Chapter 2: Introduction to Simulation Modeling

Refer to Text Book:

- "Operations Research: Applications and Algorithms" By Wayne L. Winston, Ch. 21
- "Operations Research: An Introduction" By Hamdi Taha, Ch. 16

6. Advantages/Disadvantages

Advantages

- 1. Simpler than mathematical model and straight forward.
- 2. Flexibility to model things as they are (even if messy and complicated) with less simplifying assumptions in modeling
- 3. Allows uncertainty, non-stationary modeling
- 4. Many advances in simulation software always fast and give more power to simulation
- 5. Good tool for "what if" analysis once the model is built.

6. Advantages/Disadvantages

Disadvantages

- 1. Don't get exact answers, only approximations, estimates are needed
- 2. Statistical design is needed which is different from expert to expert because of the statistical design of experiment.
- 3. Analysis of simulation experiments takes time and expertise
- 4. Programming based, so it is different from progaramer to programmer and takes time for any modification or changes
- 5. It is not an optimizing technique

Definition

A *system* is a set of components/ elements that uses a specific inputs and work together towards a common goal/outputs.

System Contents:

- 1. System Inputs
- 2. System Components/Elements
- 3. System Outputs
- 4. System Environment/ Boundary

- Examples of Systems
- 1. Manufacturing system
- 2. Transportation system
- 3. Health-Care system
- 4. Service system (Bank)

Find System Contents:

- 1. System Inputs
- 2. System Components/Elements
- 3. System Outputs
- 4. System Environment/ Boundary

Definition

The *state* of a system is the collection of variables necessary to describe the status of the system at any given time

Example

Consider a bank

- servers
- customers waiting in line
- customers being served

• **Definition**: The *state* of a system

Example

Consider a bank:

- State Change by customers arrival or departure
- State Variables:
 - Number of busy servers
 - Number of customers in the bank
 - Number of customers entered the bank
 - Number of customers departed the bank
 - Number of customers waiting for service

• Definition :

An *entity* in the system is the object of interest that cause the state variables of the system to change.

Example

Consider a bank:

• The entity of interest is the customers.

Consider an airport: The entity of interest

- Passengers.
- Luggage

• Definition :

The *attribute* of an entity is a specific characteristic for any entity in the system.

All entities have same attribute name but different values for different entities, for example:

- Time of arrival
- Time of departure
- Age of an arrival
- Color of the entity

• Definition :

The *attribute* of an entity is a specific characteristic for any entity in the system.

Example

Consider a bank:

Attributes of the customers such as

- The age of a customer
- The occupation of a customer.
- The balance of a customer.

	Time between	Arrival	Service	Service			Donartura	Cashire	Mone
	arrivals	time	time	start	Cust.	Wait Time	Departure time	Idle Time	Spent
Cust.#	(min)	(min)	(min)	(min)	WIATE?	(min)	(min)	(min)	(SR)
1	0.24	0.24	0.33	0.24	0	0	0.58	0.24	30
2	0.69	0.93	2.10	0.93	0	0.00	3.03	0.36	20
3	0.82	1.76	9.51	3.03	1	1.27	12.54	0.00	30
4	7.63	9.39	4.27	12.54	1	3.15	16.81	0.00	20
5	3.19	12.58	4.22	16.81	1	4.23	21.03	0.00	20
6	1.67	14.26	1.42	21.03	1	6.77	22.45	0.00	20
7	5.03	19.29	0.49	22.45	1	3.16	22.94	0.00	30
8	3.23	22.52	1.53	22.94	1	0.42	24.47	0.00	10
9	5.42	27.94	2.25	27.94	0	0.00	30.19	3.48	20
10	10.01	37.96	1.61	37.96	0	0.00	39.56	7.77	30
11	0.10	38.05	0.39	39.56	1	1.51	39.95	0.00	20
12	0.89	38.94	3.84	39.95	1	1.01	43.80	0.00	50
13	7.58	46.52	7.44	46.52	0	0.00	53.96	2.72	30
14	6.00	52.52	0.24	53.96	1	1.44	54.20	0.00	30
15	10.75	63.27	9.36	63.27	0	0.00	72.62	9.07	10

			No. in
Ti	me	Change	System
0	0.24	0	0
0.24	0.58	1	1
0.58	0.93	-1	0
0.93	1.76	1	1
1.76	3.03	1	2
3.03	9.39	-1	1
9.39	12.54	1	2
12.54	12.58	-1	1
12.58	14.26	1	2
14.26	16.81	1	3
16.81	19.29	-1	2
19.29	21.03	1	3
21.03	22.45	-1	2
22.45	22.52	-1	1
22.52	22.94	1	2
22.94	24.47	-1	1

			No. in
Tir	ne	Change	System
24.47	27.94	-1	0
27.94	30.19	1	1
30.19	37.96	-1	0
37.96	38.05	1	1
38.05	38.94	1	2
38.94	39.56	1	3
39.56	39.95	-1	2
39.95	43.80	-1	1
43.80	46.52	-1	0
46.52	52.52	1	1
52.52	53.96	1	2
53.96	54.20	-1	1
54.20	63.27	-1	0
63.27	72.62	1	1
72.62	0.00	-1	0

Stochastics => there are some parameters or variables that has uncertainty or randomness

Deterministic => everything is exact

Dynamic => some parameters change over time or periodically

Static => everything is exact and constant over time

Discrete Systems

A discrete system is one in which the state variables change only at a discrete set of points in time

Continuous System

A continuous system is one in which state variables change continuously over time

Fast Food Counter (Discrete)

Measures changes with arrivals or departures "Number of Customers waiting"

• Filling a Tank (Continuous)

Measures changes

continuously over time

"amount of fuel in tank"

