
MTH U545 Spring 2004

Computer Lab 1: Heat Diffusion in Rods

using Maple

The diffusion of heat in a one-dimensional rod of length L (with insulated surface,
uniform heat conductivity, and no heat sources) satisfies the one-dimensional diffusion
equation

(1) ut = kuxx, for 0 < x < L and t > 0.

Of course, we shall need to know the initial temperature:

(2) u(x, 0) = f(x), for 0 < x < L,

as well as the boundary conditions (B.C.’s) at x = 0 and x = L. When the ends of the rod
are maintained at temperature zero, we have the boundary conditions

(3a) u(0, t) = 0 = u(L, t), for t > 0;

when the ends of the rod are insulated, we have the boundary conditions

(3b) ux(0, t) = 0 = ux(L, t), for t > 0;

The method of separation of variables, u(x, t) = X(x)T (t), leads us to consider the
eigenvalue problem

(4)
X ′′ + λX = 0 for 0 < x < L

B.C.′s at x = 0 and x = L.

Finding the eigenvalues λn and eigenfunctions Xn for (4) will enable us to write our
solution as an infinite series involving unknown coefficients; for (3a) the series involves
sine functions, and for (3b) it involves cosine functions. The initial conditions are then
used to evaluate the coefficients. By taking a partial sum of the series, we obtain a good
approximation of the solution which may then be plotted using a graphics program such
as Maple.

I. Comments on Maple. Maple V is available on NUNet, under Statistical and Com-
putational Packages. The most recent version is R4=Release 4, but R3 is also available.
You may use either version (or even R2 if you find it somewhere), although there are some
significant differences. For one thing, in R4 plots are displayed on the worksheet (you’ll
know what I’m talking about when you try it) whereas in R3 they appear in a separate
window. However, R4 takes a lot of RAM: plots can take a while to print, and the system
can crash, so save your work often; or use R3. In fact, if you want to save time, you may
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use R3 and not even print the plots; just print the command window that shows you got
the right plot (I’ve seen them before, after all).

Although Maple V is a very powerful computational program, it can be very temper-
mental about your input. If you do not give it commands in precisely the required form,
it will not accept them, and probably will not tell you what is wrong; so be very careful.

If you open Maple V, you will find yourself in the command window. Enter

> with(plots);

This loads the main plotting package that we shall be using; its various plotting capabilities
have been listed on the screen. (If you had typed with(plots) : instead, i.e. replace the
semicolon with a colon, the plotting package would still be loaded, but the output is
suppressed, i.e. the plotting capabilities are not displayed.)

II. Heat Diffusion in a Rod with Ends Maintained at Zero Temperature. In the
case (3a), the eigenvalue problem (4) takes the form

X ′′+λX = 0 for 0 < x < L,

X(0) = 0 = X(L),

which has eigenvalues and eigenfunctions

λn =
n2π2

L2
, Xn(x) = sin

nπx

L
, for n = 1, 2, . . .

Having found the values of λ, we may solve the time equation T ′ + kλT = 0 to obtain

Tn(t) = Ane
−kλnt = Ane

−kn2π2t/L2
.

Finally, superposition yields the series solution

(5a) u(x, t) =
∞∑

n=1

An e−kn2π2t/L2
sin

nπx

L
.

We evaluate the An’s using the initial condition u(x, 0) = φ(x) and the orthogonality of
the sine functions:

(5b) An =
2
L

∫ L

0

f(x) sin
nπx

L
dx.

To be specific, let us take

(6) L = 1, k = 2, and f(x) = x(1 − x).

We cannot ask Maple to plot the graph of the infinite series (5ab), but if we consider the
partial sum

(7) SN (x, t) =
N∑

n=1

An e−2n2π2t sinnπx, An = 2
∫ 1

0

x(1 − x) sinnπx dx,

2



x

0

1
0.8

0.6
0.4

0.2
0

t

0

1
0.8

0.6
0.4

0.2
0
0

0.25
0.2
0.15
0.1
0.05

0

Figure 1: Solution to (4) with u(x,0)=x(1-x)

then we can ask Maple to graph SN (x, t). Maple uses int(f(x),x=a..b) for
∫ b

a
f(x)dx

and sum(a(n),n=1..N) for
∑N

n=1 a(n). We therefore calculate (7) by entering

>A := n -> 2 ∗ int(x ∗ (1− x) ∗ sin(n ∗ Pi ∗ x), x = 0..1);
>S := (N, x, t) -> sum(A(n) ∗ exp(−2 ∗ n^2 ∗ Pi^2 ∗ t) ∗ sin(n ∗ Pi ∗ x), n = 1..N);

Warning: You must use “Pi” and not “pi”; otherwise Maple treats it symbolically, not
numerically.
In these commands, the -> represents an arrow. In other words, An is regarded as a map
or function taking n to the number An. Similarly, SN (x, t) is regarded as a mapping or
function taking the triplet (N,x, t) to the number SN (x, t). We specify N , say N = 3, by
entering

> S(3, x, t);

The result, S3(x, t) = S(3, x, t), is a function of x and t.
In order to plot S3(x, t) for 0 < x < 1 and 0 < t < 1, load the plotting package (if you

have not already done so) and then enter

> plot3d(S(3, x, t), x = 0..1, t = 0..1, axes = normal);

The result appears as Figure 1a; as expected, the heat rapidly diffuses to zero.

Another way to view the diffusion is by graphing S3(x, t) as a function of x when t is
fixed; this amounts to taking a “snapshot” of the temperature at that time. For example,
we may take t = 0, .01, .1, .25 and graph the snapshots S3(x, 0), S3(x, .01), S3(x, .1), and
S3(x, .25) on the same axes by

> plot({S(3, x, 0), S(3, x, .01), S(3, x, .1), S(3, x, .25)}, x = 0..1, axes = normal);
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Figure 1b: S(3,x,t) at t=0,.01,.1,.25

The result appears as Figure 1b.

Again we can see that the heat diffuses rapidly to zero. In fact, after only .01 seconds, the
temperature at the middle of the bar (x = .5) has decreased from .25 to approximately .2,
i.e., a loss of almost 20% of its temperature.

Exercise 1. Let L = 2, k = 1, and f(x) = x2(2 − x).
(a) Use Maple to obtain a 3d-plot of S3(x, t) for 0 < x < 2 and 0 < t < 1.
(b) Use Maple to plot snapshots of the diffusion at t = 0, t = .01, t = .1, t = .25, and

t = 1.
(c) Describe what is happening. In particular, is the temperature always decreasing

at every point x?
HAND IN: Printouts of your plots in (a) and (b), and a written answer (using complete
sentences) to (c).

III. Heat Diffusion in a Rod with Insulated Ends. In the case (3b), the correspond-
ing eigenvalue problem (4) is

X ′′+λX = 0 for 0 < x < L,

X ′(0) = 0 = X ′(L),

which has eigenvalues and eigenfunctions

λn =
n2π2

L2
, Xn(x) = cos

nπx

L
, for n = 0, 1, . . .

Notice that λ0 = 0 and X0(x) = 1. The corresponding series solution is now

(8a) u(x, t) =
1
2
A0 +

∞∑
n=1

An e−kn2π2t/L2
cos

nπx

L
,
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where

(8b) An =
2
L

∫ L

0

f(x) cos
nπx

L
.

Exercise 2. Let L = 2, k = 1, and f(x) = x2(2 − x) for a rod with insulated ends.
(a) Use Maple to obtain a 3d-plot of S3(x, t) for 0 < x < 2 and 0 < t < 1.
(b) Use Maple to plot snapshots of the diffusion at t = 0, t = .01, t = .1, t = .25, and

t = 1.
(c) Interpret your results physically, comparing and contrasting them with those of

Exercise 1. In particular, what happens as t → ∞?
HAND IN: Printouts of your plots in (a) and (b), and a written answer (using complete
sentences) to (c).
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MTH U545 Spring 2004

Computer Lab 2: Convergence of Fourier Series

The Fourier series for a function f(x) defined on (−L,L) is

(1)
1
2
A0 +

∞∑
n=1

(
An cos(

nπx

L
) + Bn sin(

nπx

L
)
)
,

where

An = (1/L)
∫ L

−L

f(x) cos(
nπx

L
) dx (n = 0, 1, . . .)

Bn = (1/L)
∫ L

−L

f(x) sin(
nπx

L
) dx (n = 1, 2, . . .).

But (1) is an infinite series, so it is natural to wonder whether, and in what sense, the
series actually converges to f(x). To be more precise, let us define the partial sum

(2) SN (x) =
1
2
A0 +

N∑
n=1

(
An cos(

nπx

L
) + Bn sin(

nπx

L
)
)
,

and then ask whether, and in what sense,

(3) SN (x) → f(x) as N → ∞.

A computational/graphics software package such as Maple is useful in graphing SN (x) and
f(x), which sheds some light on this issue.

Example 1. Let f(x) = x for −π < x < π. Since f is odd, we get a Fourier sine series:

(4) f(x) ∼
∞∑

n=1

Bn sin(nx) = 2
∞∑

n=1

(−1)n+1

n
sin(nx),

where we have used ∼ to indicate that we are not yet certain whether the series actually
converges to f(x). Notice that the Fourier coefficients

(5) Bn =
1
π

∫ π

−π

x sin(nx) dx = 2
(−1)n+1

n

are computed by integrating by parts; but Maple can also compute them for you. Enter

>B := n -> (1/Pi) ∗ int(x ∗ sin(n ∗ x), x = −Pi..Pi);
>B(n);
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Partial Sum S(3) for f(x)=x, -pi<x<pi

and Maple produces the output

(6) −2
− sin(nπ) + n cos(nπ)π

πn2
.

Of course, Maple doesn’t know that n is an integer, but using sin(nπ) = 0 and cos(nπ) =
(−1)n, we easily simplify (6) to obtain (5).

Now let us define the partial sums in Maple:

> S := N -> sum(B(n) ∗ sin(n ∗ x), n = 1..N);

To plot the partial sums with N = 3, for example, load the plotting package and enter

>S(3);
>plot(”, x = −Pi..Pi);

to obtain the 2-D plot in Figure 1. (Notice that ” tells Maple to plot the previous line.)

Of course, we want this partial sum to be a rough approximation of f(x) = x, whose
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Figure 2: f(x)=x for -pi<x<pi
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Figure 3: S(10) for f(x)=x on -pi<x<pi

graph appears in Figure 2.

Comparing Figures 1 and 2, we see that the approximation is not too bad in the
middle, but is extremely bad at the ends x = ±π; this is because all the sin(nx) terms
must vanish there even though f(x) = x does not. If we take larger N in our partial sums,
we might expect the approximation to become better and better in the middle, but remain
fairly poor at the ends x = ±π. Indeed, we can use Maple to plot S10(x) (i.e., S(10) as we
have called it in Maple) to obtain Figure 3.

Notice that, as expected, this approximation to Figure 2 is pretty good in the middle,
but lousy at the ends. In fact, no matter how large we take N , there will be points near
x = ±π for which the approximation of SN (x) to f(x) will be off by more than 3 (since
the jump down to the x-axis is approximately π). For this reason, we say that SN (x) is
not uniformly close to f(x) on (−π, π).

Exercise 1. Plot the partial sum S20(x) and S30(x) for f(x) = x on −π < x < π. Would
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Figure 4: S(10) for f(x)=x on -3pi<x<3pi

0 86420-2-4-6-8
0

3

2

1

0

-1

-2

-3

Figure 5: Periodic Extension of Example 1

you say SN (x) → x for every x in (−π, π)? What happens to SN (±π) as N → ∞? Is
SN (x) uniformly close to f(x) on (−π, π)?
HAND IN: Printouts of the plots for S20(x) and S30(x), and answers to the questions.

The convergence of SN (x) as N → ∞ illustrates the convergence theorem (“Fourier’s
theorem”) in Section 3.2 of the text by Haberman. To see this, let us recall that the Fourier
series (1) can be viewed as a periodic function (with period 2L) for −∞ < x < ∞. We
have plotted the periodic function S10(x) for Example 1 in Figure 4.

On the other hand, the function f(x) = x on (−L,L) also admits a periodic extension
to −∞ < x < ∞. We have plotted this periodic extension of f(x) = x in Figure 5.
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Figure 6: A periodic step function ("square wave")

Notice that, where the periodic extension of f(x) = x is continuous (namely for all
points except x = ±π,±3π, . . .), we see that SN (x) → f(x). But for x = ±π,±3π, . . . we
have

SN (x) = 0 =
f(x+) + f(x−)

2
.

On the other hand, when the periodic extension of f(x) is itself continuous, then the
approximation of SN (x) to f(x) may be uniformly good. We say that SN (x) → f(x)
uniformly on (−L,L) if |SN (x) − f(x)| < ε for all −L < x < L provided N is sufficiently
large.

Exercise 2. Consider f(x) = 1 − x2 on −1 < x < 1.
(a) Plot f(x), S2(x), and S4(x) on −1 < x < 1.
(b) Pick a large N and plot the graph of SN (x) on (−1, 1). Would you say that

SN (x) → f(x) uniformly on (−1, 1) as N → ∞?
HAND IN: (a) A printout of your plots for f(x), S2(x) and S4(x). (b) Your value of N ,
the plot of SN (x), and your answer to the question.

The jump phenomenon in Figures 4 and 5 is rather interesting, so let us focus on it
in the next example.

Example 2. Let f(x) be the “step function” (or “square wave”) defined by

(7) f(x) =
{

1 if 0 ≤ x < 1
−1 if −1 < x < 0,

and then extended periodically (with period 2) to all values of x; see Figure 6.

Notice that L = 1. Since f(x) is an odd function, the Fourier series (1) is a sine series

(8) f(x) ∼
∞∑

n=1

Bn sin(nπx) =
2
π

∞∑
n=1

(1 − (−1)n)
n

sin(nπx)
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Figure 7a: S(3) for Example 2
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Figure 7b: S(5) for Example 2
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Figure 7c: S(7) for Example 2

where the coefficients Bn =
∫ 1

−1
f(x) sin(nπx) dx =

∫ 1

0
sin(nπx) dx −

∫ 0

−1
sin(nπx) dx are

easily computed by hand or using Maple; notice that B2 = B4 = · · · = 0. Now let us use
Maple to plot some of the partial sums SN (x) to see how closely they approximate (7):

>S := N -> sum(2 ∗ (1− (−1)^n) ∗ sin(n ∗ Pi ∗ x)/(Pi ∗ n), n = 1..N);
>S(3);
>plot(”, x = −2..2);

produces the plot of S3(x) in Figure 7a, and similarly we obtain the plots for S5(x) and
S7(x) in Figures 7b and 7c respectively. Notice that S3(x) approximates f(x) = 1 for
0 < x < 1 by an oscillation with 2 peaks; S5(x) has 3 peaks and S7(x) has 4 peaks in their
oscillatory approximations of f(x) = 1.

Exercise 3. How many peaks does S4(x) have in its oscillatory approximation of f(x) = 1
on 0 < x < 1? Compare S4(x) with S3(x) and S5(x); explain why.

HAND IN: No printout, just the number of peaks and your comparison/explanation.
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There are some additional curious features about the graphs of S3, S5, and S7:
(i) Notice that in each of them, SN (0) = 0. This is, of course, because where f(x) jumps

from −1 to 1 (or vice-versa) the partial sum “averages” these two values to get 0.
(ii) The amplitude of the oscillations of the partial sums SN (x) on 0 < x < 1 become

smaller as N increases, so they become better approximations for f(x) = 1. However,
the first peak after the jump at x = 0 and the last peak before the jump at x = 1 are
both higher than the peaks in between. It seems like jumps cause the approximation
to “overshoot” the desired amplitude. This is called the Gibbs phenomenon.

Exercise 4. Plot S15(x) and S25(x) for f(x) as in Example 2. Circle where the Gibbs
phenomenon occurs. For what values of x in (−1, 1) do we have SN (x) → f(x)?

HAND IN: Your plots with Gibbs locations circled, and your answer to the question.
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MTH U545 Spring 2004

Computer Lab 3: Vibrating Strings

A string which undergoes small transverse vibrations satisfies the one-dimensional
wave equation

(1) utt = c2uxx, for 0 < x < L and t > 0,

where L is the length of the string and c =
√

T/ρ is the propagation speed; T is the tension
and ρ is the density of the string. We shall assume that the string is fixed at the ends,
which leads to the boundary conditions

(2) u(0, t) = 0 = u(L, t), for t > 0.

We also need initial conditions; because (1) is second-order in t, we need to know both the
initial position and the initial velocity of the string:

(3)
u(x, 0) = f(x)
ut(x, 0) = g(x)

}
for 0 < x < L.

The method of separation of variables, u(x, t) = X(x)T (t), leads to the familiar eigen-
value problem X ′′+λX = 0 on 0 < x < L with X(0) = 0 = X(L), so we obtain eigenvalues
and eigenfunctions

(4) λn =
n2π2

L2
and Xn(x) = sin

nπx

L
, n = 1, 2, . . .

The corresponding time equation is T ′′ + c2λT = 0 which we solve for each λn to find

(5) Tn(t) = An cos
cnπt

L
+ Bn sin

cnπt

L
.

Using superposition, we obtain the infinite series solution of (1)-(2):

(6) u(x, t) =
∞∑

n=1

An cos
cnπt

L
sin

nπx

L
+ Bn sin

cnπt

L
sin

nπx

L

The coefficients An and Bn are chosen in order to satisfy (3), i.e.

f(x) =
∞∑

n=1

An sin
nπx

L
(7a)

g(x) =
∞∑

n=1

Bn
cnπ

L
sin

nπx

L
.(7b)
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I. Vibrations of a Plucked String. Suppose a string has length L, uniform density ρ,
and is fixed at its ends under a tension T ; let c2 = T/ρ. If the middle point is displaced
a units from its equilibrium position and then released, the displacement u(x, t) satisfies
(1)-(3), where

g(x) = 0 and f(x) =
{

2ax/L for 0 < x ≤ L/2
2a(L− x)/L for L/2 ≤ x < L.

We conclude from (7b) that Bn = 0 for all n in (6). The An, on the other hand, are the
Fourier sine coefficients of f(x); in order to compute them, let us take the specific values

L = 1 = c2 = a.

Then

An = 2

(∫ 1/2

0

2x sin(nπx) dx +
∫ 1

1/2

2(1 − x) sin(nπx) dx

)
,

and we can take a partial sum in (6) to get an approximation for u(x, t):

SN (x, t) =
N∑

n=1

An cos
cnπt

L
sin

nπx

L
.

It is not difficult to compute An (using integration by parts), but why not ask Maple to
do it? Let us enter

>A := n -> 2 ∗ (int(2 ∗ x ∗ sin(n ∗ Pi ∗ x), x = 0..0.5)
+int(2 ∗ (1− x) ∗ sin(n ∗ Pi ∗ x), x = 0.5..1));

>S := (N, x, t) -> sum(A(n) ∗ cos(n ∗ Pi ∗ t) ∗ sin(n ∗ Pi ∗ x), n = 1..N);

In order to plot S5(x, t) for 0 < x < 1 and 0 < t < 4, load the plotting package (if you
have not already done so) and then enter

>S(5, x, t);
>plot3d(”, x = 0..1, t = 0..4, axes = normal);

You should be able to see periodic wave motion. Do you know what the period is?
Alternatively, you can plot various “snapshots” of u(x, t) by fixing t at various values,

say at t = 0, t = .2, t = .4, and t = .6:

> plot({S(5, x, 0), S(5, x, .2), S(5, x, .4), S(5, x, .6)}, x = 0..1, axes = normal);

The period t∗ is the smallest positive value for which u(x, t) = u(x, t + t∗) for all t > 0.
When do you think S(5, x, t∗) = S(5, x, 0)?
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The plots appear below.

Exercise 1. Let us change the values above to L = 2 and c2 = 1 = a.
(a) Obtain a 3d plot of the partial sum S5(x, t) for 0 < x < 2 and 0 < t < 4.
(b) Graph the snapshots at several values of t for S5(x, t) on 0 < x < 2.
(c) Is this motion periodic? In particular, is there a time t∗ > 0 at which the displace-

ment u(x, t∗) looks exactly like u(x, 0)? If so, find the smallest such t∗ > 0.
HAND IN: Your printouts for (a) and (b), and your written answer to (c).
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II. Vibrations of a Struck String. Instead of plucking the string, let us now leave the
string in its equilibrium position, but strike the string with a hammer. Let us suppose that
the hammer has a circular head of radius r and is moving with velocity v when it strikes
the string precisely at its midpoint x = L/2. Taking t = 0 to be the time of impact, we
obtain the initial conditions (3) with

f(x) = 0 and g(x) =
{
v for (L/2) − r ≤ x ≤ (L/2) + r
0 otherwise.

We conclude from (7a) that An = 0 for all n in (6). The Bn, on the other hand, are
found from the Fourier cosine coefficients of g(x); in order to compute them, let us take
the specific values L = 4 and c2 = 1 = v = r, so

g(x) =
{ 1 for 1 ≤ x ≤ 3

0 otherwise.

This means that

Bn
nπ

4
= Bn

cnπ

L
=

∫ L

0

g(x) sin
nπx

L
dx =

∫ 3

1

sin
nπx

4
dx,

and we can take a partial sum in (6) to get an approximation for u(x, t):

SN (x, t) =
N∑

n=1

Bn sin
nπt

4
sin

nπx

4

Exercise 2. (a) Obtain a 3d plot of the partial sum S5(x, t) for 0 < x < 4 and 0 < t < 4.
(b) Graph the time slices of S5(x, t) on 0 < x < 4 for several fixed values of t.
(c) Is this motion periodic? In particular, is there a time t∗ > 0 at which the displace-

ment u(x, t∗) looks exactly like u(x, 0)? If so, find the smallest such t∗ > 0.
(d) Suppose you used a larger hammer (larger r) or hit the string with more velocity

(larger v). Would the value t∗ change? Why or why not?
HAND IN: Your printouts for (a) and (b), and your written answer to (c) and (d).
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MTH U545 Spring 2004

Computer Lab 4: Boundary Conditions and Eigenvalues

Let us consider a metal rod of length L which is insulated except at the ends, where
heat is allowed to escape according to Newton’s law of cooling; as we have seen, this means
that a Robin boundary condition applies at each end. Let us suppose that the two ends
have different Robin conditions. By separation of variables u(x, t) = φ(x)T (t), this leads
us to study eigenvalue problems of the form

(1)
φ′′ + λφ = 0 for 0 < x < L,

φ′(0) − a0φ(0) = 0 = φ′(L) + aLφ(L),

where a0 and aL are constants (which are both positive if heat is radiating out of each
end).

I. Positive Eigenvalues

Let us look for positive eigenvalues λ for (1); when a0 and aL are both positive, the
text verifies that (1) only admits nontrivial solutions when λ > 0. The general solution

(2) φ(x) = C cosβx + D sinβx (λ = β2, β > 0)

is differentiated (φ′(x) = −Cβ sinβx + Dβ cosβx) and substituted into the boundary
conditions of (1) to obtain

Dβ − a0C = 0 = −Cβ sinβL + Dβ cosβL + aL(C cosβL + D sinβL).

Rewriting this in matrix notation, we obtain

(3)
(

−a0 β
aL cosβL− β sinβL β cosβL + aL sinβL

) (
C
D

)
=

(
0
0

)
.

Since we want a nontrivial solution C,D of (3), the 2 × 2 matrix in (3) must be singular,
i.e. have zero determinant:

−a0(β cosβL + aL sinβL) − β(aL cosβL− β sinβL) = 0.

This last equation may be simplified to

(4) (β2 − a0aL) tanβL = (a0 + aL)β.

We are interested in finding the solutions β of (4). This is easily done using a computational
software package such as Maple.
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Figure 1: tan(x) and 3x/(x^2-2)

Example 1. Let us take a0 = 1, aL = 2, and L = 1. Then (4) becomes

(5) tanβ =
3β

(β2 − 2)

Let us use Maple to view the solutions of (5). Enter

(6)
>with(plots);
>plot({tan(x), 3 ∗ x/(x^2− 2)}, x = 0..10,−2..2);

in order to plot both y = tanx and y = 3x/(x2 − 2) on the same axes for the range of
values 0 < x < 10 and −2 < y < 2. The result appears in Figure 1.

Notice that the intersections of the curves represent solutions of (4). (Notice that we
must ignore intersections with vertical lines which Maple has plotted to represent vertical
asymptotes.) Since we are assuming β > 0, the first of these intersections seems to occur
just before x = 4. To find a more accurate value, we can ask Maple to solve the equation
tanx = 3x/(x2 − 2) by entering

> fsolve(tan(x) = 3 ∗ x/(x^2− 2));

(As you might expect from our experience in Lab 2, f in fsolve stands for “floating point
arithmetic.”) The 10-digit answer we obtain is

3.871244368,

and if we enter the command
> evalf((”)^2);

18



we obtain
14.98653296.

This means that we have found values for β1 and λ1 = β2
1 :

β1 ≈ 3.871244368 and λ1 ≈ 14.98653296.

The next point of intersection of the curves in Figure 1 seems to occur between x = 6
and x = 7. In order to use Maple to find it, we must include the range 6 ≤ x ≤ 7 to tell
Maple to zero in on that particular solution:

> fsolve(tan(x) = 3 ∗ x/(x^2− 2), x = 6..7);

The 10-digit answer we obtain is
6.720171109,

and if we square this as before we get

45.16069973.

This means that we have found values for β2 and λ2 = β2
2 :

β2 ≈ 6.720171109 and λ2 ≈ 45.16069973.

Exercise 1. Find β3 and λ3 to 10 decimal places (You need not print-out anything.)

We now see how to use (4) to generate the infinite sequence of eigenvalues; how do
we find the associated eigenfunctions? We know they are of the form (2), but what are C
and D? Recall from (3) that a0C = βD, i.e., D = a0C/β. Substituting into (2), we find

(7a) φ(x) = C

(
cosβx +

a0

β
sinβx

)
, where C is arbitrary.

Thus, for a particular eigenvalue λn = β2
n, we find that

(7b) φn(x) = cosβnx +
a0

βn
sinβnx

is the associated eigenfunction.

Example 1 (Revisited). With a0 = 1, we find (7b) becomes

φn(x) = cosβnx +
1
βn

sinβnx,

giving us the eigenfunctions for the specific values of βn that we have generated.

Exercise 2. For the values a0 = 1/2, aL = 1, and L = 3, generate a plot similar to Figure
1. Then find decimal approximations for the first three eigenvalues λ1, λ2, and λ3, and
find the associated eigenfunctions φ1, φ2, and φ3. (Hint: look for 0 < β1 < 1.)
HAND IN. A print-out of your plot; also the values for λn and formulas for φn(x) (not
printed-out).
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Figure 2: tanh(x) and -x/(x^2-2)

II. Negative Eigenvalues
It is possible, when at least one of a0 or aL is negative, that there are negative

eigenvalues λ = −β2 < 0 for (1). The general solution is

(8) φ(x) = C coshβx + D sinhβx (β > 0)

where cosh z = (ez + e−z)/2 and sinh z = (ez − e−z)/2. Differentiation yields φ′(x) =
Cβ sinhβx + Dβ coshβx, and substitution into the boundary conditions of (1) yields

Dβ − a0C = 0 = Cβ sinhβL + Dβ coshβL + aL(C coshβL + D sinhβL).

Writing this as a system, and taking the determinant as before yields

−a0(β coshβL + aL sinhβL) − β(aL coshβL + β sinhβL) = 0.

Simplification yields

(9) tanhβL = − (a0 + aL)β
β2 + a0aL

.

Depending on the values of a0, aL, and L, this may or may not have a solution β; if a
solution β does exist, then λ = −β2 is a negative eigenvalue for (1) with eigenfunction
given by (8) with D = a0C/β as before. We shall denote the negative eigenvalue by “λ0.”

Example 2. a0 = −1, aL = 2, L = 1. Then (9) becomes

(10) tanhβ = − β

β2 − 2
.

Let us use Maple to plot y = tanhx and y = −x/(x2 − 2); see Figure 2.
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Moreover, we can use Maple to approximate the intersection point in Figure 2 which occurs
between x = .5 and x = 1. If we enter

> fsolve(tanh(x) = −x/(x^2− 2), x = .5..1);

we obtain for β the value
.8711803575.

This means that λ = −β2 has the value

λ0 = −.789552153.

Exercise 3. For the values a0 = −1/2, aL = 1, and L = 3, generate a plot similar to
Figure 2, and determine the negative eigenvalue λ0 (if it exists).
HAND IN. A print-out of your plot; also the value for λ0 (if it exists).

III. Inside Maple’s “Black Box”
Exercise 4. Be prepared to venture a verbal opinion in class as to how Maple is able to
solve equations like (5) or (10). (Not to hand in.)
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MTH U545 Spring 2004

Computer Lab 5: Diffusion and Vibrations
in Rectangular Domains

We want to be able to solve the diffusion equation

(1) ut = k∆u,

and the wave equation

(2) utt = c2∆u,

on two-dimensional domains D. Of course, we shall need to impose boundary conditions
(which for now we shall abbreviate as B.C.’s on ∂D), and initial conditions at t = 0.
The method of separation of variables, u(x, y, t) = v(x, y)T (t), leads us to consider the
eigenvalue problem

(3)
∆v + λv = 0 in D

B.C.′s on ∂D.

Finding the eigenvalues λn and eigenfunctions vn for (3) will enable us to write our so-
lution as an infinite series involving unknown constants; the initial conditions are then
used to evaluate the constants. By taking a partial sum of the series, we obtain a good
approximation of the solution which may then be plotted using a graphics program such
as Maple.

In this lab, we shall assume that the domain D is a rectangle:

(4) D = {(x, y) : 0 < x < L, 0 < y < H}.

Having introduced u(x, y, t) = v(x, y)T (t), it is natural to use the separation of variables
v(x, y) = X(x)Y (y) in order to solve (3).

I. Diffusion of Heat in a Rectangular Plate.
The eigenvalue problem (3) will yield eigenvalues λmn and eigenfunctions vmn(x, y).

For (1), the associated time equation T ′ + kλT = 0 may then be solved as usual to obtain
Tmn(t) = Amne

−kλmnt, and hence series solutions of the form

(5) u(x, y, t) =
∑
m,n

Amne
−kλmntvmn(x, y).

As usual, the coefficients Amn are determined by the initial condition

(6) u(x, y, 0) = f(x, y);
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specifically, we find the eigenfunction expansion

(7) f(x, y) =
∑
mn

Amnvmn(x, y),

and use the coefficients Amn in (5).
Of course, the exact values λmn and functions vmn depend on the B.C.′s imposed.

Let us consider an example.

Example 1 (Plate Edges Maintained at Zero Temperature). If we maintain the
edges of the plate (4) at zero temperature, then the B.C.′s on v (and hence on u) are

(8) v(x, y) = 0 for (x, y) on ∂D = edges of D.

The λmn and vmn(x, y) are found by first solving

(9)
X ′′ + µX = 0, X(0) = 0 = X(L),
Y ′′ + νY = 0, Y (0) = 0 = Y (H),

to find

(10)
µm = m2π2/L2, Xm(x) = sin(mπx/L), m = 1, 2, . . .

νn = n2π2/H2, Yn(y) = sin(nπy/H), n = 1, 2, . . . ,

and then letting λ = µ + ν and v(x, y) = X(x)Y (y) to find

(11) λmn = π2

(
m2

L2
+

n2

H2

)
, vmn(x, y) = sin(

mπx

L
) sin(

nπy

H
).

Plugging into (5), we obtain

(12) u(x, y, t) =
∞∑

m,n=1

Amne
−kπ2( m2

L2 + n2

H2 )t sin(
mπx

L
) sin(

nπy

H
).

To be specific, let us take

(13) k = 1, L = H = 1, f(x, y) = xy.

This means that the Amn are found by

Amn = 4
∫ 1

0

∫ 1

0

xy sin(mπx) sin(nπy) dxdy

which can be easily computed by integration by parts (in each integral
∫
dx and

∫
dy).

But let us ask Maple to compute the Amn and then plot the partial sum

SN (x, y, t) =
N∑

m,n=1

Amne
−π2(m2+n2)t sin(mπx) sin(nπy).
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For example, with N = 3 we have

>A := (m, n)− > 4 ∗ int(x ∗ sin(m ∗ Pi ∗ x), x = 0..1)
∗int(y ∗ sin(n ∗ Pi ∗ y), y = 0..1);

>S := (N, t)− > sum(sum(A(m, n) ∗ exp(−Pi^2 ∗ (m^2 + n^2) ∗ t)
∗sin(m ∗ Pi ∗ x) ∗ sin(n ∗ Pi ∗ y), m = 1..N), n = 1..N);

>with(plots) :
>plot3d(S(3, .01), x = 0..1, y = 0..1, axes = normal, scaling = constrained);
>plot3d(S(3, .02), x = 0..1, y = 0..1, axes = normal, scaling = constrained);
>plot3d(S(3, .03), x = 0..1, y = 0..1, axes = normal, scaling = constrained);

which produces the series of plots on the next page (we have adjusted the viewing angle
to ϕ = 60◦).

As we might have expected, the heat is diffusing out of the plate, and the temperature
is rapidly approaching zero as t increases.

Exercise 1 (Plate with Insulated Edges). Let k = 1, and consider (1) in the plate
(4) with L = H = 1 and boundary conditions:

(14)
∂u

∂n
= 0 for (x, y) on ∂D,

where n denotes the normal direction along ∂D. Suppose the initial temperature is

(15) u(x, y, 0) = f(x, y) = xy.

(a) Modify the above analysis for (8) to apply to the B.C. (14).
(b) Use Maple to obtain 3d snapshots of the partial sum S3(x, y, t) for several small

values of t.
(c) Describe in words what is happening to the temperature. In particular, what

happens as t → ∞?
HAND IN: Your printouts for (a) and (b), and your written answer to (c).
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II. Vibrations of a Rectangular Drum. If the domain D in (4) represents a rectangular
drumhead which is fixed along its boundary, then vibrations of the drumhead are found
by solving (2) with the boundary conditions (8). This means that the λ and v(x, y) are
again given by (11), and it only remains to solve the time equation T ′′ + c2λT = 0 for each
λmn. We obtain

Tmn(t) = Amn cos(c
√

λmn t) + Bmn sin(c
√

λmn t).

Using superposition u(x, y, t) =
∑

m,n vmn(x, y)Tmn(t), we obtain our series solution

(16) u(x, y, t) =
∞∑

m,n=1

(
Amn cos(c

√
λmn t) + Bmn sin(c

√
λmn t)

)
sin(

mπx

L
) sin(

nπy

H
).

As usual, the coefficients Amn, Bmn are determined from the initial conditions.

Example 2 (Drum is Struck from Below). Suppose the drum is initially at equilibrium
(u = 0), but is struck from below by an impulse creating the initial conditions

(17) u(x, y, 0) = 0 and ut(x, y, 0) = 1.

From the first initial condition in (17), we obtain Amn = 0 in (16); the second initial
condition in (17) will enable us to compute the Bmn in (16).

To be specific, let us take

(18) c = 1, L = 1 = H.

The second initial condition then yields

ut(x, y, 0) =
∞∑

m,n

Bmn

√
λmn sin(mπx) sin(nπy) = 1,

so that Bmn

√
λmn are the Fourier coefficients for the double sine series for 1:

Bmn

√
λmn = 4

∫ 1

0

∫ 1

0

sin(mπx) sin(nπy) dxdy = 4
(1 − (−1)m)(1 − (−1)n)

mnπ2
.

(Notice that Bmn = 0 unless m and n are both odd.) Solving for Bmn, using
√
λmn =

π
√
m2 + n2, and plugging into (16), we obtain

u(x, y, t) =
∞∑

m,n=1

Bmn sin(π
√

m2 + n2t) sin(mπx) sin(nπy)

where Bmn = 4
(1 − (−1)m)(1 − (−1)n)

mnπ3
√
m2 + n2

.
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To get a feeling for the behavior of u(x, y, t), let us plot the partial sum

(19) SN (x, y, t) =
N∑

m,n=1

Bmn sin(π
√

m2 + n2t) sin(mπx) sin(nπy),

since, for large N , we expect SN (x, y, t) to be a good approximation to u(x, y, t). Let us use
“snapshots” of the vibration at different times, in order to get a feeling for the evolution
of the vibration (like watching a movie frame by frame). To achieve this using Maple, let
us use the commands

>B := (m, n) -> 4 ∗ (1− (−1)^n) ∗ (1− (−1)^m)/(m ∗ n ∗ Pi^3 ∗ sqrt(m^2 + n^2))
>S := (N, t) -> sum(sum(B(m, n) ∗ sin(Pi ∗ sqrt(m^2 + n^2) ∗ t)

∗sin(m ∗ Pi ∗ x) ∗ sin(n ∗ Pi ∗ y), m = 1..N), n = 1..N);

As far as Maple is concerned, S(N,t) is a function of x and y which can then be plotted
using plot3d.

For example, let us take N = 5. (For the diffusions above, we generally used N = 3,
but for vibrations one generally should use larger N ; can you guess why?) Let us also take
t = 1/4 = .25:

>plot3d(S(5, .25), x = 0..1, y = 0..1, axes = normal);

The result appears in Figure 2a; notice that, in response to the initial impulse, the center
of the drumhead has raised upward; of course the edges remain clamped in place.

Exercise 2. In Figure 2a, notice that the raised portion of the drumhead looks rather
“bumpy.” Is this a feature of the vibration, or caused by our truncation N = 5? To
investigate this, replace N = 5 by a larger number; e.g. with N = 15, try plotting S(15, .25).
Have the “bumps” disappeared? What is your conclusion about the cause of the bumps
for N = 5?

HAND IN: A copy of your plot and a written conclusion about the cause of the “bumps”
in Figure 2a.

Next let us consider t = .5:

>plot3d(S(5, .5), x = 0..1, y = 0..1, axes = normal);

The result is Figure 2b; the change of scale on the vertical axis shows that the middle
of the plate has risen higher than in Figure 2a. In Figure 2c we see t = .75; by now the
vibration forces the drumhead to stretch downward (the edges still clamped in place).
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Figure 2a: S(5,.25)
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Figure 2b: S(5,.5)
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Figure 2c: S(5,.75)
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Exercise 3. (a) Plot S(5,t) for the values t = 1, t = 1.5, and t = 2.
(b) Describe the vibration in words, referring to the snapshots.
(c) Do you think that the “peaks” in S(5, 2) are effects of the approximation with N

rather small? Try taking N = 15. What do you observe? What do you conclude?
(d) Is this motion periodic? In particular, is there a time t∗ > 0 at which the plate is

exactly flat (as it was when t = 0)? If you think the motion is periodic, try using
Maple to find t∗; if you think it is not periodic, refer to (18) to explain why not.

HAND IN: Printouts of your snapshots in (a), clearly labeled with the value of t. Also,
your written answers to (b), (c), and (d).
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MTH U545 Spring 2004

Computer Lab 6: Applications to Circular Domains

If we consider the diffusion equation

(1) ut = k∆u,

or the wave equation

(2) utt = c2∆u,

on a circular domain (a disk) D = {(x, y) : x2 + y2 < a2}, it is natural to use polar
coordinates x = r cos θ and y = r sin θ so that ∆u = uxx + uyy = urr + r−1ur + r−2uθθ.
The method of separation of variables, u(r, θ, t) = v(r, θ)T (t), leads us to consider the
eigenvalue problem

(3)
∆v + λv = 0 in D

B.C.′s on ∂D.

Finding the eigenvalues λn and eigenfunctions vn for (3) will enable us to write our solution
as an infinite series involving unknown constants; the initial conditions are then used to
evaluate the constants. In particular, to solve (3) we shall assume v(r, θ) = R(r)g(θ).

I. Vibrations of a Circular Drumhead
The vibrations of a circular drumhead (fixed on its perimeter) are given by

(4)




utt = c2∆u in D,

u = 0 on ∂D,

u = φ and ut = ψ in D at t = 0.

The assumption u(r, θ, t) = v(r, θ)T (t) = R(r) g(θ)T (t) leads to the equations

T ′′ + c2λT = 0(5a)
g′′ + µg = 0, g has period 2π,(5b)

r2R′′ + rR′ + (λr2 − µ)R = 0, R(0) finite, R(a) = 0.(5c)

As usual, the equation (5b) for g produces eigenvalues µm = m2 for m = 0, 1, . . . with
eigenfunctions

(6) gm(θ) = Am cosmθ + Bm sinmθ for m = 0, 1, 2, . . . .

Now we must solve the equation (5c) for each µm = m2. The first step is to make the
substitution ρ =

√
λr, so that the chain rule implies Rr =

√
λRρ, Rrr = λRρρ, and (5c)

becomes

(7) ρ2Rρρ + ρRρ + (ρ2 −m2)R = 0,
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Figure 1. J(0,x), J(1,x), J(2,x)

which is Bessel’s differential equation of order m. This equation cannot be explicitly solved,
but its solutions have naturally received alot of study. In particular, for each integer m,
there is (up to scalar multiple) exactly one solution which is finite at ρ = 0; it is called the
Bessel function of order m, and is denoted by Jm(ρ). In fact, Maple is familiar with these
functions; it uses the name BesselJ(m,x) for Jm(x). Let us ask Maple to graph J0(x),
J1(x), and J2(x), simultaneously on 0 ≤ x ≤ 10 and −.5 ≤ y ≤ 1 by entering:

> plot({BesselJ(0, x), BesselJ(1, x), BesselJ(2, x)}, x = 0..10,−.5..1);

The result is the following:

Notice that J0(0) = 1 and J1(0) = 0 = J2(0). Moreover, each Jm(x) “oscillates” by crossing
the x-axis an infinite number of times at certain points xm1 < xm2 < xm3, . . . → ∞; for
example, with m = 0, x01 lies between x = 2 and x = 3, x02 lies between x = 5 and x = 6,
etc. These values are important for satisfying the condition R(a) = 0 of (5c); namely we
now want to let λmn = x2

mn/a
2 so that

(8) Jm(
√

λmn a) = 0.

Now we let Rmn(r) = Jm(
√
λmn r), so that for m = 0, 1, . . . and n = 1, 2, . . .,

(9) vmn(r, θ) = Rmn(r)gm(θ) = Jm(
√

λmn r)(Amn cosmθ + Bmn sinmθ)

satisfies (3) with λ = λmn and the Dirichlet condition v(a, θ) = 0.
Finally, we solve (5a) for these λmn to find

(10) Tmn(t) = Cmn cos(
√

λmn ct) + Dmn sin(
√

λmn ct).
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Combining (9) and (10) by superposition, we find that u =
∑

vmnTmn may be written as

(11)

u(r, θ, t) =
∞∑

n=1

J0(
√

λ0nr)(C0n cos(
√

λ0nct) + D0n sin(
√

λ0nct)) +

∞∑
m,n=1

Jm(
√

λmnr)(Amncosmθ+Bmnsinmθ)(Cmncos(
√

λmnct)+Dmnsin(
√

λmnct)).

The constants Amn, Bmn, Cmn, and Dmn are of course determined by the initial conditions
φ and ψ, but before we get into that, let us investigate some special cases of (11).

For concreteness, let us henceforth take

(12) a = 1 = c.

In particular, this means that
√
λmn = xmn. The numbers xmn are easily found using

Maple. For example, to find x01, we look for the solution of J0(x) = 0 between x = 2 and
x = 3:

> fsolve(BesselJ(0, x) = 0, x = 2..3);

produces the value to 10-digits as
2.404825558

We shall round this off to three decimal places: x01 ≈ 2.405

Exercise 1. (a) Show that x02 ≈ 5.520, x03 ≈ 8.654, and x04 ≈ 11.7915.
(b) Find three decimal approximations for x11, x12, and x13.

HAND IN: Your three decimal place approximations for x11, x12, and x13.

Now let us consider (11) with

(13a) C01 = 1 and all other coefficients = 0,

so that

(13b) u(r, θ, t) = J0(x01r) cos(x01t).

Suppose we want to graph some “snapshots” of this solution at various values of t. The
problem that the function is defined in terms of polar coordinates may be overcome using
the “cylinderplot” option in Maple:

> cylinderplot([r, theta, f(r, theta)], r = a..b, theta = c..d);

will plot z = f(r, θ) for a ≤ r ≤ b and c ≤ θ ≤ d. Thus, to graph u(r, θ, .25), we use the
commands:

>with(plots);
>u := t− > BesselJ(0, 2.405 ∗ r) ∗ cos(2.405 ∗ t);
>cylinderplot([r, theta, u(.25)], r = 0..1, theta = 0..2 ∗ Pi);
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Figure 2. Graph of (13b) at t=.25

The result appears in Figure 2.

For viewing and comparison purposes, it may be better to use some options for the graph.
If we replace the third command by

>cylinderplot([r, theta, u(.25)], r = 0..1, theta = 0..2 ∗ Pi,
scaling = constrained, orientation = [40, 70], axes = boxed);

then the vertical axis has the same scaling as the horizontal axes, the viewing orientation
is convenient, and the axes “box” the figure for clarity.

Exercise 2. Plot the snapshots of (13b) at the values t = .25, t = .5, t = .75, and t = 1
with this scaling, orientation, and boxed axes. Can you “see” the vibration?
HAND IN: Printouts of the snapshots at t = .25, t = .5, t = .75, and t = 1.

For another special case of (11), let us take

(14a) A11 = 1 = C11 and all other coefficients = 0,

so that

(14b) u(r, θ, t) = J1(x11r) cos(θ) cos(x11t).

Using the value of x11 found in Exercise 1, Maple may again be used to plot (14b) at
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Figure 3. Graph of (14b) at t=.25

various values of t. At t = .25 we get the snapshot in Figure 3.

This is quite interesting; one part of the drum rises as the other falls. What do you think
happens as t increases?

Exercise 3. Plot the snapshots of (14b) at the values t = .25, t = .5, t = .75, and t = 1
with the scaling, orientation, and boxed axes. Can you “see” the vibration?
HAND IN: Printouts of the snapshots at t = .25, t = .5, t = .75, and t = 1.

As a final example of a special case of (11), consider

(15) u(r, θ, t) = J2(x21r) cos(2θ) cos(x21t).

Exercise 4.
(a) What are the values of the A’s, B’s, C’s, and D’s in (11) that produce (15)?
(b) Based on your experience of (13b) and (14b), what would you expect the snapshots of

(15) to look like?
(c) Use Maple to approximate the value of x21, and to plot (15) at the times t = .25,

t = .5, t = .75, and t = 1. Was your expectation in (b) confirmed?
HAND IN: Your approximate value of x21, printouts of the snapshots of (15) at t = .25,
t = .5, t = .75, and t = 1, and your answers to the questions in (a), (b), and (c).
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II. Initial-Value Problems
Now let us try to solve (4) with specific initial conditions φ and ψ; in other words,

we now want to use φ and ψ to evaluate the constants in (11). An important fact that we
need in this quest is the orthogonality of the eigenfunctions vmn(r, θ) of (9): we claim that

(16)
∫ ∫

D

vmn(r, θ) vm′n′(r, θ) r dr dθ = 0 if (m,n) �= (m′, n′).

If m �= m′, then the orthogonality of both cosmθ and sinmθ to both cosm′θ and sinm′θ
means that we need only consider m = m′ and n �= n′, i.e. we must verify that

(17)
∫ a

0

Jm(
√

λmnr)Jm(
√

λmn′r) r dr = 0 whenever n �= n′.

This is a simple consequence of general Sturm-Liouville theory; however, we can use Maple
to see it in action. For example, let us take a = 1 and compute

∫ 1

0
J0(x01r)J0(x02r)rdr

numerically. For this purpose, let us use the approximations x01 ≈ 2.405 and x02 ≈ 5.520,
and enter the commands

>int(BesselJ(0, 2.405 ∗ r) ∗ BesselJ(0, 5.520 ∗ r) ∗ r, r = 0..1);
>evalf(”);

Maple produces the value .82×10−5, which is pretty small. However, if we perform the same
calculation with the improved approximations x01 ≈ 2.404825558 and x02 ≈ 5.520078110,
we obtain the value .18 × 10−10 which is indeed very close to zero.

Exercise 5. Compute
∫ 1

0
J1(x11r) J1(x12r) r dr using both (i) a 3 decimal place and (iv)

a 9 decimal place approximations for x11 and x12.
HAND IN: Your evaluation of the integral for both approximations (i) and (ii).

When we calculate the integral in (17) with n = n′, we shall get a nonzero number
which we denote jmn, i.e.

(18) jmn :=
∫ a

0

[
Jm(

√
λmnr)

]2

r dr.

Now suppose we want to write a given function f(r, θ) as

(19) f(r, θ) =
1
2

∞∑
n=1

a0nJ0(
√

λ0nr) +
∞∑

m,n=1

Jm(
√

λmn r)(amn cosmθ + bmn sinmθ).

Multiply both sides of (19) by Jm′(
√
λm′n′) cos(mθ) r dr or Jm′(

√
λm′n′) sin(mθ) r dr and

integrate r from 0 to a; passing the integrals under the summation, using (18), and the
orthogonality properites discussed, we find

(20)
amn =

1
πjmn

∫ 2π

0

∫ a

0

Jm(
√

λmnr) cos(mθ) f(r, θ) r drdθ,

bmn =
1

πjmn

∫ 2π

0

∫ a

0

Jm(
√

λmnr) sin(mθ) f(r, θ) r drdθ

35



where m = 0, . . . and n = 1, . . . (although b0n = 0).
At last we are in a position to use φ and ψ to evaluate the constants in (11). First of

all,

(21)

φ(r, θ) = u(r, θ, 0) =
∞∑

n=1

C0nJ0(
√

λ0nr) +
∞∑

m,n=1

CmnJm(
√

λmnr)(Amn cos(mθ) + Bmn sin(mθ)),

so from the expansion (19),(20) for φ(r, θ), we find

(22)

C0n =
a0n

2
=

1
2πj0n

∫ 2π

0

∫ a

0

J0(
√

λ0nr)φ(r, θ) r drdθ

CmnAmn = amn =
1

πjmn

∫ 2π

0

∫ a

0

Jm(
√

λmnr) cos(mθ)φ(r, θ) r drdθ

CmnBmn = amn =
1

πjmn

∫ 2π

0

∫ a

0

Jm(
√

λmnr) sin(mθ)φ(r, θ) r drdθ.

Similarly,

(23)

ψ(r, θ) = ut(r, θ, 0) =
∞∑

m=1

D0n

√
λ0nJ0(

√
λ0nr) +

∞∑
m,n=1

Dmn

√
λmnJm(

√
λmnr)(Amn cos(mθ) + Bmn sin(mθ)),

so we obtain

(24)

D0n

√
λ0n =

1
2πj0n

∫ 2π

0

∫ a

0

J0(
√

λ0nr)ψ(r, θ) r drdθ

DmnAmn

√
λmn =

1
πjmn

∫ 2π

0

∫ a

0

Jm(
√

λmnr) cos(mθ)ψ(r, θ) r drdθ

DmnBmn

√
λmn =

1
πjmn

∫ 2π

0

∫ a

0

Jm(
√

λmnr) sin(mθ)ψ(r, θ) r drdθ.

Example. Vibrations of a Circular Drumhead, Struck from Below. Let us assume
a = 1 = c as in (12), and the initial conditions

(25) φ(r, θ) = 0 and ψ(r, θ) = 1,

which correspond to striking a stationary drumhead with a uniform impulse from below.
In particular, we might ask the following.
Question: Is the motion periodic? In particular, will the drumhead pass through its original
flat state at some time t∗ > 0?
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We considered this question for a one-dimensional vibration (a string) in Lab 3 and found
the answer was “yes”; we also considered the question for a two-dimensional vibration (a
rectangular drumhead) in Lab 5 and found the answer was “no”; what happens for circular
drumheads? Maybe Maple can help us discover the answer.

From φ(r, θ) = 0 and (22) we find

(26a) C0n = 0 = CmnAmn = CmnBmn for all m,n = 1, . . . .

Moreover, since ψ(r, θ) = 1 is independent of θ, the integrals in (24) involving cos(mθ) and
sin(mθ) all vanish, so

(26b) DmnAmn = DmnBmn = 0 for all m,n = 1, . . . ,

and we are left with

(26c) D0n =
1

2πj0n

√
λ0n

∫ 1

0

J0(
√

λ0nr) r dr

Our solution is therefore independent of θ and may be written as

(27) u(r, t) =
∞∑

n=1

D0nJ0(
√

λ0nr) sin(
√

λ0nt).

Exercise 6. (a) Use Maple to calculate D01, D02, and D03.
(b) What is your answer to the Question above? Why?

HAND IN: Your numerical values for D01, D02, and D03, and your answers to the
questions in (b).
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