

THIS PRESENTATION HAS BEEN PREPARED BY: DR. NASSR S. ALZAYED

How to run this presentation?

Please use your mouse (just click on any place)

Or use keyboard arrows

Or use Pageup and Pagedown

Welcome to 103 Physics

- Importance of the course
\square Directions on how to get maximum benefit of the course
\square Talk about attendance, participation and office hours
\square Short information about the LMS and how to make it effective and useful.
\square Little about the textbook and online resources.
\square Solving Problems Tips.

1.1 Standards of Length, Mass, and Time

\square In mechanics, there are three basic quantities: length, mass, and time
\square All other quantities in mechanics can be expressed in terms of these three.

- In 1960, an international committee established a set of standards for the fundamental quantities of science. It is called the SI (Système International)
\square In the SI: Units of length: meter

Units of mass : kilogram
Units of time second

1.1 Standards of Length, Mass, and Time

\square Length: SI Unit of length is: meter (m).
\square Mass: SI Unit of mass is: kilogram (kg)
\square Time: SI Unit of time is: second (s)
\square In many situations, you may have to derive or check a specific equation. A useful and powerful procedure called dimensional analysis can be used to assist in the derivation or to check your final expression.
\square As a simple method: Left Hand Side must = Right Hand Side
1.1 Standards of Length, Mass, and Time: Movie

Please Click by mouse on the movie to play Then Wait

1.4 Dimensional Analysis

\square Dimension: it denotes the physical nature of a quantity
\square Example: distance: could be in meters, yards, or micrometers. But overall it is: a length
\square Symbols we are going to use are:
dimension of length: [L]
dimension of mass: [M]
dimension of time: [T]

| Units of Area, Volume, Velocity, Speed, and Acceleration |
| :--- | :--- | :--- | :--- | :--- |

1.4 Dimensional Analysis

\square Example: Use dimensional analysis to check the equation: $x=1 / 2 a t^{2}$
Solution:

$$
\mathrm{L}=\frac{\mathrm{L}}{X^{\prime}} \cdot X^{2}=\mathrm{L}
$$

\square Example: Show that $v=$ at is dimensionally correct.
\square Solution:

$$
\begin{aligned}
& \text { L.H.S.: }[\mathrm{v}]=\frac{\mathrm{L}}{\mathrm{~T}} \\
& \text { R.H.S. }:[\mathrm{at}]=\frac{\mathrm{L}}{\mathrm{~T}^{Z}} \not X^{\prime}=\frac{\mathrm{L}}{\mathrm{~T}} \\
& \therefore \text { L.H.S }=\text { R.H.S }
\end{aligned}
$$

- Hence the equation is dimensionally correct

1.4 Dimensional Analysis (Quiz)

Click the Quiz button on
icnrina Drn tonlhar tn adit von ur

1.5 Conversion of Units

$>$ Sometimes it is necessary to convert units from one measurement system to another, or to convert within a system, for example, from kilometers to meters.

- Please visit thispage for comprehensive list
- Examples:

1 mile $=1609 \mathrm{~m}=1.609 \mathrm{~km}$
$>1 \mathrm{ft}=0.3048 \mathrm{~m}=30.48 \mathrm{~cm}$
$>1 \mathrm{~m}=39.37 \mathrm{in} .=3.281 \mathrm{ft}$
$>1 \mathrm{in}$. $=0.0254 \mathrm{~m}=2.54 \mathrm{~cm}$ (exactly)

1.5 Conversion of Units (Quiz)

Click the Quiz button on
Cnrinn Drn tnolhar tn odit vnu ur

Lecture Summary

- The three fundamental physical quantities of mechanics are length, mass, and time, which in the Sl system have the units meters (m), kilograms (kg), a nd seconds (s), respectively.
The method of dimensional a nalysis is very powerful in solving physics problems.
Dimensions can be treated as algebraic quantities. By making estimates and performing order-ofmagnitude calculations, you should be able to approximate the answer to a problem when there is not enough information available to completely
 specify an exact solution.

Please read the attachment....

