Compiler Construction
Introduction

Department of Computer Science

King Saud University

Thanksfor Dr. MohsenDENGUIR for his effort in producingthe ppt

ralsoghayer
Typewritten Text
Thanks for Dr. Mohsen DENGUIR for his effort in producing the ppt

What is a compiler?

® A compiler is a language translator that takes as input a
program written in a high level language and produces an
equivalent program in a low-level language.

® For example, a compiler may translate a C program into an
executable program running on a SPARC processor.

® |n the process of translation, a compiler goes through several
phases:
s Lexical analysis (also called scanning)
s Syntax analysis (also called parsing)
» Semantic analysis
s Optimization (not in this course!)

» Code generation

Lexical Analysis

® The job of the lexical analyzer, or scanner, is to read the
source program one character at a time and produce as output
a stream of tokens (we discuss these next)

® The tokens produced by the scanner serve as input to the next
phase, the parser.

® Thus, the lexical analyzer's job is to translate the source
program into a form more conducive to recognition by the
parser.

Tokens

® Tokens are used to represent low-level program units such as
o .ldentifiers, such as sum, value, and x

Numeric literals, such as 123 and 1.35e06

.Operators, such as +, *, &&, <=, and %

Keywords, such as if, else, and return

o o o ©

Many other language symbols

Classes of Tokens

® There are many ways we could represent the tokens of a
programming language. One possibility is to use a 2-tuple of
the form <token class, value>

® For example, consider the token class identifier. The
identifiers and may be represented as <ident,
"'sum"> and <ident, "value" >, respectively.

® The token class NumericLiteral may be represented in the
same way; for example, the literals and may be
represented as <NumericLiteral, "123"> and
<NumericLiteral, "1.35e06" >, respectively.

® The same applies to operators; for example, <relop, ">=">
and <addop, "-">

Representing Tokens

® These 2-tuples are easily represented as a struct in C:

typedef enum _TokenClass {ident, numlit,... } TokenClass;
struct Token {

TokenClass tokenClass;

char *tokenValue;

Tokens: an Example

The scanner may take the expression
X =2+ 1(3);

and produce the following stream of tokens
<ident, "x">
<assign_op, "=">
<numlit, "2">
<addop, "+">
<ident, "f">
<|paren, "(">
<numlit, "3">
<rparen, ")">
<semicolon, ";">

Syntax Analysis

® The job of the syntax analyzer, or parser, is to take a stream
of tokens produced by the lexical analyzer and build a parse
tree (or syntax tree).

® The parser is basically a program that determines if sentences
in a language are constructed properly according to the rules
of the language.

A Parse ITree

if (=10 D) = [23

if-statement
if (expr) statement

X < 10 var I
id

Syntax Analysis

® There are two general categories of parsers:

o Top down parsers, which include

s LL(1) table-driven parsers

s Recursive descent parsers (we will write one!)
s Bottom up table driven parsers (table-driven)

s SLR (simple LR)

s LR(1) parsers

s LALR(1) parsers

® The syntax of a language is defined by using a context free
grammar (CFG).

® A CFG uses BNF rules to describe the syntax:
IfStatement—— 'if’ (" Expr ')’ Statement['else’ Statement |

Semantic Analyzer

® The semantic analyzer's job is to attach some meaning to the
structure produced by the parser.

® Activities include:

o Ensuring an identifier is defined before being used in a
statement or expression.

o Enforcing the scope rules of the language.
» Performing type checking

» Producing intermediate code

Semantic Analysis

® Static semantics can be determined by the compiler prior to
execution, including

» Declarations
s Determine the structure and attributes of a user-defined
data type
s Determine type of a variable
s Determine the number and types of parameters of a
procedure

» Type checking
s The process of ensuring that the type(s) of the
operand(s) are appropriate for an operation

Semantic Analysis

® Attributes are extra pieces of information computed by the
semantic analyzer. These include the types of variables,
constants, operators, etc.

® An annotated syntax tree is a syntax tree that has been
"decorated" with attributes.

o Inherited attributes come down the syntax tree from parent
or sibling nodes

» Synthesized attributes come up the syntax tree from child
nodes

Semantic Analysis: an Example

Annotated syntax tree: a[index] = x + 3

Semantic Analysis

#® Some optimization may be done during this phase:
s Source code optimization (e.g., constant folding):
s X := 2 + 4; can be optimized to X := 6;
» Intermediate code optimization:
s .Temp := 5; Alindex] := Temp can be optimized to
Alindex| := 5;

	st {What is a compiler?}
	st {Lexical Analysis}
	st {Tokens}
	st {Classes of Tokens}
	st {Representing Tokens}
	st {Tokens: an Example}
	st {Syntax Analysis}
	st {A Parse Tree}
	st {Syntax Analysis}
	st {Semantic Analyzer}
	st {Semantic Analysis}
	st {Semantic Analysis}
	st {Semantic Analysis: an Example}
	st {Semantic Analysis}

