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Recently, a new distribution, called generalized exponential distribution (GED), has
been introduced and studied quite extensively by authors. The GED can be used
as an alternative to gamma and Weibull distributions in many situations. In this
article, we use the moments of order statistics from the GED derived by Raqab and
Ahsanullah (2001) and Raqab (2004) to develop the correlation goodness -of-fit test
for the GED. In addition, we calculate the power of the test based on some other
alternative distributions. Further, we construct approximate confidence intervals for
the location and scale parameters of the GED. Finally, we apply the procedures
developed in the paper to real data set.

Keywords Average width; BLUEs; Confidence intervals; Correlation coefficient;
Goodness-of-fit test; Monte Carlo simulation; Moments of order statistics;
Power of the test; Pivotal quantity.

Mathematics Subject Classification Primary 60E15; Secondary 62G32.

1. Introduction

Order statistics arise naturally in many real life applications involving data relating
to different files such as life testing and economics. Many authors have studied order
statistics and the associated inference. Among those are David (1981), David and
Nagaraja (2003), Balakrishnan and Cohen (1991), and Arnold et al. (1992). For an
extensive survey of moments of order statistics, we refer to Balakrishnan and Sultan
(1998).

The three-parameter GED has its probability density function (pdf) as

f�x� = �

�
�1− e−�x−��/���−1e−�x−��/�� x > �� � > 0� � > 0� � > 0� (1.1)

where �, �, and � are the shape, scale, and location parameters, respectively.
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The two-parameter pdf of the GED is given by

f�x� = �

�
�1− e−x/���−1e−x/�� x > 0� � > 0� � > 0� (1.2)

while the one-parameter case is given by

f�x� = ��1− e−x��−1e−x� x > 0� � > 0� � > 0� (1.3)

The GED was introduced by Gupta and Kundu (1999) as an alternative life
model for the gamma and Weibull distributions. They also discuss some theoretical
properties of the GED and compared them with respect to the well studied
properties of the gamma distribution and Weibull distribution. Finally, they
fitted real data set with all three distributions, namely three-parameter gamma,
three-parameter Weibull, and three-parameter GED. Gupta and Kundu (2003a)
have shown the closeness of gamma and generalized exponential distributions
based on different tests. Gupta and Kundu (2003b) have used the ratio of
the maximized likelihoods in discriminating between Weibull and generalized
exponential distributions while Gupta and Kundu (2004) have used the ratio of the
maximized likelihoods in choosing between a generalized exponential and a gamma
distributions. Raqab and Ahsanullah (2001) have calculated the coefficient of the
best linear estimates (BLUEs) of the location and scale parameters of the GED.

Goodness-of-fit tests are very important techniques for data analysis in the
sense of checking whether the given data fits the distributional assumptions of
the statistical model. A variety of goodness-of-tests are available in the literature
and recently there seems to be significant research on this topic, for more details,
see, D’Agostino and Stephens (1986) and Huber-Carol et al. (2002). Correlation
coefficient test is considered one of the easiest of such tests, that is because it is
only needs special tables introduce from Monte Carlo simulations. The correlation
coefficient test introduced by Filliben (1975) first for normal distributions and
updated later by Looney and Gulledge (1985) is one of such tests that requires
only tables introduced by Monte Carlo simulations. Among others, Kinnison (1985,
1989) used the correlation coefficient method to present tables for testing goodness-
of-fit to the extreme-value Type-I (Gumbel) and the extreme-value distribution,
respectively. Recently, Sultan (2001) has developed the correlation goodness-of-fit
to the logarithmically-decreasing survival distribution.

Let X1�n ≤ X2�n ≤ · · · ≤ Xn�n be the order statistics from the GED given in (1.3).
Then, the pdf of the rth order statistics is given by

fr�n�x� = Cr�n	F�x�

r−1	1− F�x�
n−rf�x�� 0 < x < �� (1.4)

where Cr�n = n!
�r−1�!�n−r�! . For more details see, David (1981), David and Nagaraja

(2003) and Arnold et al. (1992). Raqab and Ahsanullah (2001) have derived the first
single moments of the rth order statistics from the GED as

�r�n = Cr�n

n−r∑
i=0

�−1�i
(
n−r
i

)
i+ r

���1+ �i+ r��−��1�� (1.5)

where ��·� is the diagamma function defined by ��x� = d/dx�ln ��x��� x �= 0�
−1�−2� � � � (see Abramowitz and Stegun, 1972).
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The Generalized Exponential Distribution 1411

In Sec. 2, we develop the goodness of fit tests of the two-parameter and three-
parameter GED. Also, we calculate the power of the tests based on some alternative
distributions. In Sec. 3, we use the BLUEs to construct confidence intervals for
the location and scale parameters of the GED. Finally, in Sec. 4, we apply the
procedures developed in the article to real data set.

2. Goodness-of-Fit Test

In this section, we use the moments of order statistics given in (1.5) to develop
the correlation goodness-of-fit test for both two-parameter and three-parameter
GED. Also, we calculate the power of the test. In addition, we discuss some
numerical examples.

2.1. Test for the Two-Parameter Case

Let X1�n� X2�n� � � � � Xn−r�n denote a Type-II right-censored sample from the GED
given in (1.2), and let Zi�n = Xi�n/�� i = 1� 2� � � � � n− r, be the corresponding order
statistics from the one-parameter GED given in (1.3). Let us denote E�Zi�n� by �i�n,
then E�Xi�n� = ��i�n� i = 1� 2� � � � � n− r. The correlation-type goodness-of-fit test in
this case can be formed as

H0 � F is correct, that is X1� X2� � � � � Xn have GE�0� �� �� given in (1.2) versus�

H1 � F is not correct, that is X1� X2� � � � � Xn have another pdf�

and the statistic used to run the test is given by

T1 =
n−r∑
i=1

Xi�n�i�n

/√
n−r∑
i=1

X2
i�n

n−r∑
i=1

�2
i�n� (2.1)

this statistic represents the correlation between Xi�n and �i�n� i = 1� 2� � � � � n− r. By
using the moments �i�n� i = 1� 2� � � � � n− r given in (1.5), the statistic T1 is simulated
through Monte Carlo method based on 10,000 simulations. Table 1 represents the
percentage points of T1 for sample sizes n = 10� 20� 25, different censoring ratios
p = n−r

n
and � = 0�5� 2.

As we can see from Table 1, the percentage points of T1 increase as the
sample size increases as well as the significance level increases for censoring ratios
p= 1�0� 0�8.

2.2. Test for the Three-Parameter Case

Let X1�n� X2�n� � � � � Xn−r�n denote a Type-II right-censored sample from the
distribution in (1.1), and let Zi = Xi+1�n − X1�n and �i = �i+1�n − �1�n� i= 1� 2� � � � � n−
r − 1, where �i�n be the corresponding moments of order statistics from the one-
parameter GED given in (1.3). The correlation-type goodness-of-fit test in this case
can be formed as

H0 � F is correct, that is X1� X2� � � � � Xn have GE��� �� �� given in (1.1) versus�

H1 � F is not correct, that is X1� X2� � � � � Xn have another pdf�
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Table 1
Percentage points of T1

� p n 0�5% 1% 2% 2�5% 5% 10% 20% 30% 40% 50%

0.5 1.0 10 .8667 .8805 .8980 .9038 .9210 .9384 .9547 .9637 .9702 .9756
20 .8877 .8997 .9165 .9217 .9368 .9510 .9650 .9723 .9775 .9814
25 .8857 .9082 .9244 .9299 .9447 .9571 .9688 .9753 .9799 .9834

0.8 10 .8494 .8743 .8967 .9034 .9237 .9409 .9578 .9669 .9734 .9784
20 .9040 .9200 .9336 .9394 .9527 .9643 .9746 .9801 .9839 .9867
25 .9192 .9331 .9464 .9497 .9609 .9707 .9789 .9833 .9863 .9886

2.0 1.0 10 .9028 .9207 .9353 .9408 .9538 .9645 .9741 .9796 .9833 .9861
20 .9318 .9432 .9544 .9584 .9676 .9758 .9826 .9861 .9887 .9906
25 .9362 .9460 .9593 .9627 .9718 .9787 .9847 .9879 .9900 .9916

0.8 10 .9272 .9411 .9530 .9563 .9656 .9740 .9808 .9847 .9874 .9895
20 .9641 .9695 .9743 .9756 .9808 .9852 .9891 .9912 .9927 .9938
25 .9718 .9751 .9793 .9805 .9844 .9879 .9911 .9928 .9940 .9950

and the statistic used to run the test is given by

T2 =
n−r−1∑
i=1

�Zi���i�

/√√√√n−r−1∑
i=1

Z2
i

n−r−1∑
i=1

�2i � (2.2)

this statistic represents the correlation between Zi and �i� i = 1� 2� � � � � n− r.
Once again by using the moments �i�n� i = 1� 2� � � � � n− r given in (1.5), the

statistic T2 is simulated through Monte Carlo method based on 10,000 simulations.
Table 2 represents the percentage points of T2 for sample sizes n = 10� 20� 25 and
different censoring ratios p = 1�0� 0�8.

Table 2
Percentage points of T2

� p n 0�5% 1% 2% 2�5% 5% 10% 20% 30% 40% 50%

0.5 1.0 10 .8706 .8851 .8971 .9015 .9188 .9359 .9532 .9635 .9702 .9756
20 .8782 .8976 .9151 .9213 .9368 .9514 .9646 .9722 .9773 .9814
25 .8905 .9063 .9229 .9278 .9433 .9568 .9689 .9752 .9797 .9832

0.8 10 .8439 .8694 .8948 .9019 .9229 .9419 .9586 .9673 .9735 .9783
20 .8924 .9149 .9318 .9360 .9498 .9627 .9740 .9796 .9836 .9865
25 .9181 .9299 .9442 .9483 .9614 .9703 .9789 .9837 .9866 .9889

2.0 1.0 10 .8972 .9101 .9259 .9311 .9452 .9578 .9691 .9755 .9800 .9833
20 .9129 .9292 .9450 .9496 .9617 .9714 .9793 .9836 .9865 .9888
25 .9210 .9376 .9527 .9566 .9668 .9748 .9821 .9859 .9885 .9903

0.8 10 .9019 .9186 .9340 .9384 .9505 .9628 .9736 .9790 .9831 .9860
20 .9491 .9571 .9650 .9676 .9743 .9807 .9860 .9890 .9907 .9923
25 .9639 .9688 .9733 .9752 .9801 .9847 .9888 .9911 .9926 .9938
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The Generalized Exponential Distribution 1413

From Table 2, we see that, the percentage points of T2 increase as the
sample size increases as well as the significance level increases for censoring ratios
p= 1�0� 0�8.

2.3. Power of the Test

We calculate the power of the test by replacing the GE��� �� �� random
variates generator in the simulation program with generators from the alternative
distributions including: normal, lognormal, Cauchy, Weibull, and gamma. Based on
different sample sizes, different censoring ratios and 10,000 simulations, the power
is calculated to be

Power = # of rejection of H0

10� 000
�

where H0 is rejected if T1�T2� ≥ the corresponding percentage points given in Table 1
(Table 2), and T1�T2� is evaluated from the alternative distributions.

Tables 3 and 4 represent the power of the test for the two-parameter and three-
parameter cases, respectively. The different alternative distributions considered are:
(i) normal distribution N��� ��; (ii) lognormal Ln��� ��, (iii) Weibull distribution
with shape a, scale parameter �, and location parameter �, W��� �� a�; (iv) gamma
distribution with shape parameter k, scale parameter �, and location parameter
�, G��� �� k�; and (v) Cauchy distribution with scale parameter � and location
parameter �, C��� ��.

Tables 3 and 4 indicate that the correlation test has good power to reject sample
from the chosen alternative distributions. Also, the power increases as the sample
sizes increase for all given censoring ratios p = 1�0 and 0.8 as well as the significance
level increases.

Table 3
Power of the test of the two-parameter case (� = 1)

N�0� 1� W�0� 1� 3� G�0� 1� 7�

� p n 5% 10% 5% 10% 5% 10%

0.5 1.0 10 �9580 �9748 �9875 �9977 �9647 �9897
20 �9972 �9989 1�0000 1�0000 �9997 1�0000
25 �9995 �9998 1�0000 1�0000 1�0000 1�0000

0.8 10 �9877 �9921 �9267 �9800 �9520 �9894
20 �9999 1�0000 �9999 1�0000 1�0000 1�0000
25 1�0000 1�0000 1�0000 1�0000 1�0000 1�0000

2.0 1.0 10 �9923 �9958 �3903 �6218 �3149 �5225
20 �9999 1�0000 �8241 �9470 �6717 �8609
25 1�0000 1�0000 �9307 �9849 �8065 �9311

0.8 10 �9987 �9993 �2128 �4033 �2482 �4587
20 1�0000 1�0000 �6321 �7952 �7170 �8661
25 1�0000 1�0000 �7775 �8929 �8721 �9502



D
ow

nl
oa

de
d 

By
: [

Su
lta

n,
 K

ha
la

f S
.] 

At
: 1

4:
58

 2
4 

M
ay

 2
00

7 

1414 Sultan

Table 4
Power of the test of the three-parameter case � = 0�0� � = 1�0

LN�1� 5� W�0� 1� 6� C�0� 1�

� p n 5% 10% 5% 10% 5% 10%

0.5 1.0 10 �7530 �8280 .7588 .8650 .6569 .7327
20 �9567 �9785 .9909 .9975 .8997 .9392
25 �9827 �9914 .9987 .9995 .9427 .9712

0.8 10 �6001 �6962 .4455 .6357 .7174 .8059
20 �8964 �9338 .9361 .9748 .9787 .9881
25 �9521 �9728 .9857 .9949 .9943 .9969

2.0 1.0 10 �9768 �9872 .2860 .4549 .5864 .6772
20 1�0000 1�0000 .7241 .8550 .8587 .9117
25 1�0000 1�0000 .8272 .9195 .9172 .9523

0.8 10 �9362 �9626 .1036 .2076 .4897 .5928
20 �9993 �9998 .4363 .5742 .8760 .9155
25 1�0000 1�0000 .5712 .6961 .9442 .9630

2.4. Numerical Examples

In order to show the performance of the test of GED in both cases (two-parameter
and three-parameter), we simulate four sets of order statistics each of size 25; they
are:

1. Sample from GE�0� 1� 2�: two-parameter case of the GED with scale parameter
is equal to 1 and shape parameter is equal to 2.

2. Sample from GE�1� 1� 2�: three-parameter case of the GED with location
parameter is equal to 1, scale parameter is equal to 1 and shape parameter is
equal to 2.

3. Sample from G�0� 2� 10�: gamma distribution with location parameter is equal
to 0 and scale parameter is equal to 2 and shape parameter is equal to 10.

4. Sample from G�2� 2� 10�: gamma distribution with location parameter is equal
to 2, scale parameter is equal to 2 and shape parameter is equal to 10.

The above four order statistics samples with the analogous moments of order
statistics from GE�0� 1� 2� are used to run the test. The results of the test at 5%
significance level and at � = 2 (whether accept (A) or reject (R) H0) are given for
different values of censoring ratios in the following table

Decision

p GE(0,1,2) GE(1,1,2) G(0,2,10) G(2,2,10)

1.0 A A R R
.8 A A R R

3. Approximate Inference

By using the BLUE of � given in Balakrishnan and Cohen (1991), we construct
confidence intervals for the scale parameter � of the two-parameter GED through
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The Generalized Exponential Distribution 1415

the pivotal quantity

P = �∗

�
√
V
� (3.1)

where, �∗ is the BLUE of the scale parameter � and �2V is the corresponding
variance.

Once again, by using the BLUEs of the location and scale parameters of
the three-parameter GED given in Balakrishnan and Cohen (1991), we calculate
confidence intervals of the location and scale parameters of the three-parameter
GED by using the following pivotal quantities

R1 =
�∗ − �

�
√
V1

� R2 =
�∗ − �

�
√
V2

� and R3 =
�∗ − �

�∗√V1

� (3.2)

where �∗ and �∗ are the BLUE’s of � and � with variances �2V1 and �2V2,
respectively. R1 can be used to draw inference for � when � is known, while R3 can
be used to draw inference for � when � is unknown. Similarly, R2 can be used to
draw inference for � when � is unknown.

Tables (5–7) show the lower and upper 1%, 2.5%, 5% and 10% percentage
points of R1 and R2 through Monte Carlo Simulations (based on 10,000 runs). The
performance of the developed inference can be shown from the simulated average
width of the confidence intervals given in Table 8. The following example shows the
usefulness of the approximate inference in this section.

1. In this example, we calculate the BLUEs and their variances of the location and
scale parameters of the three-parameter GED when � = 2�0� r = 0� n= 10� 20� 25.
Then by using the percentage points presented in Table 5, we construct 95%
confidence intervals for � (when � is known to be 1 and � = 2�0) as follows:

P��∗ − �
√
V1�R1�1−�/2 ≤ � ≤ �∗ − �

√
V1R1�1−�/2 = 1− ��

where �V1 is the variance of R1

n 10 20 25

C.I (−�538, .389) (−�327, .228) (−�278, .197)

Table 5
Simulated values of the distribution of R1 when � = 0�0 and � = 1�0

� n 1% 2�5% 5% 10% 90% 95% 97�5% 99%

0.5 10 −1.591 −1.061 −�854 −�679 �886 1.729 2.764 4.163
20 −1.861 −1.111 −�833 −�653 �853 1.671 2.834 4.133
25 −2.635 −1.404 −1�043 −�738 �807 1.638 2.644 4.268

2.0 10 −2.103 −1.650 −1�448 −1�174 1�317 1.832 2.292 2.863
20 −2.006 −1.629 −1�415 −1�167 1�349 1.837 2.290 2.808
25 −1.998 −1.624 −1�425 −1�188 1�340 1.839 2.297 2.852
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Table 6
Simulated values of the distribution of R2 when � = 0�0 and � = 1�0

� n 1% 2�5% 5% 10% 90% 95% 97�5% 99%

0.5 10 −1.695 −1.519 −1.363 −1.151 1.340 1.815 2.306 2.955
20 −1.868 −1.655 −1.461 −1.199 1.325 1.777 2.210 2.682
25 −1.925 −1.676 −1.475 −1.212 1.306 1.786 2.234 2.763

2.0 10 −1.896 −1.698 −1.472 −1.187 1.345 1.775 2.234 2.701
20 −2.047 −1.784 −1.535 −1.233 1.322 1.719 2.084 2.578
25 −2.090 −1.799 −1.528 −1.240 1.318 1.748 2.154 2.627

Table 7
Simulated values of the distribution of R3 when � = 0�0 and � = 1�0

� n 1% 2�5% 5% 10% 90% 95% 97�5% 99%

0.5 10 −�984 −�831 −�713 −�591 .966 1.967 3.076 4.851
20 −1�341 −1�024 −�806 −�616 .876 1.767 2.797 4.384
25 −1�922 −1�333 −1�010 −�730 .832 1.700 2.808 4.419

2.0 10 −1�312 −1�219 −1�125 −�985 1.711 2.595 3.416 4.620
20 −1�462 −1�351 −1�220 −1�049 1.560 2.239 2.884 3.702
25 −1�524 −1�387 −1�247 −1�077 1.521 2.180 2.780 3.674

Table 8
Average width of the C.I.’s when � = 0�0 and � = 1�0

R1 R2 R3

� n 90% 95% 90% 95% 90% 95%

0.5 10 0.760 0.112 1.914 2.473 0.079 0.115
20 0.021 0.033 1.169 1.440 0.022 0.032
25 0.015 0.022 1.010 1.232 0.015 0.023

2.0 10 0.771 0.927 1.079 1.355 0.879 1.095
20 0.460 0.555 0.676 0.820 0.490 0.600
25 0.395 0.475 0.588 0.719 0.416 0.505

2. Similarly, by using the BLUEs and their variances given the above example,
and the percentage points of R2 given in Table 6, we construct 95% confidence
intervals for �, through the formula

P

(
�∗

1+√
V2�R2�1−�/2

≤ � ≤ �∗

1+√
V2�R2��/2

)
= 1− ��

and they are as follows:

n 10 20 25

C.I (.607, 1.955) (.711, 1.529) (.729, 1.447)
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The Generalized Exponential Distribution 1417

3. In the case when � in unknown, we replace it by �∗ and by using the BLUEs
given in the above two examples, we determined the 95% confidence intervals for
� through the following formula

P��∗ − �∗√V1�R3�1−�/2 ≤ � ≤ �∗ − �∗√V1�R3��/2� = 1− ��

n 10 20 25

C.I (−�802, .287) (−�410, .188) ( −�336, .169)

4. Applications

In this section, we discuss two applications, the first is goodness-of-fit test of real
data set from (Lawless, 1982, p. 28). The second application is to obtain the BLUE
of the scale parameter of the GED and use it to construct confidence interval.

1. The data given arose in tests on endurance of deep groove ball bearings.
The data are the number of million revolutions before failure for each of the 23
ball bearings in life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80,
51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12,
105.84,127.92, 128.04, 173.40. Gupta and Kundu (2004) have obtained the MLEs
of the shape and scale parameter as �̂ = 5�2589 and �̂ = 31�85. For the purpose of
using our test to the above lifetime data, we need to the moments of order statistics
�i�23� i = 1� 2� � � � � 23 from the GE. These moments are calculated from (1.5) when
� = 5�2589 as: 0.7273, 0.9408, 1.9500, 1.2255, 1.3437, 1.4551, 1.5628, 1.6689, 1.7750,
1.8826, 1.9928, 2.1072, 2.2271, 2.3544, 2.4913, 2.6407, 2.8068, 2.9956, 3.2168, 3.4871,
3.8399, 4.3587, 5.376. Then by using the above moments and data life, we calculate
T1 and T2 as follows:

Statistic Calculated Simulated

T1 0.9984 0.9817
T2 0.9975 0.9695

As we can see, the GE distribution fits the data at 5%. So, we recommend the two-
parameter GED for the given data.

2. The coefficients of the BLUE of the scale parameter �, when � = 1 and
�= 5�2589 are: calculated to be:

0.03028, 0.02846, 0.02730, 0.02636, 0.02554, 0.02479, 0.02408, 0.02341, 0.02276,
0.02212, 0.02149, 0.02087, 0.02024, 0.01961, 0.01897, 0.01831, 0.01762, 0.01692,
0.01617, 0.01537, 0.01449, 0.01350, 0.01226. Then the BLUE of � is calculated to be
�∗ = 30�8658 with variance Var��∗� = 0�01147.

Next, by using the BLUE �∗ = 30�8658 and Var��∗� = 0�01147 = V , we can
obtain a confidence interval for � by simulating the percentage points of the pivotal
quantity (3.1) (10,000 runs when n = 23 and � = 1) to get

1% 2�5% 5% 10% 90% 95% 97�5% 99%

7.2580 7.5249 7.7767 8.1002 10.6344 11.0228 11.3205 11.8116
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and 95% confidence intervals of � is calculated as(
�∗

11�3205
√
V
�

�∗

7�5249
√
V

)
= �25�4583� 38�2997��
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