Chapter 6: Simulation Using Spread-Sheets (Excel)

Refer to Reading Assignments

Excel User-Defined Inverse functions:

- The User should define the inverse function for given CDF
- Define Excel cells by the defined inverse function using RAND().
- For fixable simulation use separate cells for parameters

Excel User-Defined Inverse functions:

• Continuous Uniform (*a*,*b*)

= a + (b - a) * RAND()

- Discrete Uniform (a,b)= a + INT((b - a + 1) * RAND())
- Bernoulli(p)

= IF(RAND() <= p, 1, 0)

• Geometric (*p*)

= 1 + INT(LN (1 - RAND())/L

Exponential (λ)

 $= -(1/\lambda) LN (1 - RAND())$

Excel Built-In Inverse functions:

- Excel has a number of important Built-In inverse functions.
- Usually, the name of inverse in Excel ends with .INV
- The user must be careful when in using any of the Built-In inverse:
 - Read help of the function
 - Understand the definition of the parameters
- User can apply RAND() in the inverse function .INV directly

Excel Built-In Inverse functions:

Examples

- NORM.INV(U, mean, standard deviation)
 - NORM.INV(RAND(), 3, 1) ~ N(3,1)
- BINOM.INV(#trials, p, U)
 - BINOM.INV(6, 0.5, RAND()) ~ Binomial(n=6,p=0.5)
- $U(a,b) \sim a + (b-a)*RAND()$
 - U(3,8) ~ 3 + (5) RAND()
- EXPO(mean) ~ -mean*LN(1-RAND())
 - $Exp(\lambda=10) \sim -0.1*LN(1-RAND())$

	A	В	С	D	E
1					Formula
2	Uniform(0,1)			0.845009617	=RAND()
3		min	max		
4	Discrete Uniform(min,max)	3	10	8	=RANDBETWEEN(B5,C5)
5		min	max		
6	Uniform(min,max)	4	20	18.66724518	=B7+(C7-B7)*RAND()
7			р		
8	Bernoulli(p)		0.7	1	=IF(RAND()<=C9,1,0)
9			р		
10	Geometric(p)		0.3	2	=1+INT(LN(1-RAND())/LN(1-C11))
11			mean		
12	Exponential(mean)		5	4.359013352	=-C13*LN(1-RAND())
13		scale	shape		
14	Weibull(scale, shape)	5	3	3.975532185	=B15*POWER(-LN(1-RAND()),1/C15)
15		alpha1	alpha2		
16	Beta(alpha1, alpha2)	5	1.5	0.807041407	=BETAINV(RAND(),B17,C17)
17			DF		
18	ChiSquare		5	14.12091438	=CHIINV(RAND(),C19)
19		scale	shape		
20	Gamma(scale,shape)	2	10	19.06188666	=GAMMAINV(RAND(),C21,B21)
21		mean	std dev		
22		5	3		
23	Lognormal(mean, std dev)	1.455695563	0.554513	5.012218975	=LOGINV(RAND(),B24,C24)
24		mean	std dev		
25	Normal(mean, std dev)	10	2	10.50135199	=NORMINV(RAND(),B25,C25)

Simulation from Discrete Distributions

Given a random variable X with P{X=x} and CDF
 P{X≤x}

0.3	0.2	0.1
	0.3 0.7	0.3 0.2 0.7 0.9

- Direct simulation way: use the IF statement In each cell
- Do it now...

Simulation from Discrete Distributions

- Better way: use the VLOOKUP function
- The VLOOKUP cell function provides an easy way to implement the inverse transform method for discrete distributions.
- Organize data associated with distribution in a special way to take advantage of VLOOKUP functionality

Simulation from Discrete Distributions

• Form the following table in Excel

	A8		=VLOOK	UP(RAND()	,B3:D6,3
	A	В	С	D	E
1					
2	PMF	LR	CDF	X	
3	0.4	0	0.4	1	
4	0.3	0.4	0.7	2	
5	0.2	0.7	0.9	3	
6	0.1	0.9	1	4	
7					

Simulation from Discrete Distributions

	A8	• t	S =VLOOK	UP(RAND()	,B3:D6,3
	A	В	C	D	E
1					
2	PMF	LR	CDF	X	
3	0.4	0	0.4	1	
4	0.3	0.4	0.7	2	
5	0.2	0.7	0.9	3	
6	0.1	0.9	1	4	
7					

- The column LR is the lower limit on the range for the value.
- The column CDF specifies the upper range
- For example, if the random number *U* falls between (0, 0.4), then the *X* is set to 1.
- The column X should contain the possible values for the random variable.

Simulation from Discrete Distributions

	A8	• ;	€ =VLOOK	=VLOOKUP(RAND(),B3:D6		
	A	В	C	D	E	
1						
2	PMF	LR	CDF	X		
3	0.4	0	0.4	1		
4	0.3	0.4	0.7	2		
5	0.2	0.7	0.9	3		
6	0.1	0.9	1	4		
7						

- Use the following:
 = VLOOKUP(RAND()), Cell-Range, 3)
- Cell Range is the range for the LR-X columns. In the example, Cell Range is B3:D6.
- The function will looked up RAND() in the table's first column (of Cell Range) and the corresponding value from the third column (the 3 in the formula) is returned.
- VLOOKUP works event when the X column doesn't have to have numbers
 11 CR 441 K. Nowibet

- A data table is a range of cells that shows how changing one or two variables in your formula will affect the results of those formulas.
- Data tables provide a shortcut for calculating multiple results in one operation and a way to view and compare the results of all the different variations together on your sheet.
- Search on Data Tables in Help to see detailed overview of their setup and use.

Example:

- Make a column to count the replications.
 Column F is used in this example.
- 2. Make a cell that you want repeated.Cell A8 is used in this example.
- 3. Tie the data table to the cell that needs repeating by setting the cell above and to the right of the 1st replication equal to the cell to be repeated.
 - In this example Cell G4 is set equal to cell A8.
- 4. Select the cells that are to form the data table.
 - In this example, the cells in the range F4:G24 are the required cells.

Example:

- From the spreadsheet menu invoke the data table functionality. This is Data ⇒ What- IF ⇒ Data Table.
 - A confusing dialog box will appear asking for a row input cell and a column input cell. Since the table is column oriented, we only need the column input cell.
- 6. Enter any blank cell in for the Column input cell.
 - Cell F4 was chosen as the input cell in this example.
 - Leave the Row input cell blank. Select the OK button.

Example:

- From the spreadsheet menu invoke the data table functionality. This is Data ⇒ What- IF ⇒ Data Table.
 - A dialog box will appear asking for a row input cell and a column input cell. Since the table is column oriented, we only need the column input cell.
- 6. Enter any blank cell in for the Column input cell.
 - Cell F4 was chosen as the input cell in this example.
 - Leave the Row input cell blank. Select the OK button.

