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ABSTRACT 

Combining the suitable cells with three-dimensional (3D) biomaterial scaffolds provides a 

solution for replacing diseased and damaged tissue. The key requirement for bone tissue 

engineering scaffolds to be successful is their ability to mimic the physiological function, 

chemical and mechanical properties of the natural extra-cellular matrix (ECM), which is 

characterised by collagen nanofibers embedded with nano-hydroxyapatite crystals. This study 

investigates the proper media condition and the best electrospun scaffold materials for supporting 

osteogenic differentiation and matrix production. To achieve these objectives, both low and high 

cells density were cultured in the present and absent of β-glycerophosphate (BGP), ascorbic acid 

2-phosphate (AA). Cells viability was tested by alamrBlue assay and ECM production of 

different cell lines was measured by using Alizarin red (Ar) and Picrosirius red (Sr) stains. For 

electrospinning, random and aligned nanofbrous scaffolds were electrospun from 

polycaprolactone (PCL) by incorporating different concentrations of hydroxyapatite (HA) 

nanoparticles. The morphology of the nanofibers was evaluated using scanning electron 

microscopy and in vitro biocompatibility of the scaffolds was assessed by culturing human 

embryonic stem cell-derived mesenchymal progenitor cells (hES-MP cells). Cells proliferation, 

alkaline phosphatase activity (ALP), minerals deposition and collagen production were 

investigated on different types of scaffolds. Results revealed that in order to enhance ECM 

minerals and collagen production both BGP and AA are required in the culture media. However, 

the presence of low concentration of nHA particles in random PCL scaffolds could be a potential 

substrate for osteoblasts proliferation and mineralisation in enhancing bone tissue regeneration. 
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CHAPTER 1  

Introduction 

 

Tissue engineering bone grafts have great potential to be used in treating a number of 

bone abnormalities which are caused by congenital defects, tumour formation or 

traumatic injury or accidents of the bone [1]. The concepts of tissue engineering were 

first applied in the 1980s. Since then, the number of studies in this field has grown 

rapidly [2]. Much effort has been made to cultivate cells into functional bone grafts with 

suitable shapes and sizes to be used later as an alternative to the currently highly 

expensive bone grafts [3, 4]. Over half a million bone graft surgeries, which cost about 

$2.5 billion, are performed annually in the United States [5]. Tissue engineering has the 

potential to replace current therapeutic and surgical procedures that repair bone fractures 

and replace missing bone. These procedures are usually complex, fail to heal perfectly, 

are painful and may pose a significant health risk to the host. However, in vitro 

engineered bone grafts have the ability to be reabsorbed, replaced and healed as natural 

bone does; this will have a great impact on the field of science and medicine in the future. 

In fact, researches over the past two decades have demonstrated that the widespread 

application of engineered bone grafts is strongly dependent on the type of cells and 

scaffold that are selected to regenerate and repair the bone [6, 7].    

 

In this paper, I will provide a brief review and a general introduction to bone structure 

and the modelling and remodelling mechanisms of bone, the methods of controlling the 

secretion of bone minerals and the most common bone diseases. In addition, I will report 

the role of scaffolds and hydroxyapatite nanoparticles in the field of bone tissue 

engineering and will focus on one method in fabricating these scaffolds.  

 

The main objectives of my thesis were to compare the effect of different media 

supplemented conditions on the amount of calcium and collagen in both animal and 

human cell lines that have been selected to be differentiated into osteogenic cells. Also, to 

investigate mineral production by evaluating different concentrations of hydroxyapatite 



12 
 

nanoparticles presence in aligned and random PCL scaffolds that have been prepared by 

an electrospinning technique. 

It is important to produce strong dense bone tissue by stimulating the osteoblasts cells to 

produce the right amount and type of minerals in the newly formed bone tissue that is 

similar to true human bone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


