Chapter 5:
 Generating Random Numbers from Distributions

Refer to readings

Review

Inverse Transform

- Generate a number \mathbf{u}_{i} between 0 and 1 (one U-axis) and then find the corresponding \mathbf{x}_{i} coordinate by using $\mathbf{F}^{-1}(\cdot)$.
- One-to-one mapping between \mathbf{u}_{i} and \mathbf{x}_{i}. Continuous Distributions
- General PDF
- Exponential (λ)
- Uniform (a,b)
- Weibull Distribution

Discrete Distributions

- General PMF
- Bernoulli (p)
- Binomial (n,p)
- Geometric (p)

3. Convolution Generation

- Using random variables related to each other through some functional relationship.
- The convolution relationship:

The distribution of the sum of two or more random variables is called the convolution. Let $Y_{i} \sim G(y)$ be IID random variables.

$$
X=\sum_{i=1}^{n} Y_{i}
$$

Then the distribution of X is said to be the convolution of Y.

3. Convolution Generation

Some common random variables with convolution:

- Binomial Variable $=\sum$ iid Bernoulli variables
- Negative Binomial $=\Sigma$ iid Geometric variables
- Erlang Variable $=\Sigma$ iid Exponential variables.
- Normal Variable $=\Sigma$ iid other Normal variables.
- Chi-squared Variable $=\Sigma$ iid Squared normal variables.

3. Convolution Generation

The Convolution Algorithm:

1. simply generates $Y_{i} \sim G(y)$
2. sum the generated random variables.
3. The result is the needed variable.

Example
Generate a random variable from Erlang
Distribution with parameters r and λ.

3. Convolution Generation

Example

Generate a random variable X from Erlang
Distribution with parameters r and λ.
From Probability theory:
Erlang Variable X with parameters (r, λ)
$=\Sigma_{\boldsymbol{r}}$ iid Exponential variables with parameter λ.
Then, generate \boldsymbol{r} nubers: Y_{i} exponentially distributed with rate parameter λ. Then add them to get one value of Erlang distribution

3. Convolution Generation

Example

Generate a random variate from an Erlang distribution having parameters $r=3$ and $\lambda=0.5$ using the following pseudorandom numbers

$$
u_{1}=0.35, u_{2}=0.64, \text { and } u_{3}=0.14,
$$

Then, $\mathrm{X} \sim \operatorname{Erlang}(r=3, \lambda=0.5)$

$$
X=Y_{1}+Y_{2}+Y_{3}
$$

With $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{Y}_{3}$ are all IID exponentially distributed with parameter λ.

3. Convolution Generation

Example

$$
X=Y_{1}+Y_{2}+Y_{3}
$$

For Y_{i} exponential with parameter $\lambda=0.5$

$$
Y=-\frac{1}{\lambda} \ln (1-u)
$$

- $u_{1}=0.35 \rightarrow Y_{1}=-\frac{1}{0.5} \ln (1-0.35)=0.8616$
- $u_{2}=0.64 \rightarrow Y_{2}=-\frac{1}{0.5} \ln (1-0.65)=2.0433$
- $u_{3}=0.14 \rightarrow Y_{3}=-\frac{1}{0.5} \ln (1-0.14)=0.3016$
$X=Y_{1}+Y_{2}+Y_{3}=0.8616+2.0433+0.3016=3.2065$

3. Convolution Generation

Generating from a Poisson Distribution:

Let $\mathrm{X}(\mathrm{t})$ represent the number of events happened in an interval of length t, where t is measured in hours. Suppose X(t) has a Poisson distribution with mean rate λ event per hour.

$$
\begin{aligned}
P\{X=x\} & =\frac{e^{-\lambda} \lambda^{x}}{x!} \quad \lambda>0, \quad x=0,1, \ldots \\
\mathrm{E}[X] & =\lambda \\
\operatorname{Var}[X] & =\lambda
\end{aligned}
$$

We need to generate number of events in one hour

3. Convolution Generation

Generating from a Poisson Distribution:

From probability theory
If $\mathrm{X}(\mathrm{t})$ number of events with Poisson distribution λ event per hour, then the time between two events is exponential with rate λ

- Let $\mathrm{T}_{i}=$ is the time between event (i) and $(i-1)$ Then $\mathrm{T}_{i} \sim \operatorname{Exp}(\lambda)$
- Let $\mathrm{A}_{k}=$ is the occurrence time of event (k)

3. Convolution Generation

Generating from a Poisson Distribution:

This means that

- Event \#1 happened at time $A_{1}=T_{1}$
- Event \#2 happened at time $\mathrm{A}_{2}=\mathrm{T}_{1}+\mathrm{T}_{2}$
- Event \#3 happened at time $A_{3}=T_{1}+T_{2}+T_{3}$
- Event \#4 happened at time $\mathrm{A}_{4}=\mathrm{T}_{1}+\mathrm{T}_{2}+\mathrm{T}_{3}+\mathrm{T}_{4}$

$$
A_{k}=\sum_{i=1}^{k} T_{i}
$$

- Then $\mathrm{A}_{k}=$ is Erlang distributed with $r=k$ and λ
- To generate number of events in one hour, generate $\mathrm{A}_{\boldsymbol{k}}$ until you reach $\mathrm{A}_{\boldsymbol{k}}>\mathbf{1}$ hour

3. Convolution Generation

Generating from a Poisson Distribution:

Example:
Let $X(t)$ represent the number of customers that arrive to a bank in an interval of length t, where t is measured in hours. Suppose $X(t)$ has a Poisson distribution with mean rate $\lambda=4$ per hour. Generate the number of arrivals in 2 hours.

- Because the time between events T will have an exponential distribution with mean $0.25=1 / \lambda$. We generate exponential values and some them.

3. Convolution Generation

Generating from a Poisson Distribution:

Example:

$$
\begin{aligned}
& T_{i}=\frac{-1}{\lambda} \ln \left(1-u_{i}\right)=-0.25 \ln \left(1-u_{i}\right) \\
& A_{i}=\sum_{k=1}^{i} T_{k}
\end{aligned}
$$

we can compute T_{i} and A_{i} until A_{i} goes over 2 hours.

Total
number of arrivals in 2 hours

i	u_{i}	T_{i}	A_{i}	
1	0.971	0.881		
2	0.687	0.290	0.881	
3	0.314	0.094	1.171	
4	0.752	0.349	1.265	The arrival of last 5
	0.830	0.443	$1.614 \longrightarrow$customer before 2 hours	

Since the fifth arrival occurs after 2 hours, $X(2)=4$

4. Acceptance/Rejection Method

- We need to get a sample from density function (PDF), $f(x)$
- The probability density function (PDF), $f(x)$, is complicated or has no closed form for CDF.

Idea:

- Replace $f(x)$ by a simple PDF, $w(x)$, which can be sampled from more easily.
- $w(x)$ is based on the development of a majorizing function for $f(x)$.

4. Acceptance/Rejection Method

- A majorizing function, $g(x)$, for $f(x)$, is a function such that $g(x) \geq f(x)$ for $-\infty<x<+\infty$

Figure 2.5 Illustration of a majorizing function.

4. Acceptance/Rejection Method

- Transform the majorizing function, $g(x)$, to a density function
- majorizing function for $f(x), g(x)$ must have finite area,

$$
c=\int_{-\infty}^{+\infty} g(x) d x
$$

If $w(x)$ is defined as $w(x)=g(x) / c$, then $\boldsymbol{w}(x)$ will be a PDF
K. Nowibet

4. Acceptance/Rejection Method

The acceptance-rejection method for $f(x)$:

- start by obtaining a random number W from a simple function $w(x)$.
- $w(x)$ should be chosen to be easily sampled, for example, via the inverse transform method.
- Let $U \sim U(0,1)$ and check if

$$
\frac{f(W)}{g(W)} \geq U
$$

Then $\mathrm{W} \sim f(x)$

- Continue sampling of U and W until the condition is satisfied

4. Acceptance/Rejection Method

EXAMPLE 2.12 Acceptance-Rejection Method

Consider the following PDF over the range $[-1,1]$. Develop an acceptance/rejectionbased algorithm for $f(x)$.

$$
f(x)= \begin{cases}\frac{3}{4}\left(1-x^{2}\right) & -1 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$


```
Start
choosing a simple function
g(x) so that:
g(x)>f(x) for all }x\in[-1,1
Let \(g(x)\) be the \(\max f(x)\)
```


Then

```
\(\mathrm{g}(\mathrm{x})=\max \{\mathrm{f}(\mathrm{x})\}=3 / 4\)
```


4. Acceptance/Rejection Method

$$
\begin{gathered}
c=\int_{-1}^{1} g(x) d x=\int_{-1}^{1} \frac{3}{4} d x=\frac{3}{2} \\
w(x)= \begin{cases}\frac{1}{2} & -1 \leq x \leq 1 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Second

Find the constant \boldsymbol{c} that makes the function $g(x)$ a pdf function for all x between $[-1,1]$, by integration $g(x)$ for all $\mathrm{x} \in[-1,1]$
Then
$\mathrm{w}(\mathrm{x})=\mathrm{g}(\mathrm{x}) / \boldsymbol{c}$

Third

Using U[0, 1]: Generate \mathbf{W} from $\mathrm{w}(x)$ and use it for $f(\mathbf{W})$ and $g(\mathbf{W})$

Last

Decide using new U:

$$
\text { Accept } \rightarrow \text { if } f(\mathbf{W}) / g(\mathbf{W}) \geq \mathbf{U}_{\text {new }}
$$

or
Reject \rightarrow if $f(\mathbf{W}) / g(\mathbf{W})<\mathrm{U}_{\text {new }}$

4. Acceptance/Rejection Method

\mathbf{n}	$\mathbf{U 1}$	\mathbf{W}	$\mathbf{f}(\mathbf{W})$	$\mathbf{U 2}$	$\mathbf{g}(\mathbf{W})$	$\mathbf{f (W)} \mathbf{g}(\mathbf{W})$	Acc./Rej.	
1	0.622	0.243	0.706	0.311	0.75	0.941	Accept	$\mathrm{W} \sim f(x)$
2	0.943	0.885	0.162	0.964	0.75	0.216	Reject	No
3	0.851	0.702	0.381	0.827	0.75	0.508	Reject	No
4	0.592	0.183	0.725	0.186	0.75	0.966	Accept	$\mathrm{W} \sim f(x)$
5	0.084	-0.833	0.230	0.165	0.75	0.307	Accept	$\mathrm{W} \sim f(x)$
6	0.936	0.873	0.179	0.684	0.75	0.238	Reject	No
7	0.016	-0.969	0.046	0.768	0.75	0.062	Reject	No
8	0.219	-0.562	0.513	0.667	0.75	0.685	Accept	$\mathrm{W} \sim f(x)$
9	0.091	-0.818	0.248	0.257	0.75	0.331	Accept	$\mathrm{W} \sim f(x)$
10	0.238	-0.524	0.544	0.280	0.75	0.725	Accept	$\mathrm{W} \sim f(x)$
11	0.057	-0.886	0.162	0.318	0.75	0.215	Reject	No
12	0.236	-0.528	0.541	0.270	0.75	0.721	Accept	$\mathrm{W} \sim f(x)$
13	0.119	-0.762	0.315	0.890	0.75	0.419	Reject	No
14	0.375	-0.250	0.703	0.163	0.75	0.938	Accept	$\mathrm{W} \sim f(x)$
15	0.012	-0.976	0.035	0.685	0.75	0.047	Reject	No
16	0.664	0.328	0.669	0.904	0.75	0.892	Reject	No
17	0.375	-0.249	0.703	0.015	0.75	0.938	Accept	$\mathrm{W} \sim f(x)$
18	0.126	-0.749	0.330	0.776	0.75	0.439	Reject	No
19	0.550	0.100	0.742	0.395	0.75	0.990	Accept	$\mathrm{W} \sim f(x)$
20	0.868	0.736	0.343	0.570	0.75	0.458	Reject	No

4. Acceptance/Rejection Method

- Quiz

Consider the following pdf

$$
f(x)=\frac{1}{32}\left(8-x^{3}\right) ; \quad-2 \leq x \leq 2
$$

Use Acceptance/Rejection method to generate random numbers using

\mathbf{n}	U 1	W	$\mathbf{f}(\mathbf{W})$	U 2	$\mathbf{g}(\mathbf{W})$	$\mathbf{f}(\mathrm{W}) / \mathbf{g}(\mathbf{W})$	Acc./Rej.	
1	0.622			0.311				
2	0.943			0.964				
3	0.851			0.827				
4	0.592			0.186				
5	0.084			0.165				

4. Acceptance/Rejection Method

Best choices of majorizing function $g(x)$

- Always choose the function $\mathrm{g}(\mathrm{x})$ to be simple to generate from using inverse transform
- Always choose the function $g(x)$ to reduce rejection rate

