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Preface

This subject guide is not a course text. It sets out the logical sequence in
which to study the topics in the course. Where coverage in the main texts is
weak, it provides some additional background material. Further reading is
essential
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Introduction

Chapter 1: Introduction

1.1 Relationship to previous mathematics courses

If taken as part of a BSc degree, 116 Abstract mathematics must be
passed before this course may be attempted.

You should therefore have knowledge and understanding of basic linear
algebra and computational aspects of calculus with regard both to single
variable integration and to the basic essentials of multiple-variable
differential calculus with optimisation in mind (including the use of
Lagrange Multipliers. At some critical points later in the course you will
need to rely on a facility to perform calculations with integrals, so we
highlight the level of difficulty in some learning activities in Chapter 2.
Chapter 8 relies on knowing how to define the Riemann integral, a matter
that is covered in either 116 Abstract mathematics or 117 Advanced
calculus (although the latter is not a prerequisite for this course).
Elementary notions of Probability or Statistics are also depended upon.

In most of this course we use the language of Linear Algebra. This does, of
course, mean that we will also be guided by the usual geometric arguments
that are associated with ideas from Linear Algebra. That is so even when
the arguments are motivated by probability. Note that the approach taken in
this course does not rely on any use of measure theory.

We will think of the component of a vector as describing various possible
sums of money payable according to future prevailing circumstances. That
is, if x = (x, ..., x ) is a vector in R”, we will want to think of that vector

as referring to a model of future events arising as » different possible
circumstances, labelled 1,2, ..., n and called ‘the states of nature’. Then the
component X, is interpreted as a sum of money payable when the state of
nature is i. Thus x models what is known in Probability Theory as a ‘random
variable’ X with the states of nature described by the sample space

Q={1,2, .., n} and the realization of X when the state of nature is i is x..

In Chapter 2 we help you to line up your assumed knowledge of Linear
Algebra with your assumed knowledge of Basic Probability and Statistics.
This is an important step which enables us to use geometric intuition to
solve problems originating in the valuation of financial contracts.

By financial contract we mean reasonably standard financial arrangements
such as insurance policies, or a contract for the execution of building works
which may involve foreseeable but currently unknown complications. In all
these we ask how much to pay ‘today’ for a contractually specified payment
(albeit uncertain sum of money) to be received at some specified future
date such as the proverbial ‘same time’ next year.

The aim of this course is to identify the fundamental concepts and
methods of Financial Mathematics. We will thus learn two approaches to
representing the uncertain evolution of asset prices, first in discrete time
and then in continuous time. We will formulate a basis for valuing
well-defined future payments that depend on one of a number of specified
circumstances occurring when it is not known in advance which of these
circumstances will arise.

The mathematical arguments in discrete time will be conducted rigorously,
meaning that terms will be precisely defined and results will be proved. Of
course plenty of motivation and informal explanations will be given.

We will rely on the rigorous development in discrete time to support a much
more informal approach to the continuous time approach. In the second
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part (the continuous time context) the emphasis will be on using calculus to
obtain valuations of what are called European call and put options.

So, for this subject, you will not only have to solve problems: you will have
to be able to reason abstractly, and be able to prove or justify things.

In most of this subject, we need to work with precise definitions, and
you will need to know these. Not only will you need to know these, but
you will have to understand them, and be able (through the use of them)
to demonstrate that you understand them. Simply learning the definitions
without understanding what they mean is not going to be adequate. One
hopes that these words of warning won’t discourage you, but it’s important
to make it clear that this is a subject at a higher level than some of its
prerequisites.

1.2 Aims of the course

This subject is designed to introduce the main mathematical ideas

involved in the modelling of asset price evolution and the valuation of
contingent claims (such as call and put options) in a discrete and continuos
framework.

1.3 Learning outcomes

At the end of the course and having completed the essential reading and
activities, you should have:

* knowledge, understanding and formulation of the principles of risk-
neutral valuation including some versions of the No-Arbitrage Theorem

¢ knowledge of replication and pricing of contingent claims in certain
simple models (discrete and continuous)

* knowledge of the derivation of the Black-Scholes equation, its solution
in special cases, the Black-Scholes formula.

You should be able to:

* demonstrate knowledge of the subject matter, terminology, techniques
and conventions covered in the subject

* demonstrate an understanding of the underlying principles of the
subject

* demonstrate the ability to solve problems involving understanding of the
concepts.

1.4 Syllabus

This is an introduction to an exciting and relatively new area of
mathematical application. It is concerned with the valuation (i.e pricing)
of ‘financial derivatives’. These are contracts which are bought or sold in
exchange for the promise of some kind of payment in the future, usually
contingent upon a share-price then prevailing (of a specified share) or
alternatively the level achieved by a share index, i.e by a certain weighted
average of share prices. They are called ‘derivatives’ because they are
derived from some underlying financial asset such as a share.

The course reviews the financial environment and some of the financial
derivatives traded on the market. It then introduces the mathematical
tools which enable the modelling of the fluctuations in share prices.
Inevitably these are modelled by equations containing a random term. It
is this term which introduces risk; it is shown how to counterbalance the
risks by putting together portfolios of shares and derivatives so that risks
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temporarily cancel each other out and then this strategy is repeated over
time. As this procedure resembles hedging a bet - i.e betting both ways —
one talks of dynamic hedging. A very intuitive valuation argument (albeit
now regarded as only of historical interest, see Section 9.7 for details)

is based on ‘hedging’ and begins like this: the yield of a temporarily
riskless portfolio must equal the rate of return offered by a safe deposit
bank account (i.e. a riskless bank rate). The latter, of course, needs to be
assumed to exist. This equation assumes that the market which values
shares and derivatives actually is in equilibrium and hence eliminates the
opportunities of ‘arbitrage’ (such as making a sure-thing profit from, say,
buying cheap and selling dear).

The ‘riskless hedge’ argument, just mentioned, implies in the continuous-
time model that the price of a derivative is the solution of a differential
equation. One may either attempt to solve the differentiab equation by
standard means such as numerical techniques or via Laplace transforms,
though this is not always easy or feasible. However, there is an alternative
route which may provide the answer: a calculation of the expected payment
to be obtained from the contract by using what is known as the synthetic
probability (or the risk-neutral probability). One proves that, regardless of
what an investor believes the expected growth rate in the share price will
be, the dynamic hedging has the effect that he might as well believe the
growth rate te be the riskless growth rate. Though this may seem obvious
is retrospect it does require some careful reasoning to justify.

The course considers two approaches to risk-neutral calculation, using
discrete time and using continuous time. Continuous time requires the
establishment of a second-order volatility correction term when using
standard first-order approximation from calculus. This leads to what

is known as the It6 Rule/Formula. Finite time arguments need some
apparatus from Linear Algebra such as the Separating Hyperplane
Theorem. We enter the subject from the discrete-time model for an easier
discussion of the main issues.

1.5 Organisation of the subject guide

After this introductory chapter, in which we also discuss the reading list,
the next chapter recalls some basic background in mathematics. Chapter 3
introduces you to some financial ideas with which the later mathematics
will be concerned.

The course proper begins, in effect, with Chapter 4, which is dedicated

to a study of a very simple framework. There is just one risky asset and
money (‘cash’ to be precise), just one future date, and only two possible
states of nature.that might occur. One state is such that an economic agent
may regard it as ‘favourable’ for himself and another that he regards as
‘unfavourable’. Of course another economic agent may view these two
states the other way about. What matters is that there are only two states.
The aim is to explain two central ideas. One is ‘replication’ of a claim by
means of a portfolio, which enables the claim to be valued by the cost of
purchasing the portfolio. This means that once this cost is incurred the
holder of the portfolio is not exposed to any risks associated with settling
his future liabilities. He is made neutral to risk. The other idea is valuation
using expected values with reference to a ‘purpose-made’ probability
measure called a ‘risk-neutral’ measure which is sometimes referred to as
the ‘synthetic probability’ (for an emphasis of its specific purpose). Thus
the expected value of the claim under this measure is to agree with the
purchase cost of the replicating portfolio.
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Once understood in the simplest concept, we re-establish in Chapter 5 the
two central ideas in a one-period model with several assets and several
states. We prove the Fundamental Theorem of Asset Pricing, namely

that a risk-neutral measure exists if and only if there are no arbitrage
opportunities.

In Chapter 6 the two ideas are extended to cover multiple periods aided
by the idea of a ‘self-financing’ trading strategy. This is intellectually the
hardest part of the course as it uses ideas from several quarters. The main
tool is conditional expectation and this requires quite a lot of technical
apparatus to define rigorously what information is known at certain points
in time.

Whereas Chapter 6 assumes a quite general framework for the evolution of
asset price, we discuss in Chapter 7 a specific approach to modelling asset
price, the Binomial model. In this model, price changes are generated at
each period in a uniform way by two constant factors, one factor inducing
a possible price move up, the other an alternative price move down.

This uniform behaviour permits easy formulas for valuation of European
calls and puts. Furthermore it offers easy computation procedures for
evaluating American puts. The significance of the model comes from limit
considerations. In an appropriately constructed limit (as the number of
periods tends to infinity and the time between periods tends to zero)

the models European call and put valuations tend to the corresponding
valuations in the Black-Scholes continuous-time model.

The theme of Chapter 8 is modelling price uncertainty in continuous time.
As its base the model assumes an anticipated (constant) rate of growth u
for the price of an asset and a noise of constant ‘amplitude’ ¢. The growth
rate is modelled along the lines of the deterministic interest rate reviewed
in Chapter 3. Thus the anticipated percentage growth in price over a time
span of At is u At. The further ingredient in the model is ‘standard’ noise as
generated by a ‘stochastic process’, that is by a family of random variables
indexed by time, denoted here z. The standard amount of noise over

the time span At starting at time ¢ is Az, which is defined tobe z,,,, -z,

It is assumed that Az, is normally distributed with variance Az. The noise
added to the anticipated growth is then oAz, so that the ‘standard noise’ is
amplified or attenuated by a factor ¢. Thus the noise element has variance
a?At which is thus proportional to the time span Az. The central tool
developed in this Chapter is t6’s Formula. This is concerned with functions
of price and allows the computation of the increment in a differentiable
function when the stochastic price changes over a time interval. The
Formula gives a stochastic form of Taylor’s Theorem.

The techniques of Chapter 8 are put to use in the Chapter 9. Time is
discretized so that the time span between periods is fixed but arbitrarily
small, along lines familiar in courses 116 Abstract mathematics

or 117 Advanced calculus. The It6 Formula is used to approximate
increments in value. Valuation proceeds by the familiar route of replication
over the individual periods between the discrete time points. The emphasis
is on deriving in the limit (as the time spans tend to zero) a valuation

of a European option contract written on some asset. This will be a
deterministic function which identi.es the option value in terms of two free
variables: the current asset price, and the time left to the expiry date of
the contract. The value function may thus be interpreted as the conditional
expected value of the option pay-off under a risk-neutral probability with
conditioning on the current asset price and the time to expiry. We are able
to identify what this risk-neutral measure is once we derive the celebrated
Black-Scholes equation. This is the partial differential equation satisfied by
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the value function, and we obtain it from a consideration of increments in
value. So we are finally able to identify the risk-neutral measure. Armed
with the risk-neutral measure we can value a European call option. The
final chapter is concerned with American long-dated options, that is, ones
which have a relatively long life left (their expiry date is ‘far’ into the
future). For the purposes of a tractable analysis of such options we place
their expiration date at infinity. Options which expire at infinity are called
perpetual. They satisfy an ordinary differential equation version of the
Black-Scholes equation and the equation may be solved explicitly. Thus we
are able to trace the graphs of perpetual options and have an indication of
the value of a long-dated American option.

Finally, an epilogue sums up, in slightly more technical jargon, what we
hope you will have achieved by the end of this course.

Not all chapters of the guide are the same length. It should not be thought
that you should spend the same amount of time on each chapter. I will
not try to specify how much relative time should be spent on each: that
will vary from person to person, and we do not want to be prescriptive.
can however indicate roughly what proportion of time might be spent by
a lecturer teaching the material in this guide. A lecturer would judiciously
pick which examples to include in a lecture, and which to leave to the
students to study on their own. Though the mathematics of subsequent
chapters is not any harder in this course than in any other, the table below
articulates the significant need to spend time in Chapter 3 on building up
an understanding of the financial environment.

Chapter 2 | Vector space approach 5%
Chapter 3 Financial environment 20%
Chapter4 | One risky asset and two states | 10%
Chapter 5 | One period many assets 10%
Chapter 6 Multi-period models 20%
Chapter 7 The binomial model 15%
Chapter 8 | Continuous-time modelling 5%
Chapter 9 | Black-Scholes model 10%
Chapter 10 | Perpetual options 5%

1.6 Reading advice

Notes on the reading lists

Most topics in this course are covered in great detail by a large number
of books. For that reason, we have resisted the temptation to specify
essential reading in each chapter of the guide. What is true, however, is
that textbook reading is essential. Textbooks will provide more
in-depth explanations than you will find in this guide (which is explicitly
not meant to be a textbook), and they will also provide many more
examples to study, and many more exercises to work through.

The following books are the ones I have referred to in this guide, listed
roughly in order of usefulness and grouped according to their level. In
the first group, the first text, by Pliska, is one of the earliest textbooks on
the ‘undergraduate market’. Our treatment in Chapters 5 and 6 is inspired
in part by Pliska. The first Shreve text is a very accessible alternative

for the core material of Chapters 4-6. We follow the Notation variant

to Pliska’s notation established in Pliska with two exceptions. Firstly,
when considering a trading strategy or portfolio H we write Vi(H) for its
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value ¢ rather than Vz. Secondly, we refer to Pliska’s ‘dominant strategies’
as ‘sure-thing arbitrage strategies’. We strongly recommend that the
student reads through the book by Hull to understand the institutional
arrangements governing stock-exchanges and the contracts that they
issue. A very good second text for this material is Cvitani¢ and Zapatero.
It is hard to be quite as prescriptive in relation to the material of Chapters
7-10 because our approach is informal — thus we describe, rather than
define, stochastic integrals as limiting sums avoiding the requisite
formalities. Hull contains an account of the informal theory. Luenberger
is exquisite in clarity. Baxter and Rennie is admirable on this front,
though written for the ‘practitioners’.in the finance houses. That has been
replaced by its ‘classroom’ version, a more technically demanding text, by
Alison Etheridge aimed at university students with measure theory as a
prerequisite. The second Shreve text is accessible but more formal. Finally,
for a good background for linear algebra and advanced calculus see the
books by Ostaszewski, or Binmore and Davies.

The second group of books on the reading list is meant for a very special
reader: students should know by now that any course such as this is

an introduction to the collective knowledge amassed by an army of
mathematicians, so these books are a pointer for ambitious students
looking for further developments. The books in the third group are
popularisations and provide either anecdotal background or a historical

perspective.! ! Earlier editions than
those listed here are

Detailed reading references in this subject guide refer to the editions of the qually usefil,

set textbooks listed above. New editions of one or more of these textbooks
may have been published by the time you study this course. You can use

a more recent edition of any of the books; use the detailed chapter and
section headings and the index to identify relevant readings. Also check
the virtual learning environment (VLE) regularly for updated guidance on
readings.

Recommended reading

Shreve, S. Stochastic Calculus for Finance I, The Binomial asset pricing model.
(Springer, 2004) [ISBN 9780387249681].

Shreve, S. Stochastic Calculus for Finance II, Continuous-time models. (Springer,
2004) [ISBN 9780387401010].

Pliska, S.R. Introduction to Mathematical Finance - Discrete Time Models.
(Blackwell, 1998) [ISBN 9781557869456].

Hull, J.C. Options, Futures and other Derivative Securities. (Prentice Hall, 2005)
sixth edition [ISBN 9780131499089]. See also the URL:
www.rotman.utoronto.ca/~hull/

Cvitani¢, J. and E Zapatero Introduction to the Economics and Mathematics of
Financial Markets. (MIT, 2004) [ISBN 9780262033206, 9780262532594
(solutions manual)].

Luenberger, D. Investment Science. (Oxford University Press, 1997)

[ISBN 9780195108095].

Roman, S. Introduction to Mathematics of Finance. Undergraduate Texts in
Mathematics. (Springer, 2004) [ISBN 9780387213644].

Baxter, M. and A. Rennie Financial calculus. (Cambridge University Press:
Cambridge, 1996) [ISBN 9780521552899].

Etheridge, A. A Course in Financial Calculus. (Cambridge University Press:
Cambridge, 2002) [ISBN 9780521890779].

Ostaszewski, A. Advanced Mathematical Methods. (Cambridge University Press:
Cambridge, UK, 1991) [ISBN 9780521289641].

Binmore, K. and J. Davies Calculus:Concepts and Methods. (Cambridge
University Press: Cambridge, UK, 2001) [ISBN 9780521775410].
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Intermediate reading

Bingham, N.H. and R. Kiesel Risk-Neutral Valuation: Pricing and Hedging of
Financial Derivatives. (Springer, 1998) first edition [ISBN 1852330015]
second edition, 2004 [ISBN 9781852334581].

Campbell, J.Y., A.W. Lo and A.C. MacKinlay The econometrics of financial
markets. (Princeton University Press) [ISBN 9780691043012].

Janson, S. Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics? 129 ? Farlier editions than
(Cambridge University Press, 1997) [ISBN 9780521561280 (hbk)] in those listed here are
connection with the geometric view of probability sketched in Chapter 2. equally useful.

Williams, D. Probability with martingales. (Cambridge, 1991)
[ISBN 9780521406055].

@ksendal, B. Stochastic differential equations. (Springer, 1998)
[ISBN 978 3540047582].

Wilmott, P, S. Howison and J. Dewynne Mathematics of Financial Derivatives.
(Cambridge University Press: Cambridge, 1995) [ISBN 9780521497893].

Whittaker, E.T. and G.N. Watson A course of modern analysis. (Cambridge
University Press, 1984) [ISBN 9780521588072].

Durrett, R. Stochastic Calculus — A Practical Introduction. (CRC Press, 1996)
[ISBN 9780849380716]. An excellent though moderately difficult account
of It6 integration, properties of Brownian motion, solution to stochastic
differential equations.

Evans, L.C. Partial Differential Equations. (American Mathematical Society,
Providence, 1998) [ISBN 9780821807729].

Schuss, Z. Theory and Applications of Stochastic Differential Equations. (J. Wiley,
1980) [ISBN 9780471043942]. A very down-to-earth text but directed at
applications in physics. Discusses Stratonovich integration as well.

Merton, R.C. Continuous-time Finance. (Blackwell, 1996)

[ISBN 9780631185086].

Samuelson, P ‘Proof that properly anticipated prices fluctuate randomly’,

Industrial Management Review, 6(2) 1965, pp.41-49.

Further reading (historical, anecdotal,or popular texts)

Please note that as long as you read the Essential reading you are then free
to read around the subject area in any text, paper or online resource. You
will need to support your learning by reading as widely as possible and by
thinking about how these principles apply in the real world. To help you
read extensively, you have free access to the VLE and University of London
Online Library (see below).

Other useful texts for this course include:

Bernstein, P Against the Odds. (J. Wiley, 1998) [ISBN 0471295639].

Bernstein, P Capital Ideas — The Improbable origins of modern Wall Street.
(J. Wiley, 1998) [ISBN 9780029030127]. A wonderful history of the growth
of ideas in this area — a very good read.

Davis, M. and A. Etheridge Louis Bachelier. Theory of Speculation: the origins of
modern finance. Translated and with commentary (Princeton, 2006)
[ISBN 9780691117522].

Dunbar, N. Inventing Money: The Story of Long-Term Capital Management and
the Legends Behind It. (J. Wiley, 2001) [ISBN 9780471498117].

Kay, J. Foundations of Corporate Success. (Oxford University Press, 1995)
[ISBN 9780198289883].

Kay, J. The truth about markets. (Allen Lane, Penguin Press 2003)
[ISBN 9780140296723]. (‘Everything you wanted to know about economics,
but were afraid to ask’. Mervyn King, Governor, Bank of England).

Lewis, M. Liar’s Poker. (Coronet Books, 1989) [ISBN 9780340767009].

Lowenstein, R. When Genius Failed: The Rise and Fall of Long-Term Capital
Management. (Random House, 2000) [ISBN 9780375758256].
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Smithers, A. Valuing Wall Street: Protecting Wealth in Turbulent Times.
(McGraw-Hill, 2002) [ISBN 9780071354615 (hbk) 9780071387835 (pbk)].

Bachelier, L. Louis Bachelier’s Theory of Speculation: the origin of modern finance.
Translated and with commentary by Davis, M and A. Etheridge (Princeton:
Princeton University Press, 2006) [ISBN 9780691117522].

1.7 Online study resources

In addition to the subject guide and the reading, it is crucial that you take
advantage of the study resources that are available online for this course,
including the VLE and the Online Library.

You can access the VLE, the Online Library and your University of London
email account via the Student Portal at:
http://my.londoninternational.ac.uk

You should have received your login details for the Student Portal with
your official offer, which was emailed to the address that you gave

on your application form. You have probably already logged in to the
Student Portal in order to register! As soon as you registered, you will
automatically have been granted access to the VLE, Online Library and
your fully functional University of London email account.

If you forget your login details at any point, please email uolia.support@
london.ac.uk quoting your student number.

The VLE

The VLE, which complements this subject guide, has been designed to
enhance your learning experience, providing additional support and a
sense of community. It forms an important part of your study experience
with the University of London and you should access it regularly.

The VLE provides a range of resources for EMFSS courses:

¢ Self-testing activities: Doing these allows you to test your own
understanding of subject material.

* FElectronic study materials: The printed materials that you receive from
the University of London are available to download, including updated
reading lists and references.

* Past examination papers and Examiners’ commentaries: These provide
advice on how each examination question might best be answered.

* A student discussion forum: This is an open space for you to discuss
interests and experiences, seek support from your peers, work
collaboratively to solve problems and discuss subject material.

* Videos: There are recorded academic introductions to the subject,
interviews and debates and, for some courses, audio-visual tutorials
and conclusions.

* Recorded lectures: For some courses, where appropriate, the sessions
from previous years’ Study Weekends have been recorded and made
available.

* Study skills: Expert advice on preparing for examinations and
developing your digital literacy skills.

* Feedback forms.

Some of these resources are available for certain courses only, but we
are expanding our provision all the time and you should check the VLE
regularly for updates.
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Making use of the Online Library

The Online Library contains a huge array of journal articles and other
resources to help you read widely and extensively.

To access the majority of resources via the Online Library you will either
need to use your University of London Student Portal login details, or you
will be required to register and use an Athens login:
http://tinyurl.com/ollathens

The easiest way to locate relevant content and journal articles in the Online
Library is to use the Summon search engine.

If you are having trouble finding an article listed in a reading list, try
removing any punctuation from the title, such as single quotation marks,
question marks and colons.

For further advice, please see the online help pages:
www.external.shl.lon.ac.uk/summon/about.php

1.8 Using the subject guide

I have already mentioned that this guide is not a textbook. It is important
that you read textbooks in conjunction with the guide and that you try
problems from the textbooks. The learning activities throughout the
guide, and the sample questions at the end of the chapters, are a very
useful resource. You should try them once you think you have mastered a
particular chapter. Do really try them: don’t just simply read the solutions
where provided. Make a serious attempt before consulting the solutions.
Note that the solutions are often just sketch solutions, to indicate to you
how to answer the questions, but in the examination, you must show all
your calculations. It is vital that you develop and enhance your
problem-solving skills and the only way to do this is to try lots of
examples.

1.9 Examination advice

Important: the information and advice given here are based on the
examination structure used at the time this guide was written. Please
note that subject guides may be used for several years. Because of this
we strongly advise you to always check both the current Regulations for
relevant information about the examination, and the VLE where you
should be advised of any forthcoming changes. You should also carefully
check the rubric/instructions on the paper you actually sit and follow
those instructions.

A Sample examination paper is given as an appendix to this guide. There
are no optional topics in this syllabus: you should do them all.

Please be aware that a few sections in this guide have been
starred (*) to indicate that the material of the section is not
examinable. The material has been included in the guide
either for its interest value or in order to help you to see the
connection with a wider view of the subject.

Please do not assume that the questions in a real examination will
necessarily be very similar to these sample questions. An examination is
designed (by definition) to test you. You will get examination questions
that are unlike any questions in this guide. The whole point of examining
is to see whether you can apply knowledge in both familiar and
unfamiliar settings. The Examiners have an obligation to surprise you. For
this reason, it is important that you try as many examples as possible: from
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the guide and from the textbooks. This is not so that you can cover any
possible type of question the examiners can think of! It’s so that you get
used to confronting unfamiliar questions, grappling with them, and finally
coming up with the solution.

Do not panic if you cannot completely solve an examination question.
There are many marks to be awarded for using the correct approach or
method.

A final point about the examination for this course is to reassure you that
examination questions will not assume familiarity with the contents of any
of the starred sections in this subject guide. The purpose of such examples
is to motivate the mathematics and to persuade you that the mathematics
you are learning has important uses. Remember, it is important to check
the VLE for:

* up-to-date information on examination and assessment arrangements
for this course

* where available, past examination papers and Examiners’ commentaries
for the course which give advice on how each question might best be
answered.
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Chapter 2

A vector space approach to

2.1

2.2

2.3

2.4

uncertainty

Introduction and aims of the chapter

This chapter begins with some activities helping to remind you of some
basic concepts from Probability such as mean, variance, moment
generating function and the standard normal distribution. In particular
you are guided to calculate a few important integrals here, ahead of
their natural appearance towards the end of the course. This should help
you to check on the kind of calculus that will be required. The main
matter, however, is concerned with how to employ the language of
vector spaces to talk about random variables; we will use them to
describe possible future prices of ‘assets’ and actual ‘portfolios’, that is
collections of assets held by an economic ‘agent’.

Learning outcomes

At the end of this chapter and the relevant readings, you should be
able to:
= compute expectations (integrals) using ‘log-normal densities’

® be prepared to use vectors to study random variables, asset prices
and portfolios of assets.

Essential reading

There is no specific essential reading for this chapter. It is essential
that you do some reading, but the topics discussed in this chapter are
adequately covered in so many texts on the ‘applications of calculus’
that it would be artificial and unnecessarily limiting to specify precise
passages from precise texts. The list below gives examples of relevant
reading. (For full publication details, see Chapter 1.)

Ostaszewski, A. Advanced Mathematical Methods. Chapter 21.

Concepts from probability and statistics

The activities in the first subsection are meant to make you aware of
the practical difficulties in applying some of the ideas in the
Black-Scholes model of Chapter 9.

11
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2.4.2
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Activities referring to basic statistics

Learning activity 2.1

Let X1, ..., X, be independent random variables. For each i assume
that E[X;] = p and var[X;] = o%. Define

X = %(X1+...+Xn),
_ E%T[(Xl XY 4 (X — X2

Check that

(i) E[X]=p and so E[(X; — X)?] = var(X; — X),
(i) cov(X1, X) = Lvar(Xy),

(iii) var[X] = 102

Show that var(X; — X) = (—73—"7%)"—2 and so deduce that

E[V] =02

[Hint: var(X; — X) = var(X1) +var(X) — 2cov(X1, X).]

Learning activity 2.2

Show that when the variables of the last question X; are normally
distributed
20*

n—1"

var(V) =

Thus the standard deviation is small when the sample is large.

Comments on the activity

Suppose X; are observed rates of return on investment per period of a
single year, there being a largish number n of periods (perhaps months,
or days). Then S = nA will be the annual rate (at least to a good first
approximation) and E[S] = nu. The corresponding variance is

var[S] = no? and so the standard deviation for the year is o5 = o+/n.
Hence

o/p=(os/vn)/(E[S|/n) = Vn- (os/E[S]).

Suppose the annual rate is reasonably accurate, as measured by the
ratio of its standard deviation to the expeci‘ed value, for instance
os/E[S] might be of order 1 or 2. However, this ratio scales upwards
hugely (by a factor of \/n) when the annual rates are scaled down to
per-period rates. See Luenberger pages 214-216.

Concepts of probability requiring calculus

The activities in this subsection revise the kind of use of integral
calculus that is required in this unit. Reference is made to the

12
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probability density function of the standard normal variable denoted

1..2

e(z) = Nz

and the corresponding cumulative distribution function

O(t) = /-; p(z)dz = /joo e—%zzj—%.

Learning activity 2.3

The moment generating function is defined as M(t) = E[e'X].
When X is a standard normal variable show that M (t) = est’, [Hint:

_ 1,2
3T +t:cdx

EletX] = /:: e p(z)dr = \/% /_0; e

and complete the square.]

Learning activity 2.4

Using the identity E[e'X] = e3*", show that for a standard normal
random variable
E[X% =3.

[Hint: Expand both sides of the identity as series, thus:

o -3 1222 33 izt 1 1
14tz —F— M =14+ 2+t +...
/_oo\/27r{+x+2+6+24+}x tatthgt T

and compare both sides.]

Learning activity 2.5

If Z is a log-normally distributed random variable with mean m and Moment generating function
variance s show that E[Z] = e™e?*". [Hint: The random variable

X =(InZ — m)/s is normally distributed with zero mean and unit

variance (i.e. is a standard normal random variable). Use

E[Z] = E[e¥*X*™] and the previous activity.]

Learning activity 2.6
Show that if Z is a random variable such that
InZ =m+aU + bV

where U and V are independent random variables with standard
normal distributions then

E[Z] = i@,

13
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Hint: E[Z] = E[e™+aU+tV] = emE[e?V]E[e?V]. Why?

Comments on the activity

The next activity shows how to deal with In Z when the two normal
random variables are correlated. The trick is to regard the random
variables as two vectors and to replace them with two orthogonal ones
with the same linear span (recall the Gram-Schmidt process in Linear
Algebra). In this Gaussian variables context orthogonality has the same
meaning as zero correlation.

Learning activity 2.7

If Z is a random variable such that
mhZ=m+X+Y,

where X and Y are correlated random variables with

Cov(X,Y) = poxoy normal distributions both with mean zero, then
the trick is to replace X by rescaling it to a new random variable U
with variance unity and to rewrite Y as a sum of U and another
standard normal variable V. Writing

Y =aU + 8V,
where X = ~U, show that
vy=o0x,a=poy, =+/1-pioy.

Deduce that '
E[Z] = em+%(0§<+‘7§/+2payo‘y).

Learning activity 2.8

Find the expected value of the function of a random variable X given
by g(X) = max{X,0}, when the probability density function of X,
here denoted f(z), is log-normal. That is, evaluate

Elg)] = [ @-Rfeie = [ af@is—k [ )

This calculation is the basis of the Black-Scholes formula for valuing a A Black-Scholes calculation
‘call-option’.
[Hint. Make a change of variable by putting
Inz—m

w=w(z) = ——-—,
and write the two integrals in terms of the cumulative normal
distribution function ®. It may be helpful to refer to ‘sectional
expectation’, E[g(X); X > k], as defined below, and how that changes
under a change of variable:

EX5X > H=ar [ o@)f(ads = Elg(e™ ™) > (k)

- / 9(E ™) () du.
w(k)

14



2.5

2.5.1

Linear algebra: the language of vectors

Learning activity 2.9

The function Erf is defined in Mathematica as

Erf(z) = % /093 e~ dt.

Check that
®(x) = (1+ Erf(z/V2))/2.

Linear algebra: the language of vectors

In investment analysis one studies the possible prices an asset might
have at some future point in time. The term ‘asset’ is wide ranging
and might be a share in a company, but it can also be the pay-out

offered by some form of insurance contract. Since in both cases the
future value is affected by ‘circumstances’ we can draw attention to
such dependence, if the need arises, by using the more general term
‘contingent claim'. This term is used interchangeably with ‘asset’.

Contingent claims most often considered in this course take the form ofa  Primary and ‘derivative’
payment in an amount which depends on the value of some specified assets

asset where the evolution in time of the value of the specified asset is

given. Since the value of the specified asset is a ‘given’, the asset is

said to be a ‘primary asset’. The contingent claim is then said to be a

derivative asset, or just a ‘derivative’.

It may be necessary to contemplate various plans of action now, or in
the future, and the action could well depend on the realized future
price. In order to be specific about various future scenarios it becomes
necessary to list what possible prices should be considered in this kind
of forward planning. Say the prices might be X7, X5, ..., X,,. We will
initially think of these numbers as being positive (or, sometimes, just
non-negative). It is therefore possible to think about the information
currently available concerning the future of an asset, or the information
currently assumed about the future, as being described by the ‘vector
of prices’ (X1, Xo,..., X,)t

States of nature

In order to discuss more complicated scenarios, say involving several
assets at once, it is more helpful as a starting point to describe the
future as just a set § listing all ‘possible future atomic events of
interest’. Any one such event is typically denoted w and no
specification at this stage is given as to what is to be an ‘atomic event’.
These events, in whatever way selected, will become ‘atomic’ by sheer
dint of definition only. Of course in any particular discussion of future
events we would need to be specific about the list Q2. For instance, if
there are only two assets of interest and only one future date, an
atomic event w would be defined by: 'the first asset will take the price

15
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X and the other asset the price Y;'. Here, as above, X1, Xo,..., X5
lists all possible prices of the first asset and Y3, Y, ..., Y, those of the
second. In fact we could identify w with the pair of values (X;,Y}).
This example explains why the set 2 is called the sample space: it is
the set of all possible data samples that may occur. It is also referred
to as a ‘population’ from which a sample of data may be drawn.

It is customary to refer to the atomic events also as ‘states of nature’.
The original asset under discussion is now thought of as having price
X (w) when the future is given by the event w. The asset is thus best
described by correspondence to the states of nature, that is by the
vector (X(w1), ..., X (wm))? if @ = {w1,...,wn }. When the context
implies the use of €2 we refer also to this vector as the 'vector of
possible prices’ and denote it by X. A word of warning here: it is
sometimes convenient, but really very careless (clearly not a habit to be
encouraged), to speak of ‘asset X'; but it is very important to
distinguish conceptually between the name of an asset and the vector
of its prices at some given point in time. Assets, like any other
products in the market, though different in name could in principle
have equal vectors of possible prices; when there is danger of a mix-up
we will be more careful with the notation.

Example 1 (Potential gains and losses as vectors). An investor
with M dollars of cash in his account is considering whether to buy an
asset now when its unit price is 1 dollar or to wait to the end of the day
when he thinks the price is likely to go up or down by at most one cent
with equal probability. He can think of this as a coin-tossing game with
a fair coin. The result of the toss is either w; = Heads or wy = T'ails
with Heads indicating a rise. Thus = {w1,ws}. He models the unit
dollar-price of the asset with the vector X where X(w;) = 1.01 and

X (wg) = 0.99. If the investor decides to wait to the close of business,
the unit-price in dollars of the asset in his account — namely his cash —
is modelled by B, where B(wy) =1 and B(ws) =1, i.e. B=(1,1)
since irrespective of the toss the denomination of the currency is
unchanged. If he bought the asset his gain G from waiting is thus
either G(wy) = 4+0.01M or G(wz) = —0.01M. In vector form the gain
G satisfiess G = M - (X — B). The investor reckons he has a 50%
chance of winning by waiting (but also a 50% chance of losing).

Example 2 (Effects of diversification). Our investor has in mind to
split his cash evenly between two assets, X, Y both currently selling at
1 dollar per unit. He thinks that either of the two assets will
independently rise or fall by one cent by the end of the day. This time
it is a two-coin tossing game and so the outcomes will be

w1 = (Heads, Heads), wy = (Heads, Tails),

ws = (Tails, Heads), wy = (Tails, Tails) with Heads indicating a
rise. As before, we have a vector of prices for the first asset, listed
according to state, given by

X = (X1, X9, X3,X4) =(1.01,1.01,0.99,0.99), and a vector for the
second asset given by Y = (Y1, Ys, Y3,Yy) = (1.01,0.099, 1.01, 0.99).
This time the investor's gain will be
G=%(X+Y)-M-B=M(0.01,0,0,-0.01). By diversifying his
acquisitions he will lose only in one state of nature; the chance of this
he assesses as 25%. But then he also narrows his chances of a win.

We refrain from going through any more complicated examples of Q at
this stage. Instead we merely let {2 name the members of the set of
possible simple events; we suppose that there are at most m possible
simple events and we label them wy, ..., wm,. Thus Q@ = {wy,...,wm}.
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Although we are interested here in asset prices, the more general
situation is that of modelling some numerical property, call it X, which
is associated with every member of a ‘population’ 2. Thus a member
w of Q drawn from the population displays a value X (w). The vector of
potential values obtained by drawing an individual member from the
population is thus given by (X (w1),...X(wm))?. In this context such a
vector is called a ‘random variable’. The term owes its name to two
facts: that a numerical property may in general be variable over the
population; and, that, when the population is large, rather than
conduct a census in order to learn its values, it may be more
economical to observe the values on a representative sample of
individuals drawn at ‘random’. A simple example is that of ‘height’ of
people in a population. We will not discuss appropriate ways to select a
sample of individuals at random, which is a matter for statistics
textbooks. But we will show how mathematical ideas may be applied
profitably to random variables. Most often we will be concerned with
the random variable model of asset prices.

2.5.2 Compound events

The notation adopted in this section does imply that the components
of X need not be distinct (as in Example 2). So a future event such as
‘the price of the asset will be ' need no longer be a simple event. This
is because one and the same price x may occur in several states of
nature. The event that the price is x is a ‘compound event’; we denote
that event by [X = z]. The definition is

X =z] ={weQ: X(w) =z}

Evidently for distinct = the compound events [X = z] are disjoint and,
as x varies through all the possible prices, these events together
exhaust all the states of nature. We therefore say that the asset values
partition Q. In Example 2 of the last subsection we have

[X =1.01] = {w1, w2} and [X =0.99] = {w3,w4}.

On the other hand notice that by referring to  the language we have
adopted allows us to describe any other asset Y by the vector of its
prices (Y (w1), ..., Y (wr,)). This is a vector with the same number of
components as X.

2.5.3 Portfolios

If someone holds w units of asset X the value of the quantity u of the
asset in state w; will be
uX (w;)-

If u is negative, this number will be negative and may be interpreted as  Long and short positions
the value of a debt resulting from having initially borrowed |u| units of

the asset. When w is negative the holder is said to be in a position

which is short of |u| units of the asset X, or more conveniently ‘short

|u| units X'. If u is positive the holder is correspondingly said to be

long u units in X. Whilst you may regard as natural the use of

negative quantities in this context, you should be aware that this use of

mathematics coincides with the system of ‘double-entry’ book-keeping

promoted during the ltalian Renaissance. lIts first exposition, due to the
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mathematician Pacioli in 1494, was in a printed book, at a time when
printing was expensive (a mere quarter of a century after Guttenberg's
invention of metal type). It is one of the foundation stones of
capitalism.

Consider now holding u units of asset X and v units of asset Y; this is
referred to in financial terms as a portfolio of u units of X and v units
of Y. The portfolio may be neatly represented by the vector (u,v)?, it
being understood that a fixed order of listing the assets is being
referred to. With a two-asset list X, Y the portfolio (u,v)? lies in R?
though the assets themselves lie in R™. The value at the future date of
this portfolio in state w; will be

uX (w;) +vY (w;)
and this is simply the i-th co-ordinate of the vector uX + vY in R™.

Example 3. A person who borrows, without interest, the M dollars
from our investor of Example 1 and exchanges them for asset X when
the unit price is 1 dollar holds the portfolio which is M units long in
asset X (so u = M ) and short M units (i.e. v =—DM units) in asset
B (the cash which he exchanged for the asset). Thus uX + vB
represents his gain that day at close of business. This equals the vector
@ considered earlier.

The portfolio space: replication and completeness

If we allow both long and short positions in the assets X and Y, the
set of pay-offs uX + vY of all portfolios (u,v) is simply the subspace
in R™ spanned by the two vectors™X,Y. This is called the portfolio
space of the assets X and Y. We will be concerned in future examples
with several assets S, ..., Sy and with the assessment of the current
value of portfolios (uy,...,ux)t. The portfolios are vectors in R and
represent u; units of asset Sp,ug units of asset S, ..., un units of asset
Sn. The portfolio has payoff vector

191 + ... + unySn.

When Q = {wi, ...,wn,} this vector is in R™. Clearly the vector lies in
Lin{S,...,Sn}, a subspace of R™, to be called the portfolio space
of Si,...,Sn. The assets S, ..., Sy are not necessarily assumed to be
linearly independent as vectors in R™.

It is easy to confuse the distinction between the portfolio (u1,...,un)*
which is in RY and its pay-off in R™, so the reader should beware.

We will refer to S1,..., Sy as the spanning assets, or even basis assets
(if the vectors happen to be linearly independent), and to a general
member of the portfolio space Lin{S1, ..., Sy} as an asset X when

X =u1S1+..+unSn.
We can write this last line as
X = Su.
Here u = (ug,...,un)? and S is the m x N matrix

Sl(wl) Sg(wl) SN(wl)
Si(wz2)  S2(w2) ... Sn(we)

Lé’;(wm) 'S:"'Q(wm) ;S‘;N(wm)
18
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When X in R™ is in the portfolio space, and X = Su, for some
portfolio u, we say that u replicates the claim. If each vector X in R™
may be replicated by some portfolio we say that the portfolio space is
complete.

We will return to this point in Section 5.

2.5.5 The riskless asset

We let 1 denote the vector (1,1,...,1)* in R™ having a one in each
co-ordinate. Thus ul represents an asset which has price u in each
state of nature. Since there is no risk regarding the value later in time,
an asset represented by u1l is termed a riskless asset. By contrast any
vector not of this form is said to be risky. A dollar deposited in a bank
when the interest rate is fixed in advance provides an example of a
riskless asset, since the dollar together with interest accrual is paid
back by the bank no matter what the state of nature. (This is true
provided we believe the bank is safe from failure, which we do
throughout this unit.)

Of course the portfolio space spanned by the set of assets {Si,...,Sn}
might contain 1 but need not Figure 2.1. The riskless asset in a
two-state model.

PR

0.5 T 5 2

Figure 2.1: The riskless asset in a two- state model.

2.5.6 The call option: replication and linear span

A ‘call option’ is a financial contract issued with reference to a Strike/exercise price
specified asset, called the ‘underlying’ asset, and a price known as the

‘exercise price’ or ‘strike price’, which we denote by K;; it is issued

(often by an exchange) at some initial date, here taken to be ¢ =0,

and it promises at a later date, here taken to be ¢t = 1, a payment

which when the underlying asset has price S(1) is equal to S(1) — K,

provided this is positive, but is zero otherwise. Thus the payment has

value C = max{S(1) — K, 0}, the larger of S(1) — K and zero.

A related option is the ‘put option’. This again is issued (often by an
exchange) at some initial date, which we take to be ¢t =0, and it

promises at a later date, which we take as ¢ = 1, a payment equal to
K — S(1) provided this is positive (as before the underlying asset has
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price S(1)) and zero otherwise. Thus the payment has value
P = max{K — S(1),0}, the larger of K — S(1) and zero.

We will use the notation
(z)* = max{z,0}.

Thus the call option pay-off is (S(1) — K)*. The corresponding put
option pay-off is (K — S(1))*.

Learning activity 2.10

Plot the following pay-off functions in Mathematica obtained by
considering combinations of puts and calls:

(z-1)F 1 -2)*, (z-D*-(1-2)", (z—1* = (z-2)*,
l-z)t-2-2)", (@-1)T-2x(z-15)T +@@-2)", (-1)T+{1-2)t,
(z-1)T+(2-2)*, (x— DT +2(1-2)7, 20—t +(z—-1)*

Say in your own in words what are the circumstances under which
profits arise to the holder of these contracts.

Comments on the activity

Reading from left to right, these represent pay-offs to contracts
described by the following names:

on the first line: a long call, a long put, forward contract, bull spread,
on the middle line: bear spread, butterfly spread, bottom straddle,

on the bottom line: strangle, strip, strap.

Notes:

1. The function (z)* = max{z,0} may be defined in Mathematica by:
plus[x_] := Iffx<=0,0,x].

2. The pay-off for a long call option with exercise price k is given by
(x — k)T, since this pays x — k when x > k and zero otherwise.

What is the use of the call option? Whenever the asset has a terminal
price S(1) above K, the call, by way of a cash compensation (paid out
whenever the contract is exercised), effectively gives the holder the
right to buy a unit of the asset from the exchange at the lower price K.
(The holder ‘calls’ for a sale at price K.) If the asset price is below K
the holder need not exercise the contract. It is intuitively clear that the
option is a valuable form of insurance. But what should its fair price
be?

We pause to consider how to illustrate the contract, as this will help us
value it.

There are three natural approaches to illustrating the payment scheme.

The first approach is to plot payment against all values that we could
assign to S(1), as in the first figure below. This picture helps us to see
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how the payment formula works.

n

0 0.5 1 1.5 2

Fig. 2.2: Payment from a call option with strike price K = 1 against
all values of S(1).

The second approach recognises that, at least for the time being, we
want to have only a finite number of states of nature to deal with. So
one way to illustrate this finiteness is to indicate on the price axis, say
with dots as on Figure 2.3, just those future prices which may be of
interest to us in some forward planning exercise and then to graph only
the corresponding option values. For instance, we might conceive of
two economic scenarios, a good one in which the underlying asset has a
high price Sy, and a poor one in which the asset has a low price
Sp,with S;, < Sg. What are the good and poor economic scenarios
defined by? Just as you please; for instance according to whether the
chosen asset has a high or low price (for example, the asset might be a
portfolio of shares such as makes up a market indicator, like a
FTSE-100 index).

rs
S t———

aos 1 Ls 2 2.5
Fig. 2.3: Payment from a call option with strike price
K against two ‘reference values' for S(1).

The third approach stresses the fact that we want S(1) to be
represented as a vector, with its components corresponding to states.
So in the third figure, Figure 2.4, we suppose that there are only two
states of nature wy and ws (corresponding to the poor and good
economic scenarios referred to above), and we put up two axes one for
each of these two states. The idea is that the two values in the two
states arising from any payment scheme X can be shown as vector
(z1,z2), with 1 = X(w1), and 29 = X (ws). This makes the z; axis
correspond to state wi and xo axis correspond to state wo. Now the
payment from a sale of one unit of the underlying asset is represented
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by a vector with two components (Sr,, Sg). The prices paid in the two
states can then be read off according to state from one or other axis. In
Figure 2.4 this is illustrated with the vector S = (Si, Sg) = (3,2).The
riskless asset is also shown in the diagram as 1 = (1,1).

-0 45

Fig. 2.4: Replicating the call C = (0, 1.5) using the
riskless vector 1 = (1,1) and the risky vector
S(1) = (.5,2) as spanning vectors.

On the same diagram we show a call option. It pays C'(w) in state w
where C(w) = max{S(1,w) — K, 0}. For our illustration we took

K = % Thus K here satisfies S;, < K < Sg. In the poor economic
state C(w1) = 0, and in the good economic state

C(wz) = Sy — K = 1; thus C lies along the wo-axis.

This third diagram represents how we intend to model contingent
claims at their simplest. We take () to consist of two states. We take
for our portfolio space the span of two assets: the riskless bank deposit
1 and a ‘risky’ underlying asset with price vector S, i.e. one with prices
S < Sg. Thus S ¢ Lin{l}.

What is special about this model? First of all, we choose these two
assets, because we know their value (price) at time ¢t = 0 on the
market. The market trades asset S for S(0) and the bank offers the
riskless asset 1 for 1/(1 + 7). Secondly Lin{S, 1} = R?, so the model
is complete; this means that any claim can be expressed as a sum of
the two spanning assets in appropriate amounts. We hope to be able to
price the claim correspondingly, as the cost the two summands. In
other words, we use completeness to price claims.

Our first step is to see about spanning the call.

In this context it is natural to relabel the two states so that
wyg = High and wy, = Low corresponding to the risky asset being
valued high or low. So the asset price is Sy = S(wg) or Sp. = S(wp)
with S;, < Sy. As above, assume S; < K < Sg; so then

C(UJH) = SH - K, C(wL) =0.
We find a portfolio (u,v) so that the call is a combination of 1 and S:

C=ul+vS.

We say the portfolio ‘replicates’ the contract. Comparing both sides of
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this equation, we see that for replication to hold we need

u+vSy = Sy-—K,
u+vS, = 0.
So
v(Sg — SL) = Su — K,
hence
we_g, Su-K = Sp-K
TP ey =S T T Sp-5.

Arbitrage and linearity

Suppose the assets in their totality are given a definite numbering
1,2, ...,k (so that their future prices of assets X, ..., X}, are
represented by the vectors X7, ..., Xx). We can denote a portfolio of
these assets by a vector whose i-th component gives the quantity of
‘asset’ X; held by an investor. We will denote this vector by

H = (hy, ha, ..., hg). The notation appears to imply that we are
treating X, ..., X as though they formed a basis and the question
arises whether we are entitled to do so. This in turn depends on what
assumptions we make about the initial prices of the assets. Denote the
initial prices respectively by p(X;). We now show that when the asset
market is in equilibrium these initial prices are connected to the future
prices.

Suppose for the sake of argument that
X1 =Xz + Xs,

i.e. in all states of nature the price of asset X is the sum of the prices
of the other two assets. This says that the portfolio Hy = (1,0,0,...)
and Hj = (0,1,1,0,...0) are of equal value in one period’s time. One
might expect that in this case the current market value of both
portfolios is also the same, i.e.

p(X1) = p(X2) + p(X3).

Suppose, however, that in fact, for some reason

p(X1) > p(X2) +p(Xs), ie. D =p(X1)— p(X2) — p(X3) > 0. This
inequality suggest a method for making money, called arbitrage, based
on the idea of buying cheap and selling dear and pocketing the
difference D. This idea is very simple to comprehend if done
‘instantaneously’. However, here we must wait for a period of time to
elapse and so must worry about interest, which is either paid on
borrowed money (and tied-up in stock bought), or earned on a deposit.

To explain this point consider again the riskless asset 1. If the interest
rate over the period is r, then in exchange for 1 dollar deposited
initially, an amount 1 + 7 will be received one period later; equivalently,
an amount 1/(1 + 7) needs to be deposited initially to receive one
period later 1 dollar in all states of nature. Thus the price to be paid
for receiving the asset 1, denoted p(1), satisfies

1
147

p(1) =
Let X1 denote the riskless asset 1. Thus H = (hy, ..., hgy1) € RFFL

Armed with this notation, here is the idea of arbitrage across time.
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First find someone who owns a unit of X; and has no intention of
selling it during the following period. Borrow this unit of X3 and sell it
for p(X1). This amounts to borrowing the portfolio Hy, defined above,
in order to sell it. Next buy (for less) the portfolio H}, comprising one
unit each of assets X5 and X3 for the total cost p(X2) + p(Xs) and
deposit the difference D in a bank. At the end of the period, when the
state of nature is w, sell Hy, which gives an amount of money

Xo(w) + X3(w); this equals X;(w) and so enables a unit of the asset
X3 to be bought back, and given back to the lender. The overall effect
is that this behaviour leaves the enterprising borrower with D(1 +r) in
his bank account at the end of the period.

We draw attention to the fact that the model of market securities in
which this argument works must include either a riskless security, or a
portfolio of securities with pay-off equal to 1.

A similar strategy exists if p(X1) < p(X3) + p(X3), i.e.

D = p(X3) + p(X3) — p(X1) > 0, but based this time on borrowing
Hy, selling it, acquiring Hp, depositing the difference D in the bank
and waiting the one period. (Figure this out for yourself.)

We conclude that if our market example is to have no arbitrage, we
must have

p(X1) = p(X2) + p(X3).

A second important conclusion is that, in the absence of an arbitrage
as just discussed, a contingent claim which pays nothing in some states
and a positive amount in at least one state is prevented from having an
initial price of zero. (Otherwise you could buy for nothing a chance of
positive profit with no risk.)

This argument clearly generalizes and we may conclude as follows.

Conclusion. /f the assets X3, ..., X do not give rise to an arbitrage
and an asset X is linearly dependent on the given assets with

k
X = Z wi X;
=1

then its price satisfies

k
p(X) = uip(X).
=1
Thus in particular

p(Y_hiXi) = hip(X).

Moreover, for any portfolio H, we have

Vo(H) =Y hip(Xs).

If a model is free of arbitrage the price functional p is thus a linear
transformation.

Valuation if a linear transformation is an expectation

We return to the point of view that portfolios form a vector space
(compare with Section 2.3.8).
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If we think of the states of nature w; occurring with probability p; then
the expected value of asset X is

Ep[X] =) piX (ws).
This is also referred to as the mean value of X, denoted mx.

Evidently the portfolio holding w units of X and v units of Y defines
an asset Z = uX + vY, the expected value of which is

EZ] = Zpi{uX(wi) + Y (w;)} = uE[X] +vE[Y},
myg = 'u,z-mX—l—U'my.

Thus, unsurprisingly, expectation is a linear transformation from the
portfolio space to the reals R.

Now we set about establishing a converse: that valuation is an
appropriate expectation.

Suppose that the portfolio space Lin{S1,..., Sy} is complete, i.e.
coincides with R™ (where m is the number of states of nature). Then
each of the natural base vectors e; = (1,0,0,...)%, es = (1,0,0,...)¢, ...
represents a claim. For example, e; pays one dollar if and only if state
one occurs, but is otherwise worthless. Note that in the absence of

" arbitrage opportunities the price p; of the claim e; is positive and
similarly pa, ps, ... are all positive. These claims are known as
Arrow-Debreu securities.

Relative to the basis of Arrow-Debreu securities, an arbitrary claim
X = (@1, ..., Tm )t may be represented in the form
X =xe1 +x0e9 + ... + Tpem.

In the absence of arbitrage, the pricing function p is a linear
transformation from R™ to R, and so we may write

p(X) = z1p(er) + z2p(ez) + ... + Tmp(em),

zy

x
p(X) = (plvp?a"'apm) 2 )

ITm
and the matrix representing matrix is just the row vector (p1, ..., pm)-
Notice that if the interest rate is zero then p(1) =1 and, since
l=e+ex+...+em,
we have
1 = p(1)
ple1) +plez) + ... +plem)
= p1tp2+t..+DPm.

So p = (p1,...,pm)" is a probability vector and
BplX] = ) piX(w)

z1p(e1) + zap(ez) + ... + Tmp(em)
= p(X).

Thus p is a ‘probability measure’ on the states under which the market
price of a claim agrees with its expected value.
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A geometric view of probability

In linear algebra courses one is taught to think geometrically about
vector spaces. We have seen above that vector space language is a
natural language for describing uncertainty when working with a finite
number of states of nature. We will be reaping the benefits of thinking
about probability geometrically in a considerable part of the course —
especially so in Chapter 6. We see in this section, as a more modest
application, why correlation is to be viewed through the spectacle of
orthogonality and how hyperplanes correspond to a fixed expected
monetary outcome. Later, in Chapter 6 in a converse kind of way
hyperplanes take a central role in constructing probabilities.

Let p = (p1,...,pn)? be a probability vector such that p; > 0 for each i.
Thuspy + ... +pp = 1.

Example 1. The formula
(X,Y)p = Ep[XY] = ZpiXiYiv
=1

where X, Y are in R™, defines an inner-product. Here we think of
X = (Xy,...,Xy)" as describing the possible pay-offs X; = X (w;),
according to the possible outcomes w1, ..., w,, with associated
probabilities of the outcomes given by (p1, ..., pn )%

Since all the probabilities p; are positive, we have
(X,X) =0if and only if X =0,

so that || X||p = 1/(X, X) defines a norm.

Example 2. Find ||1]|p where 1 = (1,...,1)¢ is the riskless pay-off of
one dollar in all states of nature.

Solution. We have

IZ=> p =1

Example 3. Relate the inner-product (X,Y), when
p1 = P2 = ... = pp, = 1/n to the usual Pythagorean inner-product
(X’ Y>2'

Solution. We have

1 1
Ep[XY] ZEXiYi: X, Y)s,

Xl = ~lIXll.

Example 4. Relate the norm ||X||p and inner product (X,Y’),, to the
Pythagorean inner product (X,Y)s and norm || X||2 by considering the
transform Z = Z(X) of the random variable X given by

Z = S'%x,
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where S1/2 denotes the diagonal matrix diag{./p1, /P2, ...}, i.e. a
matrix with non-zero entries only along its diagonal. Thus

Zi = \/pi- Xi.

Solution. This transformation amounts to a scale-change in the
independent directions. We first note that

S = 8252 = diag{p1, pa, ...} and that S/2 is symmetric, i.e.
(81/2)t = S1/2. Now we see that

(X,Y)p =) pX.Y;: = X'SY,
i=1

so X'Y = (X,Y)s = (X,S71Y)p. Thus a hyperplane {X : X*Y =1}
with normal Y translates to the hyperplane {X : (X,S71Y), =1}
with normal S~1Y. Of course S~! = diag{1/p1,1/p2,...}. Thus the
hyperplane of portfolios X of initial value one, X’1 = 1, translates to
the hyperplane with normal S=11 =(1/p1,1/p2, ...).

Lastly, we compute the Pythagorean norm of || Z]|2 to be
[1Z]]2 = X*SY28Y2X = X'SX =||X||p.
Of course this just says
12112 = > piX7 = [IX]lp-
Obviously the transform of the riskless vector is

SY21 = (\/p1, oy /DL

From this last example it should come as no surprise that purely
geometric facts concerned with norms and inner-products translate into
probabilistic statements and, conversely, that probabilistic statements
about covariances and variances yield under specialization standard
geometric facts.

Application of Example 1. This inner product is used to measure the
co-dependence of two vectors relative to the possible outcomes w in .
Indeed if the distinct values taken by X are z; for i = 1,...,k and the
distinct values taken by Y are y; for j = 1,..,k’ then

Ep[XY] = inyj - PIX = z;&Y =1yj],
4,J

Here [X =z; & Y = y;] denotes the compound event
Bij = {w: X(w) =2 & Y(w) =y},
which is equal to
{w: X(w) =z} N{w: Y(w) =y;}.

Its probability is just

> pw).

wEEij

Stretching conventions to allow the summation operation ) to be
applied to a set of real numbers one might have written this more
elegantly as

D {pw) : X(w) =2 & Y (w) =y;}.
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We define X and Y to be independent if for each i and j
P[X=$i&Y=yj} ——‘P{X:Z'i}'P[Y:’yj].

This corresponds to the intuitive notion that when dealing with two
events involving independent properties one multiplies their
probabilities.

Comment. A more careful interpretation is this. Suppose we partition
Q up according to what value X takes. Then for any value z the
‘contour’ of §2 defined by the function X, namely

X = a] = {w: X() = a},

may be regarded as a population in its own right, denoted {2,. Then on
Q. we may define the probability

p(w)

Pl) = Plx =

We may extend the definition so that p,(w) = 0 for w not in Q. This
is known as the ‘conditional probability’ (conditional on the premise
X = z). Recall that X takes the distinct values z1,...zx. If z = z;
then under p, the random variable Y takes the value y; with a
probability equal to

px[Y = y]'] = Z Pz(w)
weE;;

since

{(wiweQ &Y (W) =y} ={w: X(w) =; & Y(w) =y,}.

But
w) = p(w ! w
weXE;ijpx( ) WEZEU P P[XZJS] wEZEﬁp( )
_ Plx :x&Y:yj]
B P[X =z '
So
pw[Y:yj]:P[sz&Yzyj].

P[X = z]
If the number p,[Y = y;] does not depend on the choice of contour
[X = ] and agrees with the value P[Y = y;] (i.e. the probability that

Y = y; on the whole population), we have every reason to say that X
and Y vary independently of each other over .

Example 5. Multiplication Theorem. Show that if X and Y are
independent then
Ep[XY] = EP[X]EP[Y]'

Solution. We have

Ep[XY] = leyj X = ;&Y =],
= Zmlyg X =] PIY =y,
= sz w2 v P =)
= Ep[X]Ep[Y]-
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A geometric view of probability

Any equation immediately offers a way for measuring the validity of the
assumptions leading to it by a comparison of its two sides. So here,
when XY are arbitrary, the discrepancy Fp[XY] — E,[X]Ep[Y] is
used to measure the amount of dependence between X and Y. In fact,
as we shall see in a moment, this discrepancy can be rewritten as an
inner-product as follows:

Ep[(X — Ep[X])(Y — Ep[Y])],

i.e. using (,)p. This last expression is all the more rewarding by reason
of its geometric interpretation as measuring the cosine of the angle
between the vectors X’ = X — Ep[X] and Y/ =Y — E,[Y]. When the
random variables X, Y are independent, the cosine of the angle
between X’ and Y is zero, and so the latter two vectors are at right
angles. By contrast, when the angle between them is zero, the vectors
are collinear, and so for some scalar A

X — Ep[X] = A(Y — Ep[Y)).

We reconsider this matter at the end of the current Section.

Definition. The formula
cov(X,Y) = Ep[(X — Ep[X])(Y — Ep[Y]))],

where X, Y are in R™ defines the covariance of X and Y. Thus if
X,Y are independent then cov(X,Y) = 0. Note that
var(X) = cov(X, X) is the variance of X, namely E,[(X — Ep[X])?].

Example 6. Verify that
E[XY] = E[X|E[Y] + cov(X,Y).
Solution. Clearly we have

E[(X - E[X)(Y - E[Y])] = E[XY)]- E[XE[Y] - E[YE[X]] + E[X)E[Y]

We note that by expanding couv(X + Y, X + Y) we may obtain the
identity

var(X +Y) =var(X) +var(Y) + 2cov(X,Y).

(See the Learning activities.) Thus if X and Y are independent, as
defined above, cov(X,Y) =0 and we have

var(X +Y) = var(X) +var(Y).

We will need this result in Chapter 8.

When p; > 0 for all states i, it follows from the definition that
cov(X,X)=0if and only if X = E[X] -1,

i.e. the variance of X is zero if and only if X; = E[X] for all 2 making
X a constant.

We define the standard deviation of X to be

ox = cov(X, X).
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Unfortunately the formula

|| X]| =0x = Veov(X, X)

does not in general define a norm. But, as the remaining norm
properties listed in Section 2.4 of Ostaszewski do hold, it is said to be a
pseudo-norm.

All'is not lost, however: the covariance formula does define a norm
when it is applied to vectors X lying in any subspace of R™ that does
not include Lin{1}. We note that the largest dimensional such
subspace has dimension n — 1. The most obvious candidate is the set
of random variables

(X : E,[X] =0}.

This is indeed a vector subspace, indeed it is the null space (or kernel)
of a linear transformation: expectation is after all a linear
transformation.

Comment. There is an alternative approach to covariance which allows
us to regard o x as a norm. We simply have to be prepared to identify
(i.e. regard as equal) two vectors when their difference lies in Lin{1}.

Such an identification involves a subtlety. Properly speaking, in the
circumstances envisaged, if X — Y € Lin{1}, one ought to say that X
and Y are not so much ‘equal’ as ‘equivalent’, written in symbols

X =Y. Reason: under this definition if X =Y then Y is in the affine
set X + Lin{1} consisting of all vectors of the form X + Z where

Z € Lin{1}, i.e. a line through X parallel to the subspace/line
Lin{1} (for parallel affine subspaces refer to Section 2.1).

X+Lin { 1}

Iy X

Fig. 2.5: The line through X parallel to Lin{1}.

As noted above, instead of working in R™ we can drop down by one
dimension and consider any n — 1 dimensional subspace W not passing
through 1. Then ow is a norm for W. Evidently such a subspace W is
a hyperplane (see end of Section 2.6). One can select for any vector X
a unique vector W(X) in W equivalent to X namely the unique
intersection point of the line X + Lin{1} and W. (See the Learning
activities.) In the obvious sense W(X) is the ‘projection’ of X onto W
parallel to Lin{1}. We devote the whole of a later chapter to this
important idea.
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2.7

Solutions to selected activities

It is helpful to consider the case W = {X : Ep[X] = 0}. Being the
kernel of a linear mapping with rank one it is a subspace of dimension
n — 1. As Ep[1] =1 the subspace W does not pass through 1. We
find a formula for W(X). Since W(X) is in X + Lin{1}, put

W(X) =X + ol with @ a scalar. Now E,[W(X)] =0, so
Ep[X]+a=0ie a=—E,[X], and hence

W(X) =X — Ep[X]1.

In this notation cov(X,Y) = E,[W(X)W(Y)], and so covariance
measures the angle between the representatives of X and Y. When X
and Y are independent their representatives are at right angles.

X
Fig. 2.6: Selecting W(X) in W equivalent to X.

Solutions to selected activities

Solution to learning activity 2.1

_ 2 52

1 no
var[X] = 3 Zvar[Xi] ==

By independence,

o2

S 1 1
cov(X1,X) = Ecov(Xl,Xl o+ Xn) = ;Z—var(Xl) =

Since E[X; — X] = 0 we have, using the hint,

E[(X, - X)?] = E[X,- X|E[X, - X]+var(X; - X)
a? _(n- 1)o?

2
= 0402+ -2
n n n

Solution to learning activity 2.7

Thus V is a combination of X and Y independent of U. We have
0% =var(X) = yar(U) = 42,
i.e. v =o0x. Moreover,

poxoy = cov(X,Y)
= <vU,aU + BV >
= ay<UU>48y< UV >
= v,
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i.e. a = poy. Hence

B= V13- p20Y7
since 02 =< alU + BV,aU + BV >=a? + 2.
The idea of rescaling X and replacing Y is taken straight from the
Gram-Schmidt orthogonalization procedure. Indeed it is enough to view
[|X]|| = var(X) and < X,Y >= cov(X,Y) as the norm and

inner-product on the space of zero-mean random variables. Here we
apply the fact that the span of X,Y is the same as the span of U, V.

Finally, since X + Y = (a +v)U + BV we have

E|Z) = em+%(‘vz+2a7+a2+ﬁ2) — em+%(‘f§<+"§/+2pdwf¥)'

A reminder of your learning outcomes

At the end of this chapter and the relevant readings, you should be
able to:

w compute expectations (integrals) using ‘log-normal densities’

m be prepared to use vectors to study random variables, asset prices
and portfolios of assets.
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Chapter 3

The financial environment: a
preliminary discussion

3.1 Aims of the chapter

The purpose of this chapter is twofold. Firstly, we revise the basic ideas
of interest rates and discounting within a deterministic framework. You
should be aware of these ideas from earlier courses, so this is a
refresher section. Next we describe informally the financial transactions
for which we will later create formal mathematical models. By
‘modelling’ is meant something quite different from calculating or
drawing mathematical inferences. The action of describing some
aspects of reality in mathematical terms is in itself a separate creative
act. To be able to move backwards and forwards between some
mathematical calculations (resembling quite often either some linear
algebra, or some calculus) and a description of financial markets is an
acquired skill. We thus urge the reader to take time to understand the
financial environment which is modelled by the mathematics in this
course. For completeness, we give a rapid account here of the features
that will be studied in the course. But the student is advised to read
more plentifully. At the end of this chapter you will be able to answer a

question such as this: A leitmotif for this chapter

‘A zero-coupon treasury-bond with face value £100 is a document
which may be exchanged for £100 at the Bank of England after a given
period of time , at which time it is said to mature. If a trader is willing
to sell a bond maturing in a quarter of a year currently for £97.5, what
does this imply about the trader’s belief about the bank interest rate
applicable for the current quarter? The trader offers two similar
government bonds each with face value £100 one with a maturity of
one year the other with a maturity of two years. He sells the first at a
price as though he believes the interest rate applicable for the next year
will be 10% per annum. What is the price? He sells the second bond
as though the interest were constant at 10.5% per annum. What does
he therefore believe the bank interest rate will be for the second year?’

3.2 Learning outcomes
At the end of this chapter and the relevant readings, you should be able to:
m understand what is meant by continuosly compounded interest

M compute the terminal value in a deposit account of an initial deposit and of a
deposit stream

m compute the present value of a single future payment and of an income stream
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m compute the expected value of a defaulting income stream.

Suitable reading for this chapter

Cvitani¢, J. and F. Zapatero Introduction to the Economics and
Mathematics of Financial Markets. Chapter 1.

Hull, J.C. Options, Futures and other Derivatives. Chapters 1-4.

Luenberger, D. Investment Science. Chapters 1, 2, 3 and 7.

Basic deterministic models

Savings and loans: compounding

One of the services offered by a bank is the use of a deposit account.
This offers individuals the opportunity to lend money to the bank.
Implicitly this is a contract, in which the bank announces that it will
periodically ‘add money to the account’, an activity known as interest
accrual. The interest period length is of course announced as part of
the contract, and a simple proportionality-rule for interest accrual is
applied on the assumption that no withdrawals occur in the period. To
be precise: the bank specifies (i) what the interest period length is (or,
equivalently, the compounding frequency with which in each year it
adds interest to the deposit account) and (ii) a rate of interest accrual,
denoted by r, measured per annum (i.e. the unit of time is a year).
Thus when the interest is added once a year and the interest rate is
Tyear @ SUM D deposited into the account for one period grows to

D(1 4 ryear). It is assumed that the depositor cannot withdraw the
deposit during the year.

Banks do, of course, offer various kinds of deposit contract, in the form
of differently named deposit accounts. These account will thus vary
both in relation to the frequency of interest payments and interest rates
applied to the account. For example, the bank may offer on one
account an interest rate 7y, per annum with one interest payment per
annum, and on another account an interest rate remi per annum with
interest paid semi-annually. In the second case an amount D deposited
for half a year grows to D (1 + rsemi%) since the annual rate is Teemi
and the amount of time (measured in years) is 1. After one year the

deposit therefore grows to D (1 + %)2 .Thus a depositor willing to
deposit D dollars for the duration of one year will compare how he is
rewarded by the bank with the two potential balances

D (1+ 7year) and D (1 + %)2

The two rates will offer an equivalent reward if and only if

2

re .
14 ryear = 1+ Tsemi + Szml .

In general one expects the semi-annually paying account to give a lower
reward, because the bank permits the depositor to withdraw from the
contract after the first six months. Put another way, the bank offers a
higher reward because the deposit may not be withdrawn earlier.
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As a part of the contract the bank may announce for how long the rate
is to be held fixed into the future, or it will identify at what points in
time it will vary the interest rate.

In this subsection we will examine the case of a fixed annually
compounded rate which we denote by 7 = 7ye,,. This means that we
are considering deposit-making activity over a time horizon in which
the rate stays at 7 and compounding occurs just once a year. See
subsection 3.4.4 of this section to see how to adapt the arguments
when rates are allowed to change.

One further comment is in order. The calculations that follow assume
that the bank does not fail to honour its contract. In reality some banks
do fail. The discussion here has to be interpreted as referring to a safe
bank, or at worst a time interval over which the bank remains safe!

Terminal deposit account value

At the end of N years the account holds
D(1+n)N,
where 7 = 7year.

Let's measure time so that beginning of the first period is denoted by
t =0 and the end of the N-th year is denoted ¢ = N. Suppose the
amount D is deposited at some time ¢t = k (with 0 < k < N). Then
the terminal value (i.e. at time ¢ = N) of the amount in the deposit
account is instead

D(1+r)N-k,

More generally, suppose that at the start of each of the consecutive
periods numbered t = 0,1,2,3,... an amount D; is deposited. The
last of these deposits occurs at time t = N, and so is made at the end
of the N-th period. In this case the terminal amount in the account,
i.e. at the end of N periods, is

Do(1+ )N +Di(14+7r) V"t + ...+ Dy_1(1+7)+ Dy.
The t-th term for t =0,1...,N is

Dt(]. + T)N_t.

Higher frequency interest payments

The period length may vary. Recall that it is normal to measure the
period in units of time with one year as the unit. Similarly, to enable
comparison it is normal to quote the rate not per period but per unit of
time. Thus if a rate of 7qysx per annum is quoted and the period is a
quarter of the year, then the interest paid per dollar per period is

Tquart/4'

Thus with quarterly payments a sum D deposited into the account for
t years grows to

T 4t
D (1 quart) ,
+ 4

since the number of periods, N, is 4t as there are 4t quarters in ¢ years.

Basic deterministic models

Quarterly and monthly
accruals: Tquart and Tmonth-
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It is important to understand what happens to interest payments as the
period is shortened, i.e. as the frequency of payments in one year is
increased. If the period is a month and the rate offered is Tmonth the
formula changes to

D (1 + Tmonth)12t

12 ’

as there are 12 months in a year. Similarly if the period is a day and
the rate offered is ry,, the formula alters to

p(1+g2).

In general if there are n periods in a year let us denote the rate offered
by the bank by r,. Thus r; denotes rye,r and 7o denotes rsemi. The
formula in the general case becomes

D(1+%)nt.

Special cases are always easier to understand. Let us consider the case
rn, = 1. We ask what happens to the expression

(1+ %) (3.)

as m increases without bound. This is apparently an academic question,
but it has an interesting answer. We look at this case despite the fact
that one's first reaction is that you would not expect a bank to give
one and the same rate for a range of contracts with increasing
compounding frequency. Unsurprisingly, it turns out that the expression
(3.1) is increasing in n (more interest is being paid!), however, the
expression remains bounded and approaches the number e = 2.7... So,
after all, if the bank ‘generously’ did not alter the contractual rate, it
would still not be giving much away.

Why the number e

To see how the number e arises, consider the expansion

(+2) = ende s (2) somtlecn 1y

1 1 1 1 2
1 (=)= (1-=)(1-2)+..
+1+2<1 n>+2_3< n)( n>+

The (k+1) term for k =1,2... is

L0905

As n increases unboundedly this term tends to the value
1
_k:_!-

It is plausible now that

1 1

1 n
<1+;> —1+1+-+—=+ +..=e

1
2 23 2-3-4

Now suppose that a bank considers using a fixed deposit rate p and
contemplates different compounding frequencies n which it intends to
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Basic deterministic models

be ‘large’. That is, in the notation of the last subsection, suppose that
rn, = p without fixing n. Using the substitution m =n/p, we have

00" - ()"
- ((+5))

— ept,

as m, (or, equivalently, as m) increases without bound.

In particular, a dollar deposited for a year would grow to nearly e” when
n is large enough. Thus the bank can select p to control just how much
it pays its depositors in this high-frequency compounding account.

We can revisit the problem a bank faces when it considers a range of

contracts with compounding frequency n and corresponding rates 7,

that in fact vary with n. Consider the more realistic situation of 7, Instantaneous accruals:
varying with n in such a way that r,, — 7j,st. Thus 7, takes its place  Tinst.

as a limiting ‘instantaneous’ rate at the end of our hierarchy of, yearly,

monthly, and daily rates. Now it is true, with = denoting 7,4, that

T\ ™ .
(1 + ——) — e ifr, —r (3.2)
n
Not wishing to labour the point, let's note that a proper proof relies on

the observation that, for any € and all large enough n we shall have
r—e < r, <r+e. In consequence

r—e\" rn\" r+e¢ "
<1+ ) §(1+—) Slim(l—i— ) .
n n n n
But, we now know that
r+e : rte " r—e : r—e\"
e =lim(1+ and e =lim(1+ .
n n n n

From here it is possible to deduce the result (3.2).

Continuous compounding

By the last section of work, since a good approximation to a very
frequent compounding of interest account employing a fixed annual
rate p is given by the formula

t
De?,

we introduce a new mathematical model for high-frequency interest
compounding.

We will say that a bank account pays interest with a constant Continuous compounding
continuous compounding rate p per annum, if after ¢ units of time rate: p.
(measured in years) an initial deposit of D dollars causes the balance
on the account to grow to
De*.

Note that if the deposited amount D is made at a time ¢ with
0 <t < T, rather than at time ¢ = 0, the deposit account's terminal

value will instead be
DeP(T-1)
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Comment. Even if a bank does not quote a continuous compounding
rate p, one can always compute an equivalent continuous rate. Indeed,
if the bank quotes a rate 7y, per annum and adds interest once a year
we can compute an equivalent rate p such that

D(1 + ryear) = De”.

Solving for p, we get
p = log(1 + ryear)-

In conclusion, there are a number of possible interpretations of the
phrase ‘a rate of interest r'. Interest may be added at discrete
moments so that r refers to the rate denoted by 7, in the earlier work
for some n. Alternatively, the rate may be applied according to the
continuous compounding model, and then r stands for the rate which
we have just denoted by p. The former interpretation will be applied in
the discrete models of Chapters 3—7. The latter will be applied in the
continuous-time models of Chapters 8-10.

Deposit rates

The idea behind the definition of the last subsection was to model what
happens in the limit as the interest-period becomes increasingly smaller,
that is, as the number of periods, n, in a year increases indefinitely.

We will want to study deposit making over time rather than a single
solitary deposit payment.

In a context where the number of periods in T' years, namely nT,
becomes huge it makes more sense to describe deposit activity as a
rate of payment, just like interest payment activity. So, instead of
quoting the amount deposited in dollars, we will describe the deposit as
occurring at a rate of so many dollars per annum.

We assume that interest is compounded at a frequency of n and that a
rate r is applied to the account (i.e in the earlier notation the rate is 7,
per annum and here r = 7,).

Thus when the deposit rate is quoted as ¢ dollars per annum, the
amount actually deposited at the beginning of a period is in fact

1
quﬁv

since there are n interest periods in a year.

If the deposit rate is constant throughout the time of deposit making,
the amount deposited at time ¢ will always be

Dt:—.
n

Although the deposited amount is increasingly small as n increases,
nevertheless the total amount deposited by the end of T years is the
finite amount 7.

In the presence of interest accruing in intervals of length 1/n, the
terminal value of the account is the sum
nT

nT—j
PORA R R
n n

=0
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where j moves in integer steps. Alternatively, put j/n =t and with ¢
moving in steps of size 1/n the sum may be re-expressed as

n(T-t)
g(1+1) .
n n
Note that with the substitution m = n/r we have
n(T—t) 1 mr(T—t)
(1+5) <L+—)
n m

(¢4

s er(T-—t) .

T

t=0

An explanation is given in Chapter 6 why the terminal value in the
deposit account tends to the limit

T
/ qer(T—-t) dt
0

and this of course is very simply computed to be

er(T—-t)
|

T
} = LT .
- | r

Whilst very plausible, it is less obvious why if the deposit rate were to
depend on time, and so take the form g(t), the corresponding answer
for the terminal value would be

T
/ q(t)er =g,

0

To see the difficulty, note that when g(t) is not constant it is no longer
obvious what sense to make of the amount deposited at the the time ¢
at the beginning of a time interval of length 1/n.

If q(¢) is a continuous function, the amount may in fact be interpreted
as any number q(s)/n where t < s <t + X, without affecting the
limiting value of the sums. Not an obvious fact: see Chapter 6 for
motivation.

One is thus at liberty to opt for ¢(t)/n as the interpretation.

Variable rates

Suppose D is deposited at time ¢ = 0 and that a continuously
compounded rate is held fixed at r until time ¢t = T}, whereupon the
rate changes to s. If no withdrawals are made, what is the amount in
the deposit account at time t =T > 117 The answer is computed in
two steps. The first step is to note that by time ¢ = 77 the amount in
the deposit account is

DemT1,

This is now regarded as being deposited for the remainder of the time,
namely for a length of time T — T7, during which the rate s operates.
The terminal value of the deposit is thus

(DerTl ) es(T——Tl) .
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What is the effective average rate if 7= 2717 The amount in the
deposit account is now

DerT1 esT1 — De('r+s)T1 — De%(r+s)T_
Thus, the effective rate is the average of the two rates, i.e.

(r+s).

| =

This is a particularly appealing feature of continuous compounding.

Loan accounts

We can adapt the results of the preceding subsections by reversing the
role of the deposit-maker and the deposit-taker. (Recall that until now
the deposit-taker was the bank, but that now changes.) The reversal of
roles changes the direction of the flow of money and now it is the new
deposit-taker, officially the borrower, who pays interest to the bank.
The interest rate is likely to be different, ultimately reflecting the
higher risk due to the fact that an individual may fail to honour his
contractual commitments. (Compare this with the opening comment
on safe banks.)

We may nevertheless still denote the rate here by 7. In this case all of
the formulas developed in earlier sections may be interpreted as
movements of money in the reverse direction, on the assumption that
the borrower does not fail to honour his contractual obligations.

We note that differential rates applied according to the assessed risk
class of customers is but one way in which banks may make money for
themselves. Inevitably, they also make money on the difference between
the borrowing and the lending rates.

Present value of future income: discounting

The fundamental problem in mathematical finance is to attach a
meaningful value to a contract specifying a future payment of money.
The first basic message is that value changes over time and so one
looks to mathematics for tools with which to describe such changes.
The second message is that at any time there are various notions of
value: there may be valuations that are made individually (perhaps
using private information, or reflecting the individual's taste for risk)
and there are valuations that are public, being the recorded price
achieved in a market transaction. In this section we concentrate on the
latter.

The valuation problem is complex and intellectually challenging. It is
beset with a variety of difficulties all of which mathematics seeks to
model. For instance, details of the payment can vary: the future bank
interest rates may be unknown (affecting the value of a deposit
account), the date of payment may be certain or uncertain (e.g. an
insurance policy claim for payment), likewise the amount for payment,
especially if the amount is stated not as a number of currency units,
but in terms of a quantity of assets whose price remains uncertain. In
all cases the party supplying the asset or the party required to make a
payment may default on its contractual obligations.
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Present value of future income: discounting

The public valuations are arrived at on markets where these contracts
are themselves the subject of trade. In principle, therefore, in any given
situation one needs ‘only’ to look up the reported value of the nearest
equivalent contract in the market. This often provides a useful basis
upon which to value other contracts.

But the reader needs to be warned that this approach avoids a basic
question: how do the markets themselves (i.e. the market's
participants) arrive at these valuations?

To answer this question, the first point to make is that the price at
which such contracts trade is a result of the way in which the market
mechanism responds to the supply and demand for these contracts by
the market's participants. The participants’ actions, in turn, depend on
what may loosely be described as the ‘information’ they hold. That
information includes knowledge and beliefs about the factors that may
influence future trades in assets, including the valuation procedures
followed by other participants.

Single future payment

In this section we consider the simplest situation: the amount is
specified as a known number of currency units that is certain to be
supplied at a known future date. Let the amount be F' and the date be
T years ahead.

The valuation problem can be turned into a contract. The contract we
have in mind is to offer the future payment of F' to the bank in
exchange for a lump sum of money L at the present moment.

The bank views the contract as a standard loan. It offers a loan L and
requires it to be paid back together with interest. We model interest as
being compounded continuously. It thus requires the loan-taker to pay
Le™ and so if this is to be paid off by the sum to be received, namely
F, then

F=Le".

We conclude that the present value of receiving F' in T' years’ time is
given by
L=Fe .

It should be remembered that such a statement is just a limiting form
of the situation in which the bank requires interest payments at the end
of each period of length 1/n (measured in years), so that the present
value of F’ received at time ¢ must equate the repayment of loan with
interest equal to

oy =2
ser((1+2)7) "

Comment. This reference to a bank loan is really a beginner's
textbook approach towards valuation. In the real world companies and
governments issue ‘bonds’, i.e. they write contracts promising a future
sum F' and sell these contracts on the bond market. If the only

so that
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contractual payment offered in the bond is the payment of F at the
time T, and the market participants pay a price P for the bond, one
may compute a notional interest rate at which a loan-based valuation
would yield the price P. This is called the yield rate, y, and we have

P=Fe VT,

Future income stream

When we discuss loans in the continuous-time framework of Chapter 8
we find that we need to use rates of interest payment to describe what
happens in the limit as the compounding of interest occurs with
progressively higher frequency. In much the same way, if we want to
describe income payments in continuous time we need to refer to
payment rates.

Thus if a payment stream is asserted to be at a constant rate p, the
interpretation is that in an interval of length At the actual payment is
pAt. Any such payment has present value

pAte™ ",

and so the present value of the entire payment stream is the limiting
sum of the present values of all of these contributions, namely

’ p
/ pe "tdt = =(1—e"T).
0 T

Of course this is an idealized way of thinking about what would happen
in reality. That is, this integral is the limiting outcome from calculating
the more complicated-looking sum:

S2(en)) =2 ((+2))

where t moves in steps of size 1/n in both summations.

Learning activity 3.1

An investor owns an asset whose cash value, V' (t), at time ¢ he believes
will be
V(t)=1+t.

He also believes that for the next 20 years, the
continuously-compounded interest rate will on average be riyitial = 5%,
but will thereafter average at rgn. = 4%. Explain why the present
value of a sale of the asset at time t is

~ V(t)e t/20, if ¢ < 20,
P(t) = { V(t)e~le=(t=20)/25 i 4+ > 20,

When should he sell the asset? [Note that the instantaneous interest
rate is either Tigitial OF Tfinal, unless ¢ = 20.]

If the investor changes his mind and now believes that the higher
interest rate regime will in fact last 22 years, will his plans alter? You
should justify your answer.
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3.6 Payments under uncertainty: the paradigm

Under uncertainty, one way to value a claim is to regard it as one of a
large number of independently arising claims that all have the same
probability of arising. Then it is possible to invoke the law of averages
(more accurately described as the law of large numbers) which suggests
that, in practice, the average payout will be close to the 'expected
pay-out’ of a typical claim. This is all very well if the valuer is an
insurer who insures a very large number of similar claims. Indeed, even
if the insurer does not have a large customer base, he may seek
so-called re-insurance which is obtained by creating a large enough pool
from the total market for these claims.

Note that this approach to valuation is meaningless if there is just one
claim. In such a case the law of large numbers says nothing in support
of the proposed valuation. Such a valuation is a gamble and the
gambler can lose out.

Here is an argument about a debt repayment default which is based on
the law of averages approach. Here again we will model interest rates
as continuously compounded at a rate 7.

Suppose a borrower of a loan, L, is required to repay the loan by
repaying at a constant rate g from time ¢ = 0 to perpetuity.

Thus, in the absence of default, we should have

oo
L= / ge "tdt = 2,
0 r

so that
q= L.

Assuming the borrower pays only until time ¢ = T the repayment is
worth
g q
/ qe—rt — _(1 . e-—rT)_
0 T

Now suppose that the borrower may go broke at some time T' and fails
to pay anything after time 7.

Suppose he is more likely to go broke earlier than later, and we assume

that the probability density of the failure occurring at time 7 is

p(T) = @e™ T, where « is some constant. This is supposed to mean A model of default.
that failure occurs in the interval [r, 7 + A7] with probability p(r)Ar.

Notice that
oo [oe]
/ p(r)dr = / ae” *Tdr =1.
0 0

The bank may compute an expected repayment as follows. With
probability p(7) the bank receives payment up to time 7 only, and so
receives a value

-
Q(r) = / ge "tdt = g(1 —e ).
0 T
The repayment it is to receive is thus valued in expectation as
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If the expected repayment is to equal L, then the bank requires that
q= L(T + a)v
i.e. as though the interest rate were r + a.

Clearly this is a higher repayment rate than the safe rate r; if the bank
chooses to apply a larger value of the parameter o (known as a loading
factor) when agreeing the loan, then this choice reflects the bank's
belief of a greater likelihood of an early default arising on the part of
the borrower. Such a choice penalizes a particular class of borrowers
more heavily, so that the bank may recoup the entire repayment of all
loans at an average rate 7.

Contracts with the Stock Exchange

We shall be concerned with the valuation of some basic financial
contracts (also referred to as financial instruments) which can be
entered into at stock exchanges or by finance houses. (However, we do
not get to consider such financial instruments as for instance
mortgages.) All of these are contracts for the supply by one party to
another of some kind of asset, that is something capable of having
‘value’, say in money terms (see below). So long as the terms of such a
contract are honoured (i.e. the counterparty does not default),
possession of such a contract may therefore itself be regarded as having
value, or being equivalent to possessing a sum of money. The asset in
the contract could thus be not only a commodity, or some form of
money (possibly foreign), but also another contract for an agreed
payment at an agreed date (see later). A quotable literary example is
in Flaubert's Madame Bovary, where the heroine gets into debt, and
her creditor sells the debt. These contracts may and do change hands,
so that though the liability for the supply rests with the original party
the recipient may change. Of course the party liable for the supply can
balance its liability with an opposite contract (agreed perhaps even at
the same time, or at a later date which is prior to that in the first
contract) for delivery with another party (or even the same party)
usually on different terms. This balancing procedure is known as
closing out. Thus payments for entry into various contracts may be
made but no supply need ever occur.

Why all this continual play between swings and roundabouts? In
essence these contracts and counter-contracts are made as a means of
‘managing risk’ — forms of insurance against loss of, say, savings or
investment capital, or of income. For instance, a construction firm may
quote terms for a contract to build an air liquefaction plant. The
contract may be agreed during the period of the quote’s validity, yet
the cost of parts supplied by a foreign sub-contractor may change as a
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Some financial instruments

result of adverse movements in exchange rates — a factor which is
outside the direct control of the main contractor. At different points in
time the risks may be viewed differently and call for protective action.
It is true that in the end this is a musical chairs kind of game and
someone is eventually caught out and left to pay for the loss if any
does indeed occur. But so long as the payments levied each time a
contract transfers the risk to some particular party are enough to cover
the balance between gains and losses of the insuring party, this is a
business proposition. Despite obvious differences there is a family
resemblance to insurance against fire: for the right premium and a
large enough number of policies the insurer does make money — and if
by a rare accident he does not, then he recovers by raising the contract
premiums later.

The contracts at stock exchanges are drawn up to standards decided by ~ Standardized contracts.
the stock exchange, for example, specifying the unit size of a single
order (e.g. one contract for corn will be for 5000 bushels), the date of
delivery and in the case of commodities the quality and location of
delivery. Those issued by finance houses need not follow the same
standards. Contracts entered into at exchanges contain requirements as
to methods of payments which are designed to protect both parties
against default. For contracts that require payments to be made at
future dates rather than solely at the time of issue, the contracting
parties must maintain so-called ‘margin accounts’ into which payments
must be made at regular times up to the expiry of the contract to
reflect changes in the current value of the contract. This is both to
ensure that the level of possible default loss is maintained nearly
constant and low, and also so that if a default occurs to one party
before the termination date of the contract the damage may be limited
by closing out. We do not discuss the details (which vary between
instruments), but strongly advise you to read about this in e.g. Hull
(Section 2.2 pp. 23-25 and Section 8.8 pp. 194-195). It is also a good
idea to read up how trades through a stock exchange are organized
(instructions from your broker relayed to his representative at the
exchange, from there transmitted to his trader on the floor of the
exchange, who will buy/sell a contract at prevailing prices, or wait for
the right price). See Hull Section 2.1 pp. 18-19 for an example.

In case you do not know anything about financial instruments let us
review some basic facts about them.

Some financial instruments

First of all there are money loans or deposits which earn interest either
at fixed-rates or at floating rates. Fixed rates are quoted for various
time intervals: short term, long terms. See Hull Section 4.1 page 76 on
the London Interbank Offer Rate (LIBOR). In regard to many central
‘state banks' the deposit rate for a specific time interval is considered
as risk-free. The idea that there is a risk-free rate is key to the
mathematical assessment of risk — whenever we aim to protect a risk
by holding a collection (or ‘portfolio’ to give the official term) of
contracts and the portfolio is seen to be risk-free — albeit for only a
short period — its growth in value over the period will be evaluated as
though its initial value was ‘money’ deposited at the short-term rate
then in force. This begs the question: which of the various competing
interest rates on the market is regarded as the risk-free rate of our
theory? One answer is the rate which banks use between themselves:
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LIBOR. Since we may be calculating the effects of contracting
activities to be undertaken in the future and we do not know the future
short-term interest rate, one way out is to use as a substitute the
currently available long-term rate for that time interval. Alternative
procedures call for a mathematical model of the future interest rates.
Here conceptually one needs to refer to the market for ‘loans’, that is
the ‘bond’ market. A bond sells a legally-binding promise to pay a
stated amount of money at a specified future date in exchange for an
amount of money to be offered immediately by the agreed buyer of the
bond. This is how one may obtain a loan for the specified ‘term of
years’, ‘and can in principle be done competitively by reference to
candidate buyers, for instance by auction. The ratio of the amount to
be received later to the necessarily smaller amount being offered
immediately by the buyer of the bond can be interpreted (in various
ways) as arising from an interest rate for the term of the loan. Thus
one talks about the term structure of the interest rates (i.e. how the
interest rate depends on the term of the bond).

Of course these interest rates are tied to the currency of the central
national bank. The central bank sets its own currency's short-term
interest rate guided by the performance of the economy as a whole and
its relation to other economies (crudely speaking!). Evidently the rates
being offered on the bond market are one of the indications of an
economy's performance; indeed the government itself issues and sells
bonds. The central bank rate is reflected in the rates quoted by the
principal banks of the country. In turn the central bank’s rate
influences the amount bond buyers are willing to pay for bonds.

An exception to this story is the Eurodollar, which name is applied to
the stock of US dollars held outside the US (see Hull, Section 6.4 pp.
137-142).

The exchange rates between different currencies are set by the market
for supply and demand of currency between countries (some of it
arising from a consumption demand and some speculatively).

Deposit accounts pay specified sums at specified dates to the account
holder. In this respect the bond is superficially a similar instrument.
The bond originates predominantly either from governments or from a
large company (corporation) and is issued to raise funds for the
originator's economic activity. The bond is characterized by its face
value, namely the stated amount in the originator's currency which will
be paid at term (at the maturity date bond) when it is said to be
redeemed, and coupons stating amounts of money to be paid to the
holder of the bond at specified dates (the coupon is specified as an
annual amount but is paid in two installments semi-annually). These
may be zero amounts in which case one speaks of a zero-coupon bond,
or discount bond. Treasury bills and Treasury notes are the names
given to government bonds of one's country. (We note that T-bills
have a zero coupon and maturity up to two years, T-notes have a
coupon and maturity of between 2 and 10 years, T-bonds have a
maturity in excess of 10 years — all this at time of issue.) The buyer of
the bond may choose to value the bond by reference to its present
value using appropriate bank interest rates if it is his belief that these
will be the interest rates in force in the future when determining
whether or not to buy a bond at the offered price. Bonds once issued
and sold may be sold on by their initial buyers. We may thus observe
the prices at which bonds of various maturities are being traded in the
market and ask what interest rates would give a bond its current price.
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Such implied interest rates are called yields. A plot of the yield
against the maturity date gives rise to a yield curve — see Hull, Section
4.5 pp. 82-84.

Note that we use only continuous compounding rates. Suppose a
zero-coupon bond costs p when the principle sum/face value is f.
Then the gain is g = f — p and the yield is y over the remaining time
to maturity ¢ is given by

pert — f
Hence

1 g
r= ¥1n(1+;).

For instance a zero coupon bond with face value $100 which is
currently priced at $97.5 and which matures in 3 months (=1/4 year)
has a yield of 41n(1 + 2.5/97.5) = 0.1012 = 10.12%.

The following table identifies the observed yields on bonds of maturities
of 1, 2, 3, 4, 5 years. The bonds all have a face value of 100 dollars
and zero coupons.

Maturity (years) Yield to Maturity Implied rate in each year

1 10% 10%
2 10.5% 11%
3 10.8% 11.4%
4 11% 11.6%
5 11.1% 11.5%

Thus the price of the first bond in the table (expiring in one year and
with yield 10%) is

1001,

while the second bond (with two years’ maturity and yield of 10.5%
over the two years) is

100e* 0195,
In the absence of any further information we conclude that if the

constant interest rate of 10% is applied over the first year and a
constant interest rate of r is applied for the second year, then

100e%0-19% — 100€%1100€",

or
2-0.105 = .01+ r.

One says that the implied forward rate for the second year is r = 11%.

The yield 10.5% is thus the average of the two interest rates of 10%

and 11%. This simple averaging that we have just observed is the
result of employing ‘continuous compounding’.

We can plot the yield rates against maturity to obtain the following

Some financial instruments

Bond yields as implied
interest rates.
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plot.

11

2 3 4 5
Fig 3.1: A plot of yield rates against maturity in years.

Thus the 'yield curve’ obtained here is a rising one. The plot of the
implied forward rates, however, is not rising.

11.5
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0.75
10.5
0.25

2 3 4 5

Fig 3.2: A plot of forward rates.

Learning activity 3.2
Here is a table similar to Hull, Section 4.5 page 42:

No. Face value Time to expiry Annual coupon Price of bond

1 100 1/4 0 97.5
2 100 1/2 0 94.9
3 100 1 0 90.0
4 100 11/2 8 96.0
5 100 2 12 101.6
6 100 23/4 10 99.8

Verify that the implied 3-month rate is 10.12% (p.a.),the 6-month rate
is 10.47%, the 12-month rate is 10.54%. Use these rates to deduce the
18-month rate from No. 4 bond. Go on to find the 2-year rate using all
the previous rates. For the final bond — recall that payments are made
after 3, 9,... months up to maturity. Use a linear interpolation between
r = the 2 3/4 rate and the 2-year rate already established and derive a
formula for the present value of the cash flow. Set this equal to the
price and solve for r using Mathematica. Hint: The command

FindRoot[¢[z], {z,0.1}]
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instructs Mathematica to solve ¢(z) = 0 for z starting with a guessed
solution of z = 10%. Note that throughout the question half the
annual coupon is paid out semi-annual installments.

We now consider the central notion of a ‘share’ and try to explain a Stocks and shares.
variety of words used almost interchangeably. A share, or more
properly, a ‘share of the stock’ (i.e. share of the ‘equity’ capital, as
defined below) of a limited company might be described jokingly as a
perpetual bond with unspecified redemption value, unspecified coupon
values, together with the right to participate proportionately to one's
stake in the excess value of the company’s assets should the company
be wound up. This residual claim (i.e. to the excess of assets over
liabilities, if there be any) comes with a legally-enshrined limitation as
to the liabilities of the shareholders (for which see below). Seriously
speaking and in a nutshell: shares give partial ownership of the
company's assets and future income in return for money. Indeed when
investors give money to a company they are described as having an
‘equitable’ interest in the company. Evidently they demand some form
of ‘guarantee’ (‘surety’, or ‘security’) of having something for their
money. The underlying notion of equitability or ‘fairness’ (‘something
in return for your money') gives rise to a number of different words
which describe the paper certificates behind the contractual
arrangements that exist between the investor and the firm. The words
used include: share, stock, equity and security.

Asset is a very broad word indeed for all the means of value creation.
You should consider this point in detail as the intricacy of the detail
hides the extent to which the value of assets is subject to uncertainties.
It includes not only the more obvious ‘physical’ assets which generate
income, such as the means of production, both ‘physical capital’ (plant,
inputs and outputs) and ‘human capital’, but also the associated
‘architecture’ of resources such as legal powers or rights (for example:
patents, monopolies, ownership of ‘brand names’, contracts for supply).
There are other so-called ‘intangible’ assets such as ‘reputation’ and
‘goodwill’ (a 'loyalty base’ on the customer, or demand side, and on the
supply side). Their creation and maintenance has very tangible costs,
and these too play their part in income generation. See for example
John Kay's inspirational book, Foundations of Corporate Success.

A share entitles the shareholder to vote at shareholders’ meetings and
so gives further rights, albeit in limited forms, over the choice of
company strategy (for instance agreement to a merger) which include,
in the extreme, the right to sack the directors. The assets owe their
existence to the investment of cash in the company. Whilst this cash
may be in exchange for shares, some of it can have its origin through
either loans or through bond issuance. These actions create liabilities.
However, a shareholder’s liability is limited only to his ‘stake’ — that is
he may lose only his investment and no more. This is the essence of
the ‘limited liability company’, a foundation stone of ‘capitalism’. Thus
in the event of the company’s liquidation its assets are used first to
settle debts (such as bank loans) and the obligations of its bonds
(prioritised by covenants or contracts) and then the excess value of
assets, if there be any at all, is divided among the shareholders. (There
may be prioritisation between different share issues.) In the worst case
scenario the shareholders receive zero and need not concern themselves
with outstanding debts. The liquidation pay-off to the shareholders
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graphed against asset value, as shown in Figure 3.3, thus exhibits a
‘hockey-stick’ shape, with the kink representing the debt level. This is
the same as the graph for the pay-off from a call-options. This is the
key feature behind any limitation on liabilities.

1_

0 0.5 1 1.5 2
Fig. 3.3: Pay-off to shareholders against value of the firm
when the debt is 1.

The liquidation procedure for dividing assets thus distinguishes between
two kinds of liability: the one to the creditors (loan givers) and
bond-holders which is called debt, the other to the shareholders which
is called equity. The total of shares multiplied by the market price of
shares is known as the market capitalization of the shares and so
assesses the value of the equity. The ratio between the two forms of
assets, known as leverage, may be assessed at any moment by reference
to the current price on the market of the shares and bonds.

Turning to the brighter side of the matter: the shareholder receives
payments called dividends which are made at specified (quarterly)
dates, the amounts being determined on each occasion by the board of
directors. The value of the share as assessed by its market price
involves in part an estimate of the future dividend stream and also a
view on the company's performance. It is therefore not surprising that
the share price drops immediately after the share has ‘gone ex-dividend’
(the dividend has become payable). As to the view on the company's
performance, this is based on various kinds of information such as
market demand for its product, market supply for its inputs (including
labour), as well as its management strengths. The share price is
therefore influenced by the arrival of new information including
government statistics and the fortunes of competitors including trading
statements. Some of this information has a known arrival date and the
official statistics may often be guessed from independent sources. Often
information impacts on more than one company. Stock exchanges
therefore compute weighted averages of the prices across various groups
of companies which therefore act as indicators of the response of the
market, or of relevant sectors of the market to new information. These
are known as indices. See Hull, Section 3.5 page 60 for a discussion
both of the weights and the composition of the best known indices.

A first look at futures and forwards

The older method of insurance against exposure to risk is to enter into
a binding agreement for delivery or receipt of assets at a fixed price at

a fixed future date. This takes out any uncertainty as to price. It is not
necessarily an optimal procedure for risk management since on the
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A first look at futures and forwards

delivery date the then current price for the asset may be either greater
or less. One might say that 50% of the time one is worse off. Of course
50% of the time one is better off. Either way one has off-loaded the
risk of being worse off onto another party whose job it is to manage
risk. This is done at the cost of foregoing the 50% chance of being
better off. There are in essence two versions of a contract for delivery
in the future: a forward contract and a futures contract. Easier to
understand is the forward contract since the date of delivery is specified
exactly. The futures contract has a delivery date specified less narrowly
— say during the course of a specified month: see Hull, Section 1.2 p.4
and Section 2.2, p.21 for details. The difference between the two
contracts may appear small, and under certain assumptions their
value/price is identical (Hull, Appendix 3A p.78), but one must
compare them with care. It is of course the futures prices that are
quoted on the exchange and in the newspapers. See Section 2.4 p.31
for an account of the published information which includes opening
prices (just after the opening bell) and average closing prices — just
before the closing bell (known as settlement prices — since margin
accounts are settled at these prices) as well as daily highs and lows and
lifetime highs and lows (prices traded so far since the initial appearance
of the contract), together with the number of outstanding contracts
(open interest) and estimated volume of trading.

The futures contract is said to be written on an underlying asset and
is itself a derivative security of the underlying asset.

But could the risk be better managed? It will be helpful to introduce
some technical terms. One talks about taking a position in an asset
which is long — when contracting to buy — or short — when contracting
to sell.(As a mnemonic note that the party in the short position in a
contract will become short of whatever asset it sells off.) The pay-off
to each of the two positions against the prevailing current price (spot
price) is shown in the diagram given a delivery price K.

A long forward hedge.

Fig. 3.4: Pay-off from a long position in a forward
contract with delivery price of K = 1 dollar. Profitable
when spot prices exceed 1 dollar.

51



3.10

43 Mathematics of finance and valuation

- 14

Fig. 3.5: Pay-off from a short position in a forward contract
with delivery price of K = 1 dollar. Profitable when spot
prices are below 1 dollar.

A short forward hedge.

Thus the futures contract for an asset exposed to uncertainty will
evidently be in taken in the same position to the contemplated position
of the company in the future.

For example, if the company is to sell an asset it will be in the short
position (e.g. it may wish to sell assets which will come into its
possession, or may need to sell off holdings to acquire funds). It
therefore takes a short futures position (selling position) to safeguard
funds to be received using a delivery price K. If the price at the
delivery date is S and S < K then a gain is made. See Hull, Example
3.1, Section 3.3, p.55.

Note in this example it is necessary to close out the short futures
position somewhat before being in the anticipated short position, by
picking a prior maturity date as close as possible to the original
anticipated selling date. The acquisition of the short futures contract is
called a short hedge.

Use of the word hedge indicates in the first instance an intention to act
so as to protect against loss of value. The ‘hedges’ of ordinary day life
refer to bushes; but these were planted around the perimeters (or edge)
of fields to protect the crops in the field from wind. We will often find
that holders of a portfolio of assets will want to supplement their
portfolio with additional assets; often these additional assets are
‘derivatives’ — that is, contracts with pay-offs that are derived from the
value of some simple asset such as a stock or bond.

Optimal hedges

The futures hedges considered above are only ‘perfect hedges’ if the
future course of history turns out just as predicted. But, one can do
better than hedge with a futures contract equal in size and position to
the hedger’s own liability. In the first place we can look for ‘optimal
hedges': measure the level of risk by variance and then minimize.

Suppose we know, or can estimate, the correlation coefficient between
the change in the spot price of the asset and the change in the futures
price. If we hold a portfolio IT comprising a quantity h of short futures
contracts each quoting a price F' and an asset of value S, then change
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in value of the portfolio is
AIl = AS — hAF,

where for instance AS = So — S is the gain in value of the asset
between time 1 (now) and time 2 (the future). Note the negative sign
against the futures contract signifying the short position. The
underlying asset is thought of as currently in the possession of the
hedger (as though bought) and therefore in a long position. Of course
if the positions on the asset and the futures contract are reversed, the
signs are also reversed on both quantities. In either case, however, the
variance is
var(AIl) cov(AIL, AIl) = (AIL, AII)
= var(AS) + h®var(AF) — 2hcov(AS, AF)

and minimizing this U-shaped quadratic polynomial in h over h yields
(from the first-order condition of calculus) Optimal hedge ratio.

cov(AS,AF)  posop _ pos

var(AF) — o% oF

Indeed, by definition
var(AS) = o%, var(AF) = 0%, cov(AS,AF) = posop.

The formula gives an optimal hedge ratio.

Learning activity 3.3

A company intends to hedge a forthcoming acquisition of 1 million
gallons of jet fuel in 3 months’ time. Over this period it believes that
0jet = 0.032. The company considers using a futures contract on
heating oil, for which in the same period it believes that o,; = 0.04. If
Pjet,oir = 0.8, how many futures contracts should be bought if the
stock-exchange unit of futures contract is 42,000 gallons? What sort
(short/long) hedge position is required? [Compare with Hull, Example
3.3, Section 3.4, page 59].

The ‘duration’-based hedge: a first-order
hedge

Let us see another hedge calculation (Hull, Section 4.8 p.89) in regard
to bonds. If the yield — calculated on a constant continuous
compounding rate basis - is y, then by definition the bond price is
related to the coupon payments and the face value by the formula

B = Z cie Vb, (3.3)
1

Here the coupon payments are ¢; and are made at the dates ¢; (and
this includes as ¢, the face vale of the bond). Let us calculate the
amount by which the bond price will change if the yield were to change
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by a small amount Ay. We begin by computing that

dB - —yts
d_y = ——Zcitie y

Since the coefficients of the terms ¢; in the second line are positive and
by (3.3) sum to unity, they may be interpreted as weights applied to
the times of coupon payments, thereby giving rise to an average time
of payment defined by

B=) ti——.
T B

This quantity is known as the duration of the bond. Thus we have

approximately:

AB = ﬁAy = —BDgAy.
dy

See Hull, Section 4.6 p.101 for a calculation of duration.

Suppose a portfolio I consists of bond currently priced at S and a
quantity h units of a futures contract for delivery of bonds (other
similar interest rate dependent asset) with a current (‘spot’) delivery
price F' of the bond. Then the change in the portfolio value consequent
on the yield y changing by AY may be computed approximately by
reference to duration to be

AIl = AS-—-hAF
= SDsAy— hFDpAy
= (SDgs— hFDp)Ay.

So taking

SDg

FDg’

where this ratio is known as the ‘price sensitivity ratio’ or
‘duration-based ratio’, we obtain a hedge which has, to first-order
approximation, a zero change in value. One says that the hedge has a
‘delta of zero’ or is ‘delta neutral’. Evidently the validity of this
approach is dependent on the behaviour of AB/B. The error in the
duration approximation, given by Taylor's Theorem is governed by

h =

£5
d2y’

so a better hedge may be obtained by constructing a wider portfolio
which will enable off-setting control over this further quantity. Portfolio
managers talk about the convexity measure of the portfolio; see e.g.
Hull, Section 4.9 p.92 (a similar second-order idea will be discussed
later under the name gamma, Hull, Section 15.6 p.355). The remark
to be made here is that the delta neutrality has been obtained by
balancing the effects of the same unknown change Ay through its
effects on two distinct though related quantities.

For example see Hull, Section 4.8 p.89.

Before we give our next hedging example (the beta hedge) we need to
study the forward contract.
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Arbitrage arguments

Arbitrage arguments

We can identify the forward price in a forward contract by reference to
what is known as an arbitrage argument. Originally the term arbitrage
was used to describe the activity of buying a commodity at one price in
one market and selling at a higher price at another market.

Setting the forward price by arbitrage argument

Our argument will be based on the current/spot price of the asset
assuming a constant risk-free rate in the period between current time ¢
and the delivery date T. We claim the forward price is

F = Ser(T—t)’
where S is the spot price. Thus
S = Fe 7(T-1),

In other words the ‘present-value’ of F' agrees with the spot price (i.e.
the price as at present). The forward price is the current price
compounded up to what is called (by analogy with present value) its
‘future value’ at maturity.

Indeed, assume a price is offered of F' > Sem(T=1) A risk-free
opportunity to make money — known as an arbitrage opportunity —
occurs as follows. Borrow S dollars, buy the asset for S dollars with
the intention of selling the asset at the delivery date T for F' dollars
(this is called taking a short future position); the loan can be repaid
from the proceeds of the sale since the debt amounts to only Se™(T—%).
The positive excess F — Se™(T=%) is a sure profit.

If the inequality is reversed (i.e. F < Se"(T=%), we try to make a
profit equal to the formula Se”(T—*) — F. We can do this, by borrowing
a unit of the asset at time ¢ from someone who does not need it, and
sell this asset for S. (This action is called shorting the asset, since we
sell something we were short of!) Depositing S dollars until date T
then yields a cash balance of Se"(T=% in the deposit account, and this
equals the first term in our hoped-for profit formula. We can also take
a long position in a forward contract (i.e. offer to buy the asset)
enabling us to buy back the asset for F dollars at time T'. At maturity
accept delivery of the asset paying F' out of the invested monies. So
paying F dollars out of the Se"(T—% allows us to obtain a unit of the
asset in order to settle the asset loan. (This action is called ‘closing out
the short position' — by returning the assets.) We are left with a
positive excess profit of Se”(T—%) — F.

For examples see Hull, Section 3.1 p.47.

Learning activity 3.4

Suppose that the underlying asset in the forward contract pays a
known dividend of D dollars at time ¢ = 1. Suppose that D is
expressed relative to the initial time ¢t = 0 asset price as D = ¢S, then
q is called the ‘dividend rate’. Verify by arbitrage argument that the
forward price F' agreed at time t =0is S(1 +7r —g).
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Learning activity 3.5

Suppose that the underlying asset gives its holder a dividend paid in
the asset (e.g. more shares if the asset is a share, or more foreign
currency, if the asset represents a foreign currency deposit) and that at
each moment of time ¢ the dividend rate is a (known) constant ¢. This
is taken to mean that over the time interval [t, ¢ + At] the dividend
expressed relative to the current (spot) asset price S of the asset is
worth S.e?4%, Verify by arbitrage argument that the forward price F is
Se(=DT How does this generalize the result of the preceding activity?

Forward contracts written on an index

Consider a futures contract on an index I which reflects the market —
thought of as a grand portfolio. Since the index is a hypothetical
portfolio, let us write I = w;S;, where w; are weights and S; are
the asset prices for the assets comprising the index. Thus the forward
price F for delivery of the hypothetical portfolio at time T is

Fr = Z wiSieT(T_t) = IGT(T—t).

(This formula assumes that none of the assets yields a dividend in the
interim.) We need to clarify here that the index itself is a valuation of a
hypothetical portfolio of assets by reference to their spot prices.
Consequently, the future delivery envisaged in the contract ought in
theory to be that of the very same hypothetical portfolio of assets that
defines the index; however, the practice is that the future is settled day
by day in the money equivalent of the value of the hypothetical
portfolio.

Now observe that to first order

AF = F(t+ At)— F(t)
oF OF
= WAI + EAt
= " TOAL + 1" T (—r)At,
and so AF  AI
e YN 7
= T rA
Thus for small time changes it is approximately true that that the

percentage growth in forward price is equal to the percentage growth in

the market:
AF Al
F I’
But this is slightly misleading, in that the instantaneous indicators are
connected as follows:
1 dF 1 dI .
F dat I dt
Note that AT =3 w;AS; only if we assumes no changes have been
made in the relative weights in the composition of the index. These
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weights are of course selected so as to reflect the total market
capitalization of the share — along the lines of

_ NS;
Zj NiSj'

W;

Thus the weights may be subject to alteration in situations when an
asset has a dramatic change in value. See Hull, Section 3.5, p.60.

Beta hedging: a perfect hedge

The next example of hedging is motivated by a theoretical result. The
theory seeks to explain what is called the ‘excess return’ of an asset, or
more generally a portfolio of assets, that is, the difference between the
return of the asset and the riskless rate. The theory relates this excess
to the ‘market portfolio’, that is, the quantities of all assets held by the
totality of market agents. In an appropriately defined one-period model,
known as the Capital Asset Pricing Model, or just ‘CAPM’ (pronounced
‘cap-em’ ), it may be shown that if the market is in equilibrium, then
the excess-return of any asset (or portfolio) is proportional to the
excess return of the ‘market portfolio’. The relevant coefficient of
proportionality is called the 3 of the asset. This coefficient may be
interpreted as measuring risks associated with the asset.

Thus, the beta 8 of a portfolio measures the ratio of the excess return
on the portfolio over the risk-free rate on the one hand, to the excess
return of the market as a whole over the risk-free rate on the other. It
may be assessed using regression techniques from statistics.

Now suppose we want to protect a portfolio currently worth II against
excessive movements in stock prices over some not unreasonably long
period of time. Let At denote the length of the time period. We
regard the behaviour of the markets over this one period as being
modelled by the CAPM.

Thus we have for any portfolio that

return — r At= % —rAt = ﬁ(%— — rAt). (3.4)

Here AII is the change in the value of the portfolio at the end of the
period and M represents the market regarded as a grand portfolio. The
risk-free rate per unit time is r, so the return on risklessly-deposited
dollars over the period is rAt. Evidently ATM is the change in value of
1 dollar invested in the market for the period of time At (since M
dollars changes in value by AM). In practice we replace M in this
relation by a suitable index, so we come to regard M as though it were
the hypothetical portfolio defining the index. Now we may rewrite the
equation (3.4) defining beta, thus:

ATl AM

DR T

where, for convenience, « is introduced to denote
a =rAt(l - B).

Consider hedging the original portfolio of assets worth II with a beta of
B, by taking a short position of an amount h units of a future contract
written on a sufficiently wide stock-index currently offering the future

Beta hedging: a perfect hedge
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delivery at the end of the period At for a price F'. We think of the
future contract on the index as a proxy for the market, so we must
have approximately
AF  AM
F M
Hence the change in the value of the ‘hedged portfolio’ comprising the
original portfolio and the future (or to use the jargon: its delta) is

— rAt.

AIl — hAF
AM AM

= oll+ (B — hF)AWM + rhFAt.

So taking the hedge ratio h to be

we have a portfolio which is approximately independent of the
uncertain change AM in the stock index. It should thus enjoy a return
approximating to the risk-free rate, and indeed our calculations agree
with this, since

oIl + rhFAt = rAt(1 — B) + rSIAL = rAt.

Learning activity 3.6

A portfolio with 8 = 1.5 is currently worth $2.1M. The holder is fearful
of market movements in the next quarter but does not want to sell off
the portfolio in order to avoid transaction costs. It is proposed to
hedge with futures of maturity 4 months. The index future stands at
300 and the unit contract is 500 times the index; in this case a single
contract costs $300x500. (The index is to be imagined as the price we
have to pay to buy a unit of asset, and the contract is for 500 such
units.) It is of course proposed that the futures contract be closed out
after 3 months. What position should be taken and how many
contracts should be bought?

Efficient market hypothesis

A famous assumption states that the operation of the markets is
efficient, which is supposed to mean that the current share price
reflects all the publicly available information. See Campbell, Lo and
MacKinlay p. 22 for a careful explanation of several ways that this
assumption may be formalized (which includes consideration also of
private information). As a consequence, if the market is ‘in
equilibrium’, market participants cannot know in advance (i.e. with
certainty) that the price of a share is to rise (gain in value) by some
amount tomorrow; for otherwise current demand (to take possession of
the gain) would drive the price today immediately upwards by that
same amount: the universal anticipation of change would lead to
one-directional trading. Similarly, a known and sure tendency for a
price to decrease would trigger a strong tendency to sell at the current
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better price; a continued selling volume would immediately bring the
price down, perhaps dramatically, with the bulk of the sale playing
presumably into the hands of players speculating on a comeback. Thus
we see a self-fulfilling prophecy unfolding. (Such dramatic events can
indeed take place, as they did on Black Monday October 19, 1987 —
see Hull, Section 5.9 page 112 and see also Hull Chapter 32 in
particular Section 32.2, page 736. However, that was an exceptional
day, whereas our concern is ‘with the rule’ rather than the exception.
But exceptions, though they might be held rare, do occur.) This lack of
certainty in price direction signifies that we are only one step away from
the language of probability: the expected price in the next instant is the
same as the current price (after a due discounting adjustment to make
money of different time-moments comparable). Gamblers viewing the
game of speculating on the price of the share will say the game is a fair
one. The fairness assumption is of course open to empirical verification.
See ‘Capital Ideas’ for a riveting account of early empirical observations
on this by Alfred Cowles in the 1920's (see Bernstein's Capital ideas
p.30). To sum up: the findings were that all ‘self-avowed expert
opinion’ on future price movements were in the long run no better than
the toss of a coin. In consequence, the view that one cannot beat the
market led to the growth of portfolio management with the intention of
at least following the market by reference to measurements of price
behaviour in the market as a whole, that is by way of indices. This is
reminiscent of the establishment of the principle of conservation of
energy in physics after periods of searching for the ‘perpetuum mobile’
- a perpetually working machine requiring no power.

The economist Paul Samuelson, writing in 1965 (see ‘Proof that
properly anticipated prices fluctuate randomly’, Industrial Management
Review, 6(2) 1965, pp.41-49, sought to explain the ‘fair game’
phenomenon by reference to the behaviour of the ‘futures price’ Fir;
viewing it as a random variable (more precisely random process). The
futures price, as explained in Section 3.9, is the price contracted at
date t for the delivery of a unit of a specified asset at date 7". Suppose
that the price of the asset at time ¢ is modelled as having a probability
of the following form.

Pr[S: < z|So,...,St-1] = P(z,t; So,- -, St—1)
and that the futures price is arrived by way of expectation as
Fry = Ep[St|So,...,S¢ fort =0,1,...,T.

(Note that this includes the case t = T, for which Fr ¢ = St.) By
assumption, the next period’s future price will depend on past asset
prices and on the next period’s asset price, that is

Frit1 = Ep[St|So, - ., S, St41]-
Today's expectation of tomorrow's forward price, denoted

Ep[Fr441]S0, -y St

is thus equal to

Ep[Ep[ST|S0,- -+, St+1]1S0s -y St]-
By the Law of Iterated Expectation (see Activity 6.7) this equals

EP[STI*S'Oy .. '7St])

Efficient market hypothesis

Investment as a 'fair’ game.
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and, by assumption, this is just Fr ;. Thus we have

Fry = Ep[Frq1).

Technicalities apart, the process {Fr;:¢t=1,2,...,T} is said to be a
martingale — meaning that any time in the ongoing process the
expected value at the next instant is the currently observed value. We
will discover, that the ‘discounted’ share is similarly a martingale —
although under a different probability law, but derived from P.

This brings us to the question of how to model the behaviour of share Bachelier's model.
prices. The first mathematical attempt at the turn of the twentieth

century ( Theory of Speculation, 1900) by Louis Bachelier was

unappreciated by contemporaries and went into apparent oblivion for

more than half a century, partly due to lack of empirical research and

partly due to the absence of appropriate computing power (see Capital

Ideas, p.18). Bachelier’s ideas thus waited for their rediscovery. See

Louis Bachelier's Theory of Speculation: the origin of modern finance.

A reminder of your learning outcomes
At the end of this chapter and the relevant readings, you should be able to:
m understand what is meant by continuosly compounded interest

m compute the terminal value in a deposit account of an initial deposit and of a
deposit stream

m compute the present value of a single future payment and of an income stream

m compute the expected value of a defaulting income stream.





