{\left(9.0 \times 10^{9}\right)\left(5.00 \times 10^{-6}\right)}{\left(30.0 \times 10^{-2}\right)^{2}}=5.00 \times 10^{5} \mathrm{~N} \mathrm{C}^{-1} \quad 30.0 \mathrm{dm} \\
E_{A 3}=\frac{k q_{3}}{r_{3}^{2}}=\frac{\left(9.0 \times 10^{9}\right)\left(4.00 \times 10^{-6}\right)}{\left(30.0 \times 10^{-2}\right)^{2}}=4.00 \times 10^{5} \mathrm{~N} \mathrm{C}^{q_{1}=-4.00 \mu \mathrm{Cm}} \quad 30.0 \mathrm{dm}
\end{array} \\
& \sum E_{A X}=E_{A 1} \cos 45^{\circ}-E_{A 3} \\
& =-1.17 \times 10^{5} \mathrm{~N} / \mathrm{C} \\
& \sum E_{A Y}=E_{A 2}-E_{A 1} \sin 45^{\circ} \\
& =2.17 \times 10^{5} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

Example

$$
\begin{aligned}
& E=\sqrt{\sum E_{A X}^{2}+\sum E_{A Y}^{2}} \\
& E=2.46 \times 10^{5} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

$$
\tan \theta=\sum_{\theta}^{\sum E_{A Y}} \sum_{A X} E_{A X}
$$

23.6 Electric Field Lines

- 40. Figure P23.40 shows the electric field lines for two point charges separated by a small distance.
- (a) Determine the ratio $q 1 / q 2$.
- (b) What are the signs of $q 1$ and $q 2$?

Figure P23.40

23.7 Motion of Charged Particles in a Uniform
 Electric Field

- Example: Determine the final velocity and kinetic energy of an electron released from rest in the presence of a uniform electric field of $300 \mathrm{~N} / \mathrm{C}$ in the x direction after a period of 0.5 ms .

$$
\begin{aligned}
& \vec{F}=q \vec{E}=-e E \hat{i} \\
& \vec{F}=-\left(1.60 \times 10^{-19} C\right)\left(300 \frac{N}{C}\right) \hat{i} \\
& \vec{F}=-\left(4.80 \times 10^{-17} N\right) \hat{i}
\end{aligned}
$$

$$
\vec{a}=\frac{\vec{F}}{m}=\frac{-\left(4.80 \times 10^{-17} \mathrm{~N}\right) \hat{i}}{9.11 \times 10^{-31} \mathrm{~kg}}=-\left(5.3 \times 10^{+13} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \hat{i}
$$

$$
\vec{v}=\vec{v}_{o}+\vec{a} t
$$

$$
\vec{v}=0-\left(5.3 \times 10^{+13} \frac{m}{s^{2}} \hat{i}\right)\left(0.5 \times 10^{-3} s\right) \quad \vec{v}=-2.6 \times 10^{10} \frac{m}{s} \hat{i}
$$

$$
K=\frac{1}{2} m v^{2} \quad K=\frac{1}{2}\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(-2.6 \times 10^{10} \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} \quad K=3.16 \times 10^{-10} \mathrm{~J}
$$

Questions

- Q23.22 Consider two equal point charges separated by some distance d. At what point (other than infinity) would a third test charge experience no net force?

At a point exactly midway between the two changes.

- Q23.19 Explain what happens to the magnitude of the electric field created by a point charge as r approaches zero.

The electric field around a point charge approaches
infinity as r approaches zero.
Q23.20 An object with negative charge is placed in a region of space where the electric field is directed vertically upward. What is the direction of the electric force exerted on this charge?

Vertically downward.

