
Normalization

Edited	by:	Nada	Alhirabi

Normalization:Why do we need to normalize? 

2

1. To avoid redundancy (less storage space needed,
and data is consistent)

2. To avoid update/delete anomalies

Insertion anomaly: Cannot make a record Jones’
address because he is not taking any classes

Ssn c-id Grade Name Address

123 cs331 A smith Main

123 cs351 B smith Main

Ssn c-id Grade Name Address

123 cs33 1A smith Main

… … … … …

234 null null jones Forbes

Normal Forms

3

• First Normal Form – 1NF
• Second Normal Form – 2NF
• Third Normal Form – 3NF:

• In practice, “normalized” means in BCNF or 3NF
• Fourth Normal Form – 4NF
• Fifth Normal Form – 5NF
• Boyce-Codd Normal Form

– BCNF

Only	those	are	covered

First Normal Form (1NF)

4

Last
Name

First Name

Smith Peter
Mary
John

Greg Anne
Michael

• 1NF: all attributes are atomic (“no repeating groups”)

Last
Name

First Name

Smith Peter
Smith Mary
Smith John
Greg Anne
Greg Michael

Not in 1NF

Normalized to 1NF

Second Normal Form (2NF)

5

Student Course_ID Grade Address
Erik CIS331 A 80 Ericsson Av.
Sven CIS331 B 12 Olafson St.
Inge CIS331 C 192 Odin Blvd.
Hildur CIS362 A 212 Reykjavik St.

• 2NF:
• 1NF and
• all non-key attributes are fully dependent on

the PK (“no partial dependencies”)

Not in
2NF

Second Normal Form (2NF)

6

Student Course_ID Grade
Erik CIS331 A
Sven CIS331 B
Inge CIS331 C
Hildur CIS362 A

Student Address
Erik 80 Ericsson Av.
Sven 12 Olafson St.
Inge 192 Freya Blvd.
Hildur 212 Reykjavik St.

Normalized
to 2NF

Third Normal Form (3NF)

7

Student Course_ID Grade Grade_value
Erik CIS331 A 4.00
Sven CIS331 B 3.00
Inge CIS331 C 2.00
Hildur CIS362 A 4.00

3NF:
• 2NF and
• no transitive dependencies

• Transitivity: If A à B and B à C, then A à C	

Not in
3NF

Third Normal Form (3NF)

8

Student Course_ID Grade
Erik CIS331 A
Sven CIS331 B
Inge CIS331 C
Hildur CIS362 A

Grade Grade_value
A 4.00
B 3.00
C 2.00

Normalized to 3NF

Extra examples
Example1: Suppose a company wants to store the names
and contact details of its employees. It creates a table that
looks like this:

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in
the same field as you can see in the table above.

1NF: “each attribute of a table is atomic”
This table is not in 1NF as the rule says “each attribute of a table must
have atomic (single) values”,
(the emp_mobile values for employees Jon & Lester violates that rule.)

To make the table complies with 1NF we should have the data like this:

Second normal form (2NF)
Example2: Suppose a school wants to store the data of teachers and the subjects they
teach. They create a table that looks like this: Since a teacher can teach more than one
subjects, the table can have multiple rows for a same teacher.

Candidate Keys: {teacher_id, subject}
Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in
2NF because non prime attribute teacher_age is dependent on teacher_id alone
which is a proper subset of candidate key. This violates the rule for 2NF as the rule
says “no non-prime attribute is dependent on the proper subset of any candidate key
of the table”.

To make the table complies with 2NF we can break it in two tables
like this:

Third Normal form (3NF)
Example3: Suppose a company wants to store the complete address of each
employee, they create a table named employee_details that looks like this:

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on
Candidate Keys: {emp_id}
Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any
candidate keys.
Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent
on emp_id that makes non-prime attributes (emp_state, emp_city & emp_district) transitively
dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to
remove the transitive dependency:

Normalization: Final Thoughts

15

• There are higher normal forms (4NF, 5NF),
but we will not talk about them

• In practice, “normalized” means in BCNF
or 3NF

• Luckily, in practice, ER diagrams lead to
normalized tables (but do not rely on luck)

Source for the most slides are taken from : Vladimir Vacic, Temple University
and http://beginnersbook.com/2015/05/normalization-in-dbms/ website.

Normalization: summary

16

• Why do we normalize?
• To avoid redundancy (less storage space needed, and data is

consistent)
• To avoid update/delete anomalies

• A good decomposition should:
• be a lossless join decomposition

(you can recover original tables with a join)
• preserve dependencies

(FD’s should not span two tables)

• 1NF (all attributes are atomic)
• 2NF (no partial dependencies)
• 3NF (no transitive dependencies)

http://beginnersbook.com/2015/05/normalization-in-dbms/

