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What is a compiler?

® A compiler is a language translator that takes as input a
program written in a high level language and produces an
equivalent program in a low-level language.

® For example, a compiler may translate a C program into an
executable program running on a SPARC processor.

® |n the process of translation, a compiler goes through several
phases:
s Lexical analysis (also called scanning)
s Syntax analysis (also called parsing)
» Semantic analysis
s Optimization (not in this course!)

» Code generation




Lexical Analysis

® The job of the lexical analyzer, or scanner, is to read the
source program one character at a time and produce as output
a stream of tokens (we discuss these next)

® The tokens produced by the scanner serve as input to the next
phase, the parser.

® Thus, the lexical analyzer's job is to translate the source
program into a form more conducive to recognition by the
parser.




Tokens

® Tokens are used to represent low-level program units such as
o .ldentifiers, such as sum, value, and x

Numeric literals, such as 123 and 1.35e06

.Operators, such as +, *, &&, <=, and %

Keywords, such as if, else, and return

o o o ©

Many other language symbols




Classes of Tokens

® There are many ways we could represent the tokens of a
programming language. One possibility is to use a 2-tuple of
the form <token class, value>

® For example, consider the token class identifier. The
identifiers and may be represented as <ident,
"'sum"> and <ident, "value" >, respectively.

® The token class NumericLiteral may be represented in the
same way; for example, the literals and may be
represented as <NumericLiteral, "123"> and
<NumericLiteral, "1.35e06" >, respectively.

® The same applies to operators; for example, <relop, ">=">
and <addop, "-">




Representing Tokens

® These 2-tuples are easily represented as a struct in C:

typedef enum _TokenClass {ident, numlit,... } TokenClass;
struct Token {

TokenClass tokenClass;

char *tokenValue;




Tokens: an Example

The scanner may take the expression
X =2+ 1(3);

and produce the following stream of tokens
<ident, "x">
<assign_op, "=">
<numlit, "2">
<addop, "+">
<ident, "f">
<|paren, "(">
<numlit, "3">
<rparen, ")">
<semicolon, ";">




Syntax Analysis

® The job of the syntax analyzer, or parser, is to take a stream
of tokens produced by the lexical analyzer and build a parse
tree (or syntax tree).

® The parser is basically a program that determines if sentences
in a language are constructed properly according to the rules
of the language.




A Parse ITree

if (=10 D) = [23

if-statement
if ( expr ) statement
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Syntax Analysis

® There are two general categories of parsers:

o Top down parsers, which include

s LL(1) table-driven parsers

s Recursive descent parsers (we will write one!)
s Bottom up table driven parsers (table-driven)

s SLR (simple LR)

s LR(1) parsers

s LALR(1) parsers

® The syntax of a language is defined by using a context free
grammar ( CFG).

® A CFG uses BNF rules to describe the syntax:
IfStatement—— 'if’ (" Expr ')’ Statement[ 'else’ Statement |




Semantic Analyzer

® The semantic analyzer's job is to attach some meaning to the
structure produced by the parser.

® Activities include:

o Ensuring an identifier is defined before being used in a
statement or expression.

o Enforcing the scope rules of the language.
» Performing type checking

» Producing intermediate code




Semantic Analysis

® Static semantics can be determined by the compiler prior to
execution, including

» Declarations
s Determine the structure and attributes of a user-defined
data type
s Determine type of a variable
s Determine the number and types of parameters of a
procedure

» Type checking
s The process of ensuring that the type(s) of the
operand(s) are appropriate for an operation




Semantic Analysis

® Attributes are extra pieces of information computed by the
semantic analyzer. These include the types of variables,
constants, operators, etc.

® An annotated syntax tree is a syntax tree that has been
"decorated" with attributes.

o Inherited attributes come down the syntax tree from parent
or sibling nodes

» Synthesized attributes come up the syntax tree from child
nodes




Semantic Analysis: an Example

Annotated syntax tree: a[index] = x + 3




Semantic Analysis

#® Some optimization may be done during this phase:
s Source code optimization (e.g., constant folding):
s X := 2 + 4; can be optimized to X := 6;
» Intermediate code optimization:
s .Temp := 5; Alindex] := Temp can be optimized to
Alindex| := 5;
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