PHYS 111 1ST semester 1439-1440 Dr. Nadyah Alanazi

Lecture 6

HW Problem (Electric Force)

 Three point charges are located at the corners of an equilateral triangle as shown in the Figure. Calculate the resultant electric force on the 7.00µC charge.

23.4 The Electric Field

$$\mathbf{E} = k_e \frac{q}{r^2} \hat{\mathbf{r}}$$

Quick Quiz 23.6 A test charge of $+3 \mu C$ is at a point *P* where an external electric field is directed to the right and has a magnitude of 4×10^6 N/C. If the test charge is replaced with another test charge of $-3 \mu C$, the external electric field at *P* (a) is unaffected (b) reverses direction (c) changes in a way that cannot be determined

Example

 Three charges are placed on three corners of a square, as shown in the figure. Each side of the square is 30.0 cm. Calculate the electric field strength at point A. What would be the force on a 6.00 µC charge placed at the point A?

$$E_{A1} = \frac{kq_1}{r_1^2} = \frac{(9.0 \times 10^9)(8.00 \times 10^{-6})}{(42.4 \times 10^{-2})^2} = 4.00 \times 10^5 \text{ N C}^{-1} \qquad q_1 = 8.00 \mu\text{C} + 30.0 \text{ cm}^{-1} = 9.00 \mu\text{C}^{-1} = 8.00 \mu\text{C}^{-1} = 8.00 \mu\text{C}^{-1} = 9.00 \mu\text{C$$

$$\sum E_{AX} = E_{A1} \cos 45^{\circ} = E_{A3}$$

= -1.17×10⁵N/C
$$\sum E_{AY} = E_{A2} - E_{A1} \sin 45^{\circ}$$

= 2.17×10⁵N/C

Example

$$E = \sqrt{\sum E_{AX}^{2} + \sum E_{AY}^{2}}$$
$$E = 2.46 \times 10^{5} \text{ N/C}$$

$$\tan \theta = \frac{\sum E_{AY}}{\sum E_{AX}}$$
$$\theta = 61.7^{\circ}$$

23.6 Electric Field Lines

- **40.** Figure P23.40 shows the electric field lines for two point charges separated by a small distance.
- (a) Determine the ratio q1/q2.
- (b) What are the signs of q1 and q2?

Figure P23.40

23.7 Motion of Charged Particles in a Uniform Electric Field

 Example: Determine the final velocity and kinetic energy of an electron released from rest in the presence of a uniform electric field of 300 N/C in the x direction after a period of 0.5 ms.

$$\vec{F} = q\vec{E} = -eE\hat{i}$$

$$\vec{F} = -(1.60 \times 10^{-19} C)(300 \frac{N}{C})\hat{i}$$

$$\vec{F} = -(4.80 \times 10^{-17} N)\hat{i}$$

$$\vec{a} = \frac{\vec{F}}{m} = \frac{-(4.80 \times 10^{-17} N)\hat{i}}{9.11 \times 10^{-31} kg} = -(5.3 \times 10^{+13} \frac{m}{s^2})\hat{i}$$

$$\vec{v} = \vec{v}_o + \vec{a}t$$

$$\vec{v} = 0 - (5.3 \times 10^{+13} \frac{m}{s^2} \hat{i})(0.5 \times 10^{-3} s) \qquad \vec{v} = -2.6 \times 10^{10} \frac{m}{s} \hat{i}$$

$$K = \frac{1}{2} mv^2 \quad K = \frac{1}{2} (9.11 \times 10^{-31} kg) (-2.6 \times 10^{10} \frac{m}{s})^2 \qquad K = 3.16 \times 10^{-10} J$$

Questions

 <u>Q23.22</u> Consider two equal point charges separated by some distance *d*. At what point (other than infinity) would a third test charge experience no net force?

At a point exactly midway between the two changes.

 <u>Q23.19</u> Explain what happens to the magnitude of the electric field created by a point charge as *r* approaches zero.

The electric field around a point charge approaches infinity as r approaches zero.

 <u>Q23.20</u> An object with negative charge is placed in a region of space where the electric field is directed vertically upward. What is the direction of the electric force exerted on this charge?

Vertically downward.