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Abstract

The mixture model of two Inverse Weibull distributions (MTIWD) is investigated. First, some properties of the model with some
graphs of the density and hazard function are discussed. Next, the identifiability property of the MTIWD is proved. In addition, the
estimates of the unknown parameters via the EM Algorithm are obtained. The performance of the findings in the paper is showed
by demonstrating some numerical illustrations through Monte Carlo simulations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Mixture models play a vital role in many practical applications. For example, direct applications of finite mixture
models are in fisheries research, economics, medicine, psychology, palaeoanthropology, botany, agriculture, zoology,
life testing and reliability, among others. Indirect applications include outliers, Gaussian sums, cluster analysis, latent
structure models, modeling prior densities, empirical Bayes method and nonparametric (kernel) density estimation.
In many applications, the available data can be considered as data coming from a mixture population of two or more
distributions. This idea enables us to mix statistical distributions to get a new distribution carrying the properties of its
components.

The mixture of two Inverse Weibull distribution (MTIWD) has its pdf as

f (t; �) = p1f1(t; �1) + p2f2(t; �2), p1 + p2 = 1, (1.1)

where � = (p1, �1, �2, �1, �2), �i = (�i , �i ), i = 1, 2, and fi(t; �i ), the density function of the ith component, is
given by

fi(t; �i ) = �i�
−�i

i t−(�i+1)e−(�i t)
−�i

, t �0, �i , �i > 0, i = 1, 2. (1.2)

The cdf of the MTIWD is given by

F(t; �) = p1F1(t; �1) + p2F2(t; �2), (1.3)
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where Fi(t; �i ), the cdf of the ith component, is given by

Fi(t; �i ) = e−(�i t)
−�i

, t �0, �i , �i > 0, i = 1, 2. (1.4)

Mixture distributions have been considered extensively by many authors; for an excellent survey of estimation tech-
niques, discussion and applications, see Everitt and Hand (1981), Titterington et al. (1985), Maclachlan and Basford
(1988), Lindsay (1995), Maclachlan and Krishnan (1997), and Maclachlan and Peel (2000). Recently, AL-Hussaini
and Sultan (2001) have reviewed properties and the estimation techniques of finite mixtures of some life time models.

Identifiability questions of mixtures must be settled before one can meaningfully discuss the problems of estimation,
testing hypotheses or classification of random variables, which are based on observations from the mixture. Identifi-
ability gives a unique representation for a class of mixtures. Lack of identifiability is a serious problem if we intend
to classify future observations into one of several classes from our knowledge of the component distributions. Identi-
fiability of mixtures has been discussed by several authors, including Teicher (1963), Yakowitz and Spragins (1968),
Balakrishnan and Mohanty (1972), AL-Hussaini and Ahmad (1981), Ahmad and AL-Hussaini (1982), and Ahmad
(1988).

Jiang et al. (1999) have shown that the Inverse Weibull (IW) mixture models with negative weight can represent the
output of a system under certain situations. Jiang et al. (2001) have considered the shapes of the density and failure rate
functions and graphical methods to discuss the MTIWD. Jiang et al. (2003) have discussed the aging property of the
unimodal failure rate models including the IW distribution. Calabria and Pulcini (1990) have discussed the maximum
likelihood and least square estimates of the parameters of the IW distribution.

In this paper we discuss some important measures of the MTIWD. Also, we show that the MTIWD is identifiable.
In addition, we estimate the vector of the unknown parameters � of a mixture model via the EM Algorithm proposed
by Dempster et al. (1977). Further we carry out some simulated illustrations using Monte Carlo method.

The remainder of this paper has the following organization. In Section 2, we summarize and discuss some properties
of the MTIWD. These results play a significant role in the development of statistical methods based on the pdf of the
MTIWD given in (1.1) and (1.2). In Section 3, we use the EM Algorithm to estimate the vector of the five parameters
of the pdf of the MTIWD given in (1.1) and (1.2). In Section 4, we carry out some simulation studies to illustrate the
estimation technique considered in Section 3. Finally, we draw conclusion in Section 5.

2. Properties

Keller and Kamath (1982) and Jiang et al. (2001) have discussed some properties of the pdf of the IW distribution
given in (1.2). In this section, we derive and analyze some properties for the MTIWD by extending the corresponding
results of the IW distribution as follows:

1. Mean and variance: The mean of the pdf of the MTIWD given in (1.1) and (1.2) is

E(T ) = p1

�1
�

(
1 − 1

�1

)
+ p2

�2
�

(
1 − 1

�2

)
, �1, �2 > 1, (2.1)

while the variance is given by

Var(T ) = p1

�2
1

[
�

(
1 − 2

�1

)
− p1�

2
(

1 − 1

�1

)]
+ p2

�2
2

[
�

(
1 − 2

�2

)

− p2�
2
(

1 − 1

�2

)]
− 2p1p2

�1�2

[
�

(
1 − 1

�1

)
�

(
1 − 1

�2

)]
,

�1, �2 > 2, (2.2)

where �(·) is the gamma function.
2. Mode and median: The mode (modes) of the MTIWD is (are) obtained by solving the following nonlinear equation

with respect to t

2∑
i=1

pi�i�
−�i

i t−(�i+2)e−(�i t)
−�i [−(�i + 1) + �i�

−�i

i t−(�i )] = 0. (2.3)
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Table 1
The mode(s) and median of the MTIWD

� = (
p1, �1, �2,�1,�2

)
Mode(s) Median

0.2,1,2,2,3 0.4592 0.6289
0.4,1,2,2,3 0.4689 0.7342
0.6,1,2,2,3 0.4996 0.8830

0.2,2.5,1,2,2.9 0.3266, 0.8861 1.0398
0.4,2.5,1,2,2.9 0.3266, 0.8575 0.9212
0.6,2.5,1,2,2.9 0.3266, 0.7879 0.7622

f1(t)
f2 (t)
f (t)

0 2

0

1

2

t

pd
f

1 3

Fig. 1. Density functions: components and their mixture with parameters (0.5, 1.0, 2.0, 2.0, 3.0).

By using (1.3) and (1.4), the median is obtained by solving the following nonlinear equation with respect to t

p1e−(�1t)
−�1 + p2e−(�2t)

−�2 = 0.5. (2.4)

Table 1 displays the mode and median of the MTIWD based on different choices of the parameters.
The values of the parameters p1, �1, �2, �1 and �2, in Table 1 are chosen to demonstrate the unimodal and bimodal

cases for the probability density function of the mixture model. From Table 1, we see that the mode is slightly affected
by the variation in the values of the mixing proportion p1, while one mode is stable in the bimodal case. In addition,
for the unimodal case, the median increases when p1 increases. Conversely, for the bimodal case, we note that the
median decreases when p1 increases. Figs. 1 and 2 show two different shapes of the probability density function of the
MTIWD.

3. Reliability and failure rate functions: The reliability function (survival function) of the MTIWD is given by

R(t) = p1(1 − e−(�1t)
−�1

) + p2(1 − e−(�2t)
−�2

). (2.5)

By using (1.3) and (1.4) it can be seen that the failure rate function (hazard rate function, HRF) of the MTIWD is given
by

r(t) = p1�1�
−�1
1 t−(�1+1)e−(�1t)

−�1 + p2�2�
−�2
2 t−(�2+1)e−(�2t)

−�2

p1(1 − e−(�1t)
−�1 ) + p2(1 − e−(�2t)

−�2 )
, (2.6)

which can be written in view of the result by AL-Hussaini and Sultan (2001) as

r(t) = h(t)r1(t) + (1 − h(t))r2(t). (2.7)

The derivative of the HRF is given by

r ′(t) = h(t)r ′
1(t) + (1 − h(t))r ′

2(t) − h(t)(1 − h(t))[r1(t) − r2(t)]2, (2.8)
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Fig. 2. Density functions: components and their mixture with parameters (0.5, 2.5, 1.0, 2.0, 2.9).

where for i = 1, 2

h(t) = 1

1 + p2R2(t)

p1R1(t)

, ri(t) = fi(t)

Ri(t)
and Ri(t) = 1 − e−(�i t)

−�i . (2.9)

The failure rate function of the MTIWD given in (2.6) satisfies the following limits.

Lemma 1.

lim
t→0

r(t) = 0 (2.10)

and

lim
t→∞ r(t) = 0. (2.11)

Proof. By using the Taylor expansion, we can express ri(t) given in (2.9) as

ri(t) = �i[
t + 1

2

1

�
�i

i t�i−1
+ 1

6

1

�
2�1
i t2�i−1

+ · · ·
] , i = 1, 2. (2.12)

The denominator in (2.12) tends to infinity as t → 0, and so

lim
t→0

r1(t) = 0 and lim
t→0

r2(t) = 0. (2.13)

From (2.9), it can be shown that

lim
t→0

h(t) = p1 (2.14)

and hence (2.10) is proved. �

Once again, from (2.9), we note that p2R2(t)
p1R1(t)

�0, hence limt→∞ p2R2(t)
p1R1(t)

�= −1. It follows that |h(t)| < ∞. Moreover
from (2.12), it can be shown that

lim
t→∞ ri(t) = 0 for i = 1, 2, (2.15)

and hence (2.11) is proved. �
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Fig. 3. HR functions components and their mixture with parameters (a) (0.3, 1.0, 2.0, 2.0, 3.0), (b) (0.5, 1.0, 2.0, 2.0, 3.0), (c) (0.6, 1.0, 2.0, 2.0, 3.0).

4. Interpretation of the failure rate curves: Suppose that t1 = min(t∗1 , t∗2 ) and t2 = max(t∗1 , t∗2 ), where for i = 1, 2,

t∗i represents the mode of the density function fi(t). From ri(t) = fi(t)
Ri(t)

, we see that both of f1(t) and f2(t) in the
numerator of ri(t) increase on (0, t1), whereas the denominator decreases on the same interval. Therefore, r(t) increases
on (0, t1). Also, as t → ∞, r(t) → 0. Within the interval (t1, ∞), two cases arise:

(a) Unimodal case: Suppose that t∗ is the maximum point of the failure rate mixture. When the difference � between
r1(t) and r2(t) on the interval (t1, t

∗) is so small that the first two terms of r ′(t) in (2.8) dominate the third term,
then r ′(t) > 0 on (t1, t

∗). Then, the difference � increases to the point that the third term in r ′(t) dominates the
first two terms and r ′(t) < 0 on (t∗, ∞). Summarizing, the failure rate of the MTIWD increases on (0, t∗) and
decreases on (t∗, ∞), reaching zero as t → ∞. See Figs. 3(a–c).

(b) Bimodal case: Suppose that t∗ and t∗∗ denote, respectively, the smallest and largest maximum point of the
failure rate mixture. When the difference � between r1(t) and r2(t), on the interval (t1, t

∗), is small where
t1 < t∗ < t2 < t∗∗, then the third term of (2.8) is dominated by the first two terms and hence r ′(t) > 0 on (0, t∗).
The difference � on the interval (t∗, t∗∗∗), where t∗∗∗ is the local minimum point of r(t) becomes larger to the
point that the third term in r ′(t) dominates the first two terms and hence, r ′(t) < 0 on (t∗, t∗∗∗). On (t∗∗∗, t∗∗), the
difference becomes small so that the third term in r ′(t) is dominated by the first two terms, therefore, r ′(t) > 0.
Summarizing, the failure rate of the mixed model increases on (0, t∗), decreases on (t∗, t∗∗∗), increases on
(t∗∗∗, t∗∗) and decreases again on (t∗∗, ∞), reaching 0 as t tends to ∞, see Figs. 4(a–c).

5. Identifiability: Chandra (1977) has proved the following: Let � be a transform associated with each Fi ∈ �
having the domain of definition D�i

with linear map M : Fi → �i . If there exists a total ordering (�) of �
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Fig. 4. HR functions components and their mixture with parameters (a) (0.3, 2.5, 1.0, 2.0, 2.9), (b) (0.5, 2.5, 1.0, 2.0, 2.9), (c) (0.6, 2.5, 1.0, 2.0, 2.9).

such that

(i) F1 �F2, (F1, F2 ∈ �) implies D�1
⊆ D�2

;
(ii) for eachF1 ∈ �, there exists some s1 ∈ D�1

,�1(s) �= 0 such that lims→s1�2(s)/�1(s)=0 for F1 < F2, (F1, F2 ∈
�);

then the class 	 of all finite mixing distributions is identifiable relative to �.
By using Chandra’s approach, we prove the following proposition.

Proposition. The class of all finite mixing distributions relative to the IW distribution is identifiable.

Proof. Let T be a random variable having the pdf and cdf of the IW distribution given in (1.2) and (1.4), respectively.
Then the sth moments of the ith IW component are given by

�i (s) = E(T s) = �−s
i �

(
1 − s

�i

)
, i = 1, 2. (2.16)

From (1.4), we have

F1 < F2 when �1 = �2 and �1 < �2 (2.17)

and

F1 < F2 when �1 = �2 > 1/t and �1 < �2. (2.18)
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Now let D�1
(s) = (−∞, �1), D�2

(s) = (−∞, �2) and s1 = �1, then from (2.17) and (2.18), we have that D�1
(s) ⊆

D�2
(s) and

lim
s→�1

�1(s) = �
−�1
1 �

(
1 − �1

�1

)
= �(0+) = ∞, (2.19)

see Abramowitz and Stegun (1965). �
On the other hand, when �1 = �2 > 1

t
and �1 < �2, we have

lim
s→�1

�2(s) = �
−�1
1 �

(
1 − �1

�2

)
> 0. (2.20)

From (2.19) and (2.20), we have

lim
s→�1

[�2(s)/�1(s)] = 0, (2.21)

and hence the identifiability is proved. �

3. Estimation via EM Algorithm

In this section, we use the EM Algorithm to estimate the parameters of the pdf of the MTIWD given in (1.1) and
(1.2). The EM Algorithm provides a simple computational method for fitting mixture models. The focus in this section
is on the ML fitting of two IW mixture via the EM Algorithm. The essential nature of the algorithm is the alternation
of expectation and maximization steps. (Refer to Maclachlan and Peel, 2000).

Concerning the E-step on the (k + 1)th iteration, the updated estimate of the ith mixing proportion pi is given by

p
(k+1)
i = 1

n

n∑
j=1

⎡
⎣ p

(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�i

∑2
i=1p

(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�i

⎤
⎦ , i = 1, 2. (3.1)

In the M-step of the (k + 1)th iteration, the updated estimates �(k+1)
i and �(k+1)

i for i = 1, 2 are obtained, respectively,
by solving the following systems of equations:

�(k+1)
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

∑n
j=1

⎧⎨
⎩

p
(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�i

∑2
i=1p

(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�i

⎫⎬
⎭

∑n
j=1

⎧⎨
⎩

p
(k)
i �i�

−�i

i y
−(2�i+1)

j e−(�i yj )−�i

∑2
i=1p

(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�i

⎫⎬
⎭

⎤
⎥⎥⎥⎥⎥⎥⎦

−1/�i

(3.2)

and

n∑
j=1

[
si

(
1

�i

− (log �i + log(yj )) + (�iyj )
−�i log(�iyj )

)]
= 0, (3.3)

where

si = p
(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�1

∑2
i=1p

(k)
i �i�

−�i

i y
−(�i+1)

j e−(�i yj )−�i
, i = 1, 2 and p2 = 1 − p1. (3.4)

Note that �i , and �i in Eqs. (3.1), (3.2) and (3.4) should be raised to power k to indicate that they are the values
obtained at the kth iteration, however, this has been suppressed for notational simplicity.
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4. Simulation

In this section, we calculate the estimates of the five parameters p, �1, �2, �1 and �2 that appear in the pdf of the
MTIWD given in (1.1) and (1.2) by using the EM Algorithm in a Monte Carlo simulation as follows:

1. Generate random samples of sizes n = 25, 50, 75, 100 for each choice of the vector of the parameters � =
(p1, �1, �2, �1, �2). Some of the choices of the parameters cover the unimodal model and the other choices cover
the bimodal case.

2. The random samples of the mixtures are generated as follows:
(a) Generate two uniform variates u1 and u2 from the Fortran numerical library (IMSL) using the routine DRNUN.
(b) If u1 < p1, then use u2 to generate a random variate t from the MTIWD by using (1.4) as t = F−1

1 (u2).
(c) If u1 �p1, then use u2 to generate a random variate t from the MTIWD by using (1.4) as t = F−1

2 (u2).

Table 2
Bias of the estimate of �̂ based on EM-Algorithm

� = (
p1, �1, �2,�1,�2

)
n Bias

p̂1 �̂1 �̂2 �̂1 �̂2

0.2,1,2,2,3∗ 25 −0.0406 0.8364 −0.1628 0.5340 −0.4649
50 −0.0420 0.8644 −0.1359 0.4871 −0.5130
75 −0.0534 0.8652 −0.1333 0.4630 −0.5310

100 −0.0198 0.8502 −0.1310 0.4228 −0.5422

0.3,1,2,2,3∗ 25 −0.2373 0.7613 −0.2389 0.3252 −0.6730
50 −0.0887 0.7785 −0.2180 0.2689 −0.7240
75 −0.0865 0.7944 −0.1935 0.2621 −0.7211

100 −0.0474 0.7202 −0.2108 0.1605 −0.7190

0.5,1,2,2,3∗ 25 0.1032 0.5070 −0.4930 0.0427 −0.9573
50 0.0112 0.5653 −0.4825 −0.0191 −1.0246
75 0.0063 0.5725 −0.4585 −0.0183 −1.0144

100 0.0046 0.5694 −0.4379 −0.0148 −1.0050

0.6,1,2,2,3∗ 25 −0.1041 0.5140 −0.4871 −0.0249 −1.0273
50 0.0150 0.4650 −0.6225 −0.0902 −1.1700
75 0.0081 0.4730 −0.5818 −0.0804 −1.1418

100 0.0039 0.4853 −0.5728 −0.0746 −1.1324

0.2,2.5,1,2,2.9∗∗ 25 −0.2000 −1.2074 0.2949 −0.1834 −1.0791
50 −0.1156 −1.2006 0.2994 −0.3001 −1.2001
75 −0.0630 −1.1965 0.3035 −0.3309 −1.2309

100 −0.0553 −1.1985 0.3015 −0.3335 −1.2335

0.3,2.5,1,2,2.9∗∗ 25 0.1718 −1.0664 0.4336 −0.3136 −1.2136
50 −0.0406 −1.0548 0.4452 −0.3837 −1.2837
75 0.0305 −1.0537 0.4463 −0.4057 −1.3057

100 −0.0285 −1.0549 0.4451 −0.4201 −1.3201

0.5,2.5,1,2,2.9∗∗ 25 0.0926 −0.7767 0.7233 −0.3603 −1.2603
50 −0.0694 −0.7705 0.7295 −0.4119 −1.3119
75 0.0120 −0.7589 0.7411 −0.4206 −1.3206

100 −0.0012 −0.7596 0.7404 −0.4260 −1.3260

0.6,2.5,1,2,2.9∗∗ 25 0.0601 −0.6178 0.8821 −0.3257 −1.2257
50 0.0060 −0.6093 0.8907 −0.3962 −1.2692
75 0.0008 −0.6113 0.8887 −0.3853 −1.2853

100 0.0142 −0.6114 0.8886 −0.3868 −1.2868

∗Unimodal; ∗∗bimodal.
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Table 3
MSE of �̂ based on EM-Algorithm

� = (
p1, �1, �2,�1,�2

)
n MSE

p̂1 �̂1 �̂2 �̂1 �̂2

0.2,1,2,2,3∗ 25 0.0020 0.7000 0.0265 0.2851 0.2000
50 0.0020 0.7000 0.0185 0.2373 0.2000
75 0.0020 0.7000 0.0178 0.2144 0.2000

100 0.0004 0.7000 0.0172 0.1788 0.2000

0.3,1,2,2,3∗ 25 0.0563 0.6000 0.0571 0.1058 0.5000
50 0.0079 0.6000 0.0475 0.0723 0.5000
75 0.0075 0.6000 0.0400 0.0687 0.5000

100 0.0022 0.5187 0.0400 0.0258 0.5000

0.5,1,2,2,3∗ 25 0.0107 0.3000 0.2430 0.0018 1.0000
50 0.0001 0.3000 0.2328 0.0004 1.0000
75 0.00004 0.3000 0.2103 0.0003 1.0000

100 0.00002 0.3000 0.1918 0.0002 1.0000

0.6,1,2,2,3∗ 25 0.0108 0.2642 0.3000 0.0082 1.0000
50 0.0002 0.2163 0.3000 0.0081 1.0000
75 0.0001 0.2000 0.3000 0.0065 1.0000

100 0.00001 0.2000 0.3000 0.0056 1.0000

0.2,2.5,1,2,2.9∗∗ 25 0.0400 1.0000 0.1000 0.1000 1.0000
50 0.0134 1.0000 0.1000 0.1000 1.0000
75 0.0040 1.0000 0.0900 0.1000 1.0000

100 0.0031 1.0000 0.0900 0.1000 1.0000

0.3,2.5,1,2,2.9∗∗ 25 0.0295 1.1373 0.2000 0.1000 2.0000
50 0.0016 1.1127 0.2000 0.1000 2.0000
75 0.0009 1.1102 0.1992 0.1000 2.0000

100 0.0008 1.0000 0.1982 0.1000 2.0000

0.5,2.5,1,2,2.9∗∗ 25 0.0086 0.6033 0.5000 0.2000 2.0000
50 0.0048 0.5937 0.5000 0.2000 2.0000
75 0.0001 0.5759 0.5000 0.1800 2.0000

100 0.00001 0.5670 0.5000 0.1800 1.7582

0.6,2.5,1,2,2.9∗∗ 25 0.0036 0.3817 0.8000 0.1200 2.0000
50 0.0004 0.3712 0.7933 0.1000 2.0000
75 0.0001 0.3700 0.7897 0.1000 2.0000

100 0.0001 0.3700 0.7896 0.1000 2.000

∗ Unimodal; ∗∗ bimodal.

p1

E
st

im
at

es

2.5

2.0

1.5

1.0

0.5

alpha 1 alpha 2 beta 1 beta 2

Fig. 5. Boxplot of the estimates.
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Fig. 6. (a) Probability plot for the bias of the estimate of (a) p1, (b) alpha1, (c) alpha2, (d) beta1, (e) beta2. Normal—95% CI.

3. The estimates of p1, �1, �2, �1 and �2 are obtained by solving (3.1), (3.2) and (3.3). Eqs. (3.1) and (3.2) are written
explicitly but Eq. (3.3) has to be solved numerically by using the subroutine DNEQNJ from the IMSL and random
choices of the initial values.

4. The bias and the mean square errors of the estimates are calculated based on 10 000 Monte Carlo repetitions and
the results are presented in Tables 2 and 3.

5. The EM Algorithm was terminated when log L(�(k+1)) − log L(�(k)) was less than n × 10−5, see Seidel et al.
(2000).
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Note that L(�(k+1)) and L(�(k)) denote the values of the likelihood function evaluated at the (k + 1)th iteration
and the kth iteration, respectively.

From Tables 2 and 3, we see that in most of the considered cases, the mean square errors of the estimated parameters
decrease as n increases. The first 100 simulations of the estimates and their biases when � = (0.6, 1.0, 2.0, 2.0, 3.0)

are plotted in Figs. 5 and 6. The boxplot in Fig. 5 shows that among 100 simulated estimates there is just one outlier for
estimating �1 and two outliers for estimating �2. The probability plots in Figs. 6(a–e) show that the biases of estimates
follow normal distributions.

5. Conclusion

In this paper, the behaviors of the mode and median of the MTIWD are investigated, based on different choices of
the parameters. Also, the behaviors of the failure rate function are discussed through some different graphs. In addition,
the identifiability property of the MTIWD is proved. Further, the estimation of the unknown parameters is obtained
using the EM Algorithm. Finally, to investigate the performance of the estimation technique in the paper, a Monte Carlo
simulation based on 10 000 runs is carried out.
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