

Lecture Outline

\checkmark Here is a quick list of the subjects that we will cover in this presentation. It is based on Serway, Ed. 6

- 9.4 Two-Dimensional Collisions
- PROBLE M-SOLV ING HI NTS
- Example 9.10 Collision at an Intersection
- 9.5 The Center of Mass
- 9.5 The Center of Mass (Integral form)
> Quiz 9.10
- Example 9.13 The CM of Three Particles
- Example 9.14 The Center of Mass of a Rod
- Example 9.15 The CM of a Right Triangle
- Lecture Summary
- Interactive Flash
$>$ End of Presentation

9.4 Two-Dimensional Collisions

$>$ For two dimensional collisions, we obtain two component equations for conservation of momentum:

$$
\begin{aligned}
& m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
& m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{aligned}
$$

considera 2-D problem in which particle 1 of mass m_{1} collides
with particle 2 of mass m_{2}, where particle 2 is initia lly at rest, as in Figure

9.4 Two-Dimensional Collisions (continued)

$>$ Applying the law of conservation of momentum in component form and noting that the initial y component of the momentum of the two-particle system is zero, we obtain:

$$
\begin{align*}
m_{1} v_{1 i} & =m_{1} v_{1 f} \cos \theta+m_{2} v_{2 f} \cos \varphi \tag{9.24}\\
0 & =m_{1} v_{1 f} \sin \theta-m_{2} v_{2 f} \sin \varphi \tag{9.25}
\end{align*}
$$

> where the minus sign in Equation 9.25 comes from the fact that after the collision, particle 2 has a y component of velocity that is downward.
$>$ If the collision is elastic, we can also use Equation 9.16 (conservation of kinetic energy) with $\mathrm{v}_{2 \mathrm{i}}=0$ to give:

$$
\begin{equation*}
\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \tag{9.26}
\end{equation*}
$$

PROBLE M-SOLV ING HI NTS

$>$ Set up a coordinate system and define your velocities with respect to that system.
$>$ In your sketch of the coordinate system, draw and label all velocity vectors and include all the given information.
$>$ Write expressions for the x and y components of the momentum of each object before and after the collision.
$>$ Write expressions for the total momentum of the system in the x and y directions before and after the collision and equate the two..
$>$ If the collision is inelastic, kinetic energy of the system is not conserved, and additional information is probably required.
> If the collision is perfectly inelastic, the final velocities of the two objects are equal. Solve the momentum equations for the unknown quantities.
$>$ If the collision is elastic, kinetic energy is conserved, and you can equate the total kinetic energy before and after the collision.

Example 9.10 Collision at an Intersection

- A $1500-\mathrm{kg}$ car traveling east with a speed of $25.0 \mathrm{~m} / \mathrm{s}$ collides at an intersection with a $2500-\mathrm{kg}$ van traveling north at a speed of 20.0 m/s, as shown in Figure 9.14. Find the direction and magnitude of the velocity of the wreckage after the collision, assuming that the vehicles undergo a perfectly inelastic collision (that is, they stick together).
- Solution:
- We shall apply the conservation of momentum in each direction.

$$
\begin{align*}
& x: m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \tag{1}\\
& y: m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y} \tag{2}
\end{align*}
$$

Example 9.10 (continued)

- Solving to find final velocity and direction:

$$
\begin{align*}
& (1) \rightarrow:(1500)(25)+(2500)(0)=(1500+2500) v_{f x} \tag{3}\\
& \therefore v_{f x}=\frac{37500}{4000}=9.37 \mathrm{~m} / \mathrm{s} \\
& (2) \rightarrow:(1500)(0)+(2500)(20)=(1500+2500) v_{f y} \tag{4}\\
& \therefore v_{f y}=\frac{50000}{4000}=12.5 \mathrm{~m} / \mathrm{s}
\end{align*}
$$

$$
(1)+(2) \rightarrow: v_{f}=\sqrt{v_{f x}^{2}+v_{f y}^{2}}=\sqrt{9.37^{2}+12.5^{2}}=15.6 \mathrm{~m} / \mathrm{s}
$$

$$
\theta=\tan ^{-1}\left(\frac{v_{f y}}{v_{f x}}\right)=\tan ^{-1}\left(\frac{12.5}{9.37}\right)=53.1^{\circ}
$$

9.5 The Center of Mass

- The center of mass of the pair of particles described in Figure is located on the x axis and lies somewhere between the particles. Its x coordinate is given by:

$$
\begin{equation*}
x_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \tag{9.27}
\end{equation*}
$$

\checkmark We can extend this concept to a system of many particles with masses mi

$$
\begin{aligned}
x_{C M} & =\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\ldots+m_{n} x_{n}}{m_{1}+m_{2}+m_{3}+\ldots+m_{n}} \\
& =\frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}}=\frac{\sum_{i} m_{i} x_{i}}{M} \quad \text { (9.28) }
\end{aligned}
$$

9.5 The Center of Mass (continued)

$>$ We can do the same for y and z :

$$
\begin{align*}
y_{C M} & =\frac{\sum_{i} m_{i} y_{i}}{M} \quad z_{C M}=\frac{\sum_{i} m_{i} z_{i}}{M} \tag{9.29}\\
\rightarrow r_{c m} & =x_{c m} \hat{i}+y_{c m} \hat{j}+z_{c m} \hat{k} \\
& =\frac{\sum_{i} m_{i} x_{i} \hat{i}+\sum_{i} m_{i} y_{i} \hat{j}+\sum_{i} m_{i} z_{i} \hat{k}}{M}
\end{align*}
$$

$$
\begin{equation*}
\therefore r_{c m}=\frac{\sum_{i} m_{i} r_{i}}{M} \tag{9.30}
\end{equation*}
$$

$$
-
$$

with: $r_{i}=x_{i} \hat{i}+y_{i} \hat{j}+z_{i} \hat{k}$

9.5 The Center of Mass (Integral form)

- When mass is distributed uniformly over the space:

$$
\begin{align*}
& m_{i} \rightarrow \Delta m_{i} \\
& x_{C M}=\lim _{\Delta m_{i} \rightarrow 0} \frac{\sum_{i} x_{i} \Delta m_{i}}{M}=\frac{1}{M} \int x d m \tag{9.31}
\end{align*}
$$

Also:
$y_{C M}=\frac{1}{M} \int y d m \quad$ and $\quad z_{C M}=\frac{1}{M} \int z d m$
in general:

$$
\begin{equation*}
r_{C M}=\frac{1}{M} \int r d m \tag{9.33}
\end{equation*}
$$

Quiz 9.10

Click the Quiz button on
iSpring Pro toolbar to edit your
quiz

Example 9.13 The CM of Three Particles

- A system consists of three particles located as shown in Figure. Find the center of mass of the system.

$$
\begin{aligned}
x_{C M}= & \frac{m_{1} x_{1}+m_{2} x_{2}+m_{1} x_{3}}{m_{1}+m_{2}+m_{3}} \\
& =\frac{(1)(1)+(1)(2)+(2)(0)}{1+1+2}=0.75 \mathrm{~m}
\end{aligned}
$$

$$
y_{C M}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{1} y_{3}}{m_{1}+m_{2}+m_{3}}
$$

(a)

$$
=\frac{(1)(0)+(1)(0)+(2)(2)}{1+1+2}=1 \mathrm{~m}
$$

$$
\therefore \mathrm{r}_{\mathrm{CM}}=x_{C M} \hat{i}+y_{C M} \hat{j}=(0.75 \hat{i}+1.0 \hat{j}) m
$$

Example 9.14 The Center of Mass of a Rod

- Show that the center of mass of a rod of mass M and length L lies midway between its ends, assuming the rod has a uniform mass per unit length
$\because x_{C M}=\frac{1}{M} \int x d m$
- We shall find an expression for the quantity dm : use $\mathrm{dm}=\lambda \mathrm{dx}$ where λ is the longitudinal density.
$\therefore x_{C M}=\frac{1}{M} \int_{0}^{L} x \lambda d x=\left.\frac{\lambda}{M} \frac{x^{2}}{2}\right|_{0} ^{L}=\frac{\lambda L^{2}}{2 M}$
$\because \lambda=\frac{M}{L} \Rightarrow \quad x_{C M}=\frac{1}{2} L$

Example 9.15 The CM of a Right Triangle

- Find CM of the uniform triangle shown in figure.
- Solution: we use surface density ρ to express $d m$ as: $\rho y d x$
$\because x_{C M}=\frac{1}{M} \int x d m=\frac{1}{M} \int_{0}^{a} x(\rho y d x)$
Expressing y in x: $\because \frac{b}{a}=\frac{y}{x} \Rightarrow y=\frac{b}{a} x$
(2) in (1): $x_{C M}=\frac{1}{M} \int_{0}^{a} x\left(\rho \frac{b}{a} x d x\right)=\rho \frac{1}{M} \frac{b}{a} \int_{0}^{a} x^{2} d x$
$\therefore x_{C M}=\rho \frac{1}{M} \frac{b}{a}\left|\frac{x 3}{3}\right|_{0}^{a}=\rho \frac{1}{M} \frac{b}{a} \frac{a^{3}}{3}=\left(\frac{1}{2} a b \rho\right) \frac{2}{3} \frac{a}{M}$
$\Rightarrow x_{C M}=\frac{2}{3} a$

Lecture Summary

\downarrow For two dimensional collisions, we obtain two component equations for conservation of momentum:

$$
\begin{aligned}
& m_{1} v_{1 i x}+m_{2} v_{2 i x}=m_{1} v_{1 f x}+m_{2} v_{2 f x} \\
& m_{1} v_{1 i y}+m_{2} v_{2 i y}=m_{1} v_{1 f y}+m_{2} v_{2 f y}
\end{aligned}
$$

\checkmark The center of mass of the pair of particles:

$$
x_{C M}=\frac{\sum_{i} m_{i} x_{i}}{M} \quad y_{C M}=\frac{\sum_{i} m_{i} y_{i}}{M} \quad z_{C M}=\frac{\sum_{i} m_{i} z_{i}}{M}
$$

- When mass is distributed uniformly over the space:

$$
x_{C M}=\frac{1}{M} \int x d m \quad y_{C M}=\frac{1}{M} \int y d m \quad z_{C M}=\frac{1}{M} \int z d m
$$

Interactive Flash

