

بسم الله الرحمن الرحيم

King Saud University College of Science Physics & Astronomy Dept.

PHYS 103 (GENERAL PHYSICS) CHAPTER 9: LINEAR MOMENTUM-III LECTURE NO. 15

THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED

Lecture Outline

Here is a quick list of the subjects that we will cover in this presentation	
	Conservation =
It is based on Serway, Ed. 6	Counting
9.4 Two-Dimensional Collisions	
PROBLE M-SOLV ING HI NTS	
Example 9.10 Collision at an Intersection	\sim
• 9.5 The Center of Mass	
• 9.5 The Center of Mass (Integral form)	$\mathcal{O}\mathcal{O}$
Quiz 9.10	
Example 9.13 The CM of Three Particles	
Example 9.14 The Center of Mass of a Rod	
Example 9.15 The CM of a Right Triangle	
Lecture Summary	
Interactive Flash	
End of Presentation	

9.4 Two-Dimensional Collisions

For two dimensional collisions, we obtain two component equations for conservation of momentum:

 $m_{1}v_{1ix} + m_{2}v_{2ix} = m_{1}v_{1fx} + m_{2}v_{2fx}$ $m_{1}v_{1iy} + m_{2}v_{2iy} = m_{1}v_{1fy} + m_{2}v_{2fy}$

consider a 2-D problem in which particle 1 of mass m_1 collides with particle 2 of mass m_2 , where particle 2 is initially at rest, as in Figure

9.4 Two-Dimensional Collisions (continued)

Applying the law of conservation of momentum in component form and noting that the initial y component of the momentum of the two-particle system is zero, we obtain:

$$m_{1}v_{1i} = m_{1}v_{1f} \cos\theta + m_{2}v_{2f} \cos\phi$$
(9.24)
$$0 = m_{1}v_{1f} \sin\theta - m_{2}v_{2f} \sin\phi$$
(9.25)

where the minus sign in Equation 9.25 comes from the fact that after the collision, particle 2 has a y component of velocity that is downward.
If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic energy) with v_{2i} = 0 to give:

$$\frac{1}{2}m_{1}v_{1i}^{2} = \frac{1}{2}m_{1}v_{1f}^{2} + \frac{1}{2}m_{2}v_{2f}^{2}$$

(9.26)

PROBLE M-SOLV ING HI NTS

- Set up a coordinate system and define your velocities with respect to that system.
- In your sketch of the coordinate system, draw and label all velocity vectors and include all the given information.
- Write expressions for the x and y components of the momentum of each object before and after the collision.
- Write expressions for the total momentum of the system in the x and y directions before and after the collision and equate the two..
- If the collision is inelastic, kinetic energy of the system is not conserved, and additional information is probably required.
- If the collision is perfectly inelastic, the final velocities of the two objects are equal. Solve the momentum equations for the unknown quantities.
- If the collision is elastic, kinetic energy is conserved, and you can equate the total kinetic energy before and after the collision.

Example 9.10 Collision at an Intersection

- A 1 500-kg car traveling east with a speed of 25.0 m/s collides at an intersection with a 2 500-kg van traveling north at a speed of 20.0 m/s, as shown in Figure 9.14. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming that the vehicles undergo a perfectly inelastic collision (that is, they stick together).
- **Solution**:
- We shall apply the conservation of momentum in each direction.

$$x: m_1 v_{1ix} + m_2 v_{2ix} = m_1 v_{1fx} + m_2 v_{2fx}$$
(1)

 $y: m_1 v_{1iy} + m_2 v_{2iy} = m_1 v_{1fy} + m_2 v_{2fy}$

Example 9.10 (continued)

(4)

9.5 The Center of Mass

The center of mass of the pair of particles described in Figure is located on the x axis and lies somewhere between the particles. Its x coordinate is given by:

$$_{CM} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \tag{9.27}$$

We can extend this concept to a system of many particles with masses *mi*

9.5 The Center of Mass (continued)

9.5 The Center of Mass (Integral form)

Quiz 9.10

My Quiz				
Question 4 of 16	Point Va	Point Value: 20 / Total Points: 10 out of 160		
Match the following items:				
Item 1	C		q	Item 5
Item 2	C		G	Item 6
Item 3		G	Item	7
Item 4	С		q	Item 8
Answer				Finish

Click the 🗹 Quiz button on iSpring Pro toolbar to edit your quiz

Example 9.13 The CM of Three Particles

A system consists of three particles located as shown in Figure . *Find the center of mass of the system*.

$$x_{CM} = \frac{m_1 x_1 + m_2 x_2 + m_1 x_3}{m_1 + m_2 + m_3}$$

= $\frac{(1)(1) + (1)(2) + (2)(0)}{1 + 1 + 2}$ = 0.75 m
 $y_{CM} = \frac{m_1 y_1 + m_2 y_2 + m_1 y_3}{m_1 + m_2 + m_3}$
= $\frac{(1)(0) + (1)(0) + (2)(2)}{1 + 1 + 2}$ = 1 m
 $\therefore r_{CM} = x_{CM} \hat{i} + y_{CM} \hat{j} = (0.75\hat{i} + 1.0\hat{j})m$

Example 9.14 The Center of Mass of a Rod

Show that the center of mass of a rod of mass M and length L lies midway between its ends, assuming the rod has a uniform mass per unit length

$$\therefore x_{CM} = \frac{1}{M} \int x \, dm$$

• We shall find an expression for the quantity dm: use dm = λ dx where λ is the longitudinal density.

Example 9.15 The CM of a Right Triangle

v

dm

Find CM of the uniform triangle shown in figure.
Solution: we use surface density ρ to express *dm* as: ρydx

$$\therefore x_{CM} = \frac{1}{M} \int x dm = \frac{1}{M} \int_{0}^{a} x (\rho y dx) \quad (1)$$

Expressing y in x:
$$\therefore \frac{b}{a} = \frac{y}{x} \Rightarrow y = \frac{b}{a} x \quad (2)$$
$$(2) \text{ in } (1) \therefore x_{CM} = \frac{1}{M} \int_{0}^{a} x (\rho \frac{b}{a} x dx) = \rho \frac{1}{M} \frac{b}{a} \int_{0}^{a} x^{2} dx$$
$$\therefore x_{CM} = \rho \frac{1}{M} \frac{b}{a} \left| \frac{x 3}{3} \right|_{0}^{a} = \rho \frac{1}{M} \frac{b}{a} \frac{a^{3}}{3} = \left(\frac{1}{2} ab \rho \right) \frac{2}{3} \frac{a}{M}$$
$$\Rightarrow x_{CM} = \frac{2}{3} a$$

Lecture Summary

▶ For two dimensional collisions, we obtain two component equations for conservation of momentum: $m_1 v_{1ix} + m_2 v_{2ix} = m_1 v_{1fx} + m_2 v_{2fx}$ $m_1 v_{1iv} + m_2 v_{2iv} = m_1 v_{1fv} + m_2 v_{2fv}$ ► The center of mass of the pair of particles: $x_{CM} = \frac{\sum_{i} m_{i} x_{i}}{M} \qquad y_{CM} = \frac{\sum_{i} m_{i} y_{i}}{M} \qquad z_{CM} = \frac{\sum_{i} m_{i} z_{i}}{M}$ ▶ When mass is distributed uniformly over the space: $x_{CM} = \frac{1}{M} \int x dm \qquad y_{CM} = \frac{1}{M} \int y dm \qquad z_{CM} = \frac{1}{M} \int z dm$

Interactive Flash

