Lecture # 5

Lexical Analysis

Role of Lexical Analyzer

» It is the first phase of compiler

» Its main task is to read the input characters
and produce as output a sequence of tokens
that the parser uses for syntax analysis

» Reasons to make it a separate phase are:
- Simplifies the design of the compiler

- Provides efficient implementation(read the source
code)

> Improves portability

Interaction or
with the P.

Source
Program

/
error \ / error

Tokens, Patterns, and Lexemes

» A token is a classification of lexical units
- For example: id and num

» Lexemes are the specific character strings
that make up a token
- For example: abe and 123

» Patterns are rules describing the set of
lexemes belonging to a token

- For example: “/etter followed by letters and
digits” and “non-empty sequence of digits’

Diff b/w Token, Lexeme and
Pattern

N [L

if if if

relation <, <=,=,<>,>,>= < or <=or=or<>
or > or >=

id Y, X Letter followed by
letters and digits

num 31, 28 Any numeric constant

operator +,* -,/ Any arithmetic
operator

+ or * or - or /

y := 31 + 28*x

Cid, ‘y’> <assign, :=> <num, 31> <operator , +> <num, 28> <operator, *>

b

token

tokenval

(token attribute)

Specification of Tokens

» Alphabet: Finite, nonempty set of symbols
Example:s — 10, 1} binary alphabet

Example:s — ¢, 4 ¢ .. 21 the set of all lower
case letters

» Strings: Finite sequence of symbols from an
alphabet e.g. 0011001

» Empty String: The string with zero
occurrences of symbols from alphabet. The
empty string is denoted by ¢

Continue...

» Length of String: Number of positions for
symbols in the string. |w| denotes the length
of string w

Example |0110| =4; |¢| =0
» Powers of an Alphabet: =" = the set of strings

of length k with symbols from
Example:

> ={0,1}
>1 =101}

>2 ={00,01,10.11}

>0 = {c}

Continue..

» The set of all strings over = is denoted =*
Y*r=y%uxlux?u...

>st=31lyus2yuxz3u...

YH* =T U {e}

Continue..

» Language: is a specific set of strings over
some fixed alphabet >

Example:

The set of legal English words

The set of strings consisting of n O's followed by n
1’s

LP = the set of binarv numbers whose value is
prime¢{e,01,0011,000111,...}

{10,11,.101,111,1011,...}

Concatenation and Exponentiation

» The concatenation of two strings x and yis
denoted by xy

» The exponentiation of a string s is defined by

O =¢
s'=5s"1s for/>0

note that se = e¢s=s

Language Operations

» Union
LUM = {s | SelLors e M}

» Concatenation
LM ={xy | x e Land y € M}
» EXponentiation

1O ={¢}; L' =L-TL
> Kleene closure

Regular Expressions

» Basis symbols:
> ¢ is a regular expression denoting language {c}
> & e X is a regular expression denoting {a}

» If rand s are regular expressions denoting
languages L(H) and M(s) respectively, then
- rlsis a regular expression denoting L(H) w M(s)
> rsis a regular expression denoting L(HMs)
> ris a regular expression denoting L(n)’
> (n is a regular expression denoting L(/)

» A language defined by a regular expression
is called a Regular set or a Regular
Language

13

Regular Definitions

» Regular definitions introduce a naming
convention:
d, - r,
d, >
d,—> r,
where each r;is a regular expression over
ruid,, d,, ..., d._}

14

» Example:

letter > alB|...|z|lalbl...| 2
digit > 0/1]...|9
id — letter (Ietter|digit)’

» The following shorthands are often used:

r-=rg
7 =r|e
[a-z] = a|blec|...|z

» Examples:
digit > [0-9]
hum — digit*

(. digit*)? (E (+ |-)? digit+)?

Regular

Grammar

N

stmt — if exprthen stm

e

expr— termrelop term

term
term — id

num

if exprthen stmtels

Regular definitions
if > if

then —» then

else - else

relop — < ‘ <= | <> | > | >=
id — letter (letter | digit)’

num — digit* (. digit*)? (E (+ | -)? digit*)?

16

Coding Regular Defin
Transition Diagrams

relop—><|<=‘<>‘>‘>=|=
start

) return(relop, LE)

>
)O return(relop, NE)

*

othe|;>© return(relop, LT)
@ return(relop, EQ)

& — >© return(relop, GE)
other

>© return(relop, GT)

id — letter (letter ‘ digit) letter or digit

letter >‘O

iy >© return(gettoken(),
install_id()y

Finite Automata

» Finite Automata are used as a model for:

(0]

Software for designing digital circuits

(0]

Lexical analyzer of a compiler

(0]

Searching for keywords in a file or on the web.

(0]

Software for verifying finite state systems, such as
communication protocols.

Design of a Lexical Analyzer

Generator

» Translate regular expressions to NFA
» Translate NFA to an efficient DFA

Simulate NFA

. to recognize

tokens

(‘

'\

Simulate DFA
to recognize
tokens

/

19

Nondeterministic Finite Automata

» An NFA is a 5-tuple (S, %, §, sy, F) where

Sis a finite set of states
> is a finite set of symbols, the a/lphabet

S is a mapping from S x X to a set of states
So € Sis the start state

Fc Sis the set of accepting (or final) states

20

Transition Graph

» An NFA can be diagrammatically represented

by a labeled directed graph called a transition
graph

a $=1{0,1,2,3}
> = {a,b}
start)@ a >‘ b >‘ b >© So=0
F=1{3}
b

21

Transition Table

» The mapping & of an NFA can be represented

in a transition table

50.a) = {0.1) State Ingut In{:;ut
6(0b) ={0} __ | o 0,1} | {0}
6(1,b) = {2} 1 {2}
3(2,) = {3] : =

22

The Language Defined by an NFA

» An NFA accepts an input string x if and only
if there is some path with edges labeled
with symbols from x in sequence from the
start state to some accepting state in the
transition graph

» A state transition from one state to another
on the path is called a move

» The /anguage defined by an NFA is the set
of input strings it accepts, such as
(a|b)*abb for the example NFA

23

a { action, }
abb { action, }
a*b+ { action; }

y %
start b

—Q+0-0=-00

NELE

25

Deterministic Finite Automata

» A deterministic finite automaton is a special
case of an NFA
- No state has an e-transition
> For each state s and input symbol a there is at
most one edge labeled aleaving s
» Each entry in the transition table is a single
state

- At most one path exists to accept a string
> Simulation algorithm is simple

26

Conversion of an NFA into a DFA

» The subset construction algorithm converts
an NFA into a DFA using:
e—closure(s) = {stu{t| s>, ... >, 8
e—closure(T) = U,_re-closure(s)
move(T,a) ={t| s >, tand se T}
» The algorithm produces:
Dstates is the set of states of the new DFA
consisting of sets of states of the NFA
Dtran is the transition table of the new DFA

28

S5 chootscuborg_Compler Condrucion Frndgesand pracice Wb v o

File Edit View Tools Window Help
B EH 2@ QF M7 - » MO O|ED S 200% @B DE| &%

lub.org__ C il _Cnnstrnc_ﬁ

ThflS, thi; algorithm is called the subset construction. Wevﬁrst discuss the s-closure in
a little more detail and then proceed to a description of the subset construction.

.
]
=
o
E
=
=
=

The &-Closure of a Set of States We define the e-closure of a single state s as the set of O
states reachable by a series of zero or more e-transitions, and we write this set as 5. We
leave a more mathematical statement of this definition to an exercise and proceed
directly to an example. Note, however, that the e-closure of a state always contains the
state itself.

mple 2.14 Consider the following NFA corresponding to the regular expression a* under
Thompson’s construction:

In this NFA, we have 1 = {1,2,4),2 = {2}, 3 = (2, 3,4}, and 4 = (4). §

'l [[l | »
Page77 of 580 6.87x9.58in

=] n T ™ E.. _d] T 306 PM | |
T m =m ' ®RN] N Do g

S5 okschivory Compe Corsiucion Pz nd pracics Wit A | it e

File Edit View Tools Window Help

BEH 2T QI IMA - »MOQO|HHD| O 200% -OLODHE&%

lub.org__ Compil _Cnnstrnc_ﬁ

.
=
=
=
E
=
=
=

mple 2.17 Consider the NFA of Figure 2.9 (Thompson’s construction for the regular expression
letter(letter|digit)*): E

The subset construction proceeds as follows. The start state is {1} = {1). There
is a transition on letterto (2} = (2, 3,4, 5,7, 10}. From this state there is a transi-
tion on letterto {6} = {4, 5,6, 7,9, 10} and a transition on digit to {8} =
{4, 5, 7, 8, 9, 10}. Finally, each of these states also has transitions on letter
and digit, either to itself or to the other. The complete DFA is given in the follow-
ing picture:

m | »

Page79 0f 590 6.87x9.59 in
3:2M | |

6/25/2012

EN & |lv ID i)

= {8}

a b e—closure({8}) = {8}
e ‘) 5) move({8},a) = &
b

a a b > a2 J none
0] 2 4 8
1 4
3 4
Also used to simulate NFAs 4

<)
e
@
(Vp]
@)
-
V)

start

[g\]
mM

Dstates
A =1{0,1,3,7}

33

