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Abstract: Bioprospecting natural products to find prominent agents for medical application is an
area of scientific endeavor that has produced many clinically used bioactive compounds, including
anticancer agents. These compounds come from plants, microorganisms, and marine life. They are
so-called secondary metabolites that are important for a species to survive in the hostile environment
of its respective ecosystem. The kingdom of Plantae has been an important source of traditional
medicine in the past and is also enormously used today as an exquisite reservoir for detecting novel
bioactive compounds that are potent against hard-to-treat maladies such as cancer. Cancer therapies,
especially chemotherapies, are fraught with many factors that are difficult to manage, such as drug
resistance, adverse side effects, less selectivity, complexity, etc. Here, we report the results of an
exploration of the databases of PubMed, Science Direct, and Google Scholar for bioactive anticancer
phytochemicals published between 2010 and 2020. Our report is restricted to new compounds with
strong-to-moderate bioactivity potential for which mass spectroscopic structural data are available.
Each of the phytochemicals reported in this review was assigned to chemical classes with peculiar
anticancer properties. In our survey, we found anticancer phytochemicals that are reported to have
selective toxicity against cancer cells, to sensitize MDR cancer cells, and to have multitarget effects in
several signaling pathways. Surprisingly, many of these compounds have limited follow-up studies.
Detailed investigations into the synthesis of more functional derivatives, chemical genetics, and the
clinical relevance of these compounds are required to achieve safer chemotherapy.

Keywords: natural products; anticancer drugs; phytochemicals; chemotherapy

1. Introduction

The prediction that global cancer incidence by 2040 would rise by 27.5 million new
cases compared to the previously recorded 17 million in 2018 (Cancer Research, London,
UK) is not overemphasized. Continuous ageing in the population is associated with this
rise in the number of new cases. Current measures to deal with this predicament remain
largely unsatisfactory due to the setbacks in various treatment methods [1]. Treatments
available according to the National Cancer Institute include surgery, radiation therapy,
chemotherapy, immunotherapy, hormone therapy, stem cell transplant, targeted therapy,
and precision medicine. A recent approach in cancer treatment is photothermal therapy [2].
The choice of treatment depends on the type of cancer developed in the body. The goal of
cancer-related research is to detect therapeutics that will have no or minimal side effects
and reduce the complexity of chemotherapy.
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For the context of the discussion here, lead compounds that have recently been identi-
fied from plants are examined. Many drugs available in the market as anticancer agents
are secondary metabolites from microbes, marine life, and plants [3]. Natural products
such as vinblastine [4], vincristine [5], etoposide [6], teniposide [7], taxol [8], navelbine [9],
Taxotere [10], camptothecin [11], topotecan [12], and irinotecan [13] have been approved
as chemotherapy agents; all are plant-derived [3,14]. However, the desire for a cancer
cure is not really fulfilled, as many of the drugs available have severe side effects [14].
In this regard, it is appropriate to critically review efforts to date in bioprospecting and
chemical genetics reports on new plant-derived compounds with increased activity and
better therapeutic prospects. We reviewed the efforts in the bioprospecting of natural
products from plants against cancers in the last decade.

2. Phytochemicals in Bioprospecting Research

The search for bioactive secondary metabolites in plants as anticancer agents is gain-
ing increasing interest from researchers as it offers a more promising future in detecting
novel compounds rather than the synthetic approach [15]. Natural products, especially
those from plants, have a unique structural diversity, enabling new possibilities in drug
research [16]. Traditional medicine has been a reliable source for obtaining useful informa-
tion about plants with medicinal properties [17]. Some compounds were discovered by
accident, i.e., by random screening of plants, microorganisms, and marine organisms or by
bioactivity-guided fractionation [18]. Many drug lead structures were discovered through
these methods; nevertheless, the precious gifts of nature to humankind still must be used
satisfactorily. It is worth noting that among the sources of natural products, plants remain a
huge vase of abundant chemical compounds with unprecedented biological activities and
mechanistic action. Conversely, only a small portion of the world’s flora has been tested for
their potential bioactive compounds [19,20] and surprisingly, drugs derived from plants
are particularly low in number, unlike those from other natural product sources [21].

There are two basic types of phytochemicals: primary and secondary metabolites. The
former class contains the components used for the basic physiological processes in plants,
while the latter class is not necessarily used by plants’ physiology but ensures survival in
an ecological context. These compounds are known as secondary metabolites, and some
have been identified to promote human health and treatment of diseases [22]. Figure 1
shows different classes of plant bioactive secondary metabolites that are of clinical and
pharmacological importance, with examples of newly purified compounds that have been
studied for their anticancer potentials [23].
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3. Carcinogenesis and Phytochemicals: Mechanisms of Action and Cellular Targets

Cancer is a multifactorial disease with diverse etiological factors. The events that lead
to cancer arise from the alterations in the genetic constituents of an individual, which may
be in the form of mutation, epigenetic alteration, or perhaps the crosstalk between the two
processes [24]. As illustrated in Figure 2, the conversion of cellular proto-oncogenes into
oncogenes or inactivation of tumor suppressor genes (i.e., loss or gain of function mutations)
result in carcinogenesis. Similarly, alteration in methylation or acetylation of promoters
of certain genes could consequently result in aberrant proteins or lead to over-expression
of some facilitating components of cell signaling pathways. Examples of these facilitators
include growth factors and their receptors, such as RTKs, small GTPases, kinases, nuclear
receptors, developmental signaling pathway components (e.g., Wnt [25], Hedgehog [26],
Notch [27], Hippo [28]), nuclear targets of various signaling pathways (e.g., transcription
factors, chromatin remodeler, tumor suppressor genes, cell cycle regulators) [29–33], and
lots more [34,35]. These molecular facilitators have been the targets of bioactive compounds
used in chemotherapy in the treatment of cancer. Today, the advancement in molecular
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biology has revolutionized all aspects of research in biology. Efforts in elucidating drug–
target interaction have helped in revealing functions of some cellular proteins and in
understanding the mechanism of action involved in drug phenotypes [36,37]. Targets of
bioactive compounds (e.g., phytochemicals) range from genes to proteins responsible for
several cellular processes. Among the notable cellular processes that small molecules target
for their anticancer effects are cell death mechanisms (apoptosis and autophagy), metabolic
pathways, cell cycle regulation, mitogenic signal transduction, angiogenesis, metastasis,
replication, transcription, and translation machinery [38]. Meanwhile, the identification
of a therapeutic window for cancer has been a major challenge in chemotherapy in that
both the proliferating normal and cancer cells require the same metabolic needs [39]. The
selectivity of anticancer drugs is proportional to their ability to have cellular targets that
are peculiar to cancer in treatment. Unfortunately, most of the available anticancer drugs in
the market lack this pedestal.
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cellular signaling pathway and cancer formation.

Some of the available anticancer drugs are nonselective to cancer cells, targeting
housekeeping proteins and genes indiscriminately in both highly proliferating transformed
and normal cells [40]. However, most of the metabolic alterations in cancer often result
in supporting proliferation (e.g., loss of function mutation in tumor suppressor gene p53).
The wide merging in proliferation between transformed and nontransformed cells has been
a major drawback to find a therapeutic window in metabolism-based chemotherapy [41].

In recognition of the relentless efforts in bioprospecting plants, reports from many
studies have established promising and potent anticancer agents. Many of these phyto-
chemicals are selective in targeting signal transduction pathways that are known to be
adulterated in cancer cells [42]. Some of these agents modulate immune systems, control
epigenetics and mutations, and leverage the expression of enzymatic products and the
blockage of intracellular signal transduction cascades that may lead to the manifestation
of cancer. Some other phytochemicals have also been reported to work in synergy with
known anticancer drugs, thereby increasing their potency. Some can reverse the multiple
drug resistance (MDR) phenotype.
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The phytochemicals discussed below are new and have been established in various
studies to possess anticancer/antiproliferative properties. These phytochemicals are as-
signed to their various established phytochemical groups, and the information on whether
their mechanism of action and cellular targets is available in the literature was recorded.

4. Novel Glycosides

Glycosides include all phytochemicals that have saccharide moieties, i.e., glycosides
can occur in any phytochemical class. Prominent among the glycosides with therapeutic
values are flavonoid glycosides, anthraquinone glycosides, coumarin glycosides, cardiac
glycosides, cyanogenic glucosides, indole glycosides, etc. Efforts in recent times have
elucidated novel cellular targets specific to this class of chemicals. Two novel cellular tar-
gets, YYI/p65/p300 complex and VRKI/p53BPI, were recently reported to be the target of
hyperoside (a flavonol glycoside) and ginsenoside Rg3, respectively [43,44]. The anticancer
potency of cardiac glycosides is linked to their inhibition of sodium potassium ATPase
(NKA), Ca2+ apoptosis induction, sequential activation of autophagy and apoptosis, mod-
ulations of topoisomerase II, fibroblast growth factors (FGF-2), and nuclear factor kappa
B (NF-κB) inhibitions [45]. Nur77 (an orphan nuclear receptor) pathway has also been
established as a target of some cardiac glycosides. Nur77 protein is expressed in cardiac
glycoside-treated cells, which results in an apoptosis induction. This is due to an alteration
in the mitochondria occurring because of the translocation of Nur77 from the nucleus to
the cytoplasm [46].

The chemical structures presented in Figure 3 contain some newly reported glycosides
with promising antiproliferative activities, as well as some cardenolide lactates. Some new
glucosides (compounds 1 and 2, Figure 3A) were reported to be cytotoxic against HL-60 and
HepG2 (IC50 values 1.3 and 2.1 µM; 5.1 and 12.1 µM, respectively). No report was found
as to the mechanisms involved in their antiproliferative activities [47]. Another glycoside
(compound 3) reported by Zilla et. al. from Podophyllum hexandrum shows cytotoxicity
against a panel of cancer cell lines (see Supplementary Table S1) with an IC50 value range
of 0.208–0.291 µM [48].

As described by Raees et al., some novel pregnane glycosides from Desmidorchis
flava possess antiproliferative effects against breast and ovarian cancer cell lines [49,50].
Compounds 4–7 (Figure 3A) showed cytotoxicity on MDA-MB 231 and SKOV-3 cancer
cells [51]. Additionally, compound 4 (nizwaside) showed a stronger antiproliferative
effect in MDA-MB-231 cell lines than the known antitumor drug doxorubicin [49]. In
contrast, compounds 6 and 7 showed no cytotoxicity on normal breast epithelial cell line
MCF-10-2A [51].

A group of potent-to-moderate antiproliferative compounds was isolated from As-
clepias curassavica [52]. These include four new cardenolide lactates plus one glucoside
lactate (compounds 8–11, Figure 3A) and a new double-linked cardenolide glycoside (com-
pound 13, Figure 3B). While compound 13 showed a strong cytotoxic effect on DU145
cells (IC50 0.29 µM), the cardenolide lactates showed moderate cytotoxicity (IC50 value
range 1.66–16.96 µM) [52]. Other previously known compounds from this plant were
identified to be cytotoxic against DU145 prostate cancer cells. These were six normal carde-
nolides (IC50 values: 0.33–0.92 µM), four double-linked cardenolide glycosides (IC50 Values:
0.03–0.28 µM), and some C-21 steroidal glycosides [53–55]. Compound 14 (asclepiasterol), a
C-21 steroidal glycoside from A. curassavica, was reported to modulate the MDR phenotype
in MCF-7/ADR and HepG-2/ADM cells at low concentrations (2.5–5.0 µM) and enhancing
the cytotoxicity of anticancer drugs [56].

Two new quinochalcone C-glycosides (carthorquinosides A and B, Figure 3B) were
isolated from Carthamus tinctorius. Both compounds inhibit inflammation in lipopolysac-
charide (LPS)-stimulated HUVEC cells at low micromolar concentrations [57]. A novel
cardiac glycoside purified from Streptocaulon juventas (compound 17) showed more po-
tent antitumor activities against NSCLCs (IC50 values ranging from 0.006–0.44 µM) than
Taxol [58].
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5. Novel Polyphenolic Compounds

Polyphenolic compounds are generally characterized by the presence of an aromatic
ring with hydroxyl groups attached. This phytochemical class is of medical importance
to humans as antioxidants, antivirals, and anticarcinogens [59,60]. Polyphenols are sub-
divided into phenols and flavonoids and can occur as flavonoid glycosides [61]. Several
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studies have established phenolic compounds as modulators of multiple inflammatory com-
ponents [62]. Polyphenolic anticancer activity is linked to the modulation of proteins that
are involved in procancer signaling pathways, e.g., survival kinases, transcription factors,
and growth factors [63]. Reports have demonstrated the role of polyphenols in targeting
the PI3K/Akt/mTOR and Wnt/β-catenin signaling pathways and the downregulation of
cell cycle regulatory proteins such as cyclins and its kinases. Polyphenols are also known
as modulators of epigenetic regulators such as HDAC1 and HDAC2; tumor suppressor
proteins p53, PTEN, p21, and NF-kβ, NRF2 and STATs p27 [64–66]. Flavonoids share some
targets such as MAPK, PI3K/AKT, NF-κB, and NRF2 signaling pathways with phenols [67].
Reports from studies established some flavonoids as antimitotic and microtubule-targeting
agents (destabilizers and stabilizers of microtubules) and inhibitors of polo-like kinase 1
(PLK1) [68–71].

As shown in Figure 4, novel polyphenols from Calophyllum soulattri (compound 18)
showed cytotoxicity against the MDA-MB-231 breast cancer cell line. Compound 18 was
almost as active as cisplatin (IC50: 19.3 µM) on MDA-MB 231cells. It was found not to be
cytotoxic against normal HEK293 cells [72].
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A novel proanthocyanidin (compound 19, Figure 4) purified from Camellia ptilophylla
proved to be antiangiogenic [73]. This compound suppressed microtubule formation in
endothelial cells and cell migration in HMEC-1 cells. It inhibited intersegmental vessels for-
mation (ISV) in Zebrafish and inhibited the phosphorylation of ERK, p38, and Akt in HMEC
cells. MAPK and ERK signaling pathways play an important role in angiogenesis [73].

Compounds 20 and 21 (Figure 4) isolated from Leucaena leucocephala and Celosia argentea
were reported to have potent antioxidant scavenging and reducing power, and to be
cytotoxic against some cancer cells [74,75]. Compound 20 was reported to have IC50 value
2.41 µg/mL against HepG2 [74] while compound 21 (Figure 4A) was reported to have
significant antioxidant and cytotoxic activities against Siha, MCF-7, HCT, and HT-29, and no
cytotoxicity against Vero cells [74]. In addition to the novel polyphenols, two new flavones
(compounds 22 and 23) isolated from Lonicera japonica suggested having hepatoprotective
and antihepatoma properties due to activities in SMCC-7721 and HepG2 cells [76].



Molecules 2022, 27, 8307 8 of 21

6. Novel Xanthones

Xanthones are polyphenols that belong to the flavone subgroup. Many potent anti-
cancer agents have been reported from this group (as shown in Figure 5A,B). The genus
Garciniaea produces many anticancer xanthones [77–80]. Compounds 24, 25, and 26
(Figure 5A) are new xanthones that have not received due attention, though they have po-
tent anticancer activities. These compounds were purified from Garcinia hanburyi and were
reported to show cytotoxicity on cervical carcinoma cells with IC50 values of 3.82, 2.11, and
1.73 µM, respectively [79]. A caged-prenylxanthone (compound 27) isolated from Garcinia
bracteata showed cytotoxic effects against a panel of cancer cell lines including A549, MCF7,
SMMC-7721, SW480, and HL-60 cells at IC50 values ranging between 2.02–3.25 µM [81].
Compound 27 has been shown to induce growth inhibition via apoptosis and inhibited
autophagy flux in A549 and HeLa cells [80]. Compound 27 also inhibited the growth of
A549 and HeLa xenograft in mice a little bit higher than the taxol-positive control via the
upregulation of muscleblind-like 2 (MBNL2) and CELF 6 RNA-binding proteins [82,83].
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Figure 5. (A): Representative members of new xanthone phytochemicals from various plant sources
(compounds 24 to 35). (B): Representative members of new xanthone phytochemicals from various
plant sources (compounds 36 to 42).

Some new xanthones from Garcinia oligantha were reported to be cytotoxic against
many cancer cell lines [84–87]. Compounds 28–38 (Figure 5A,B) had IC50 values ranging
from 1.52–<20 µM against A549, HepG2, HT-29, PC, HL-7702, and HeLa cells [86]. Com-
pound 35 (Figure 5A) showed cytotoxic activities against quiescent prostate cancer cells
(LNCaP) that are insensitive to Taxol at 20 µM [84]. Xanthones from other plants source
include a novel diprenylated xanthone. Compound 39 (Figure 5B) from Calophyllum soulat-
tri was reported to have moderately higher antiproliferative effects across nine different
cancer cell lines than the positive controls quercetin and kaempferol (IC50 values from
9.2–22.10 µM, see Supplementary Table S1) [88]. Compound 40 from Cudrania tricuspidata
showed antiproliferative effects on oral squamous cell carcinoma by targeting NF-κB and
PIN1 signaling pathways [89]. Among five new compounds reported from Hypericum
kelleri, compounds 41 and 42 (Figure 5B) showed potent cytotoxicity against HeLa cells
with an IC50 value of 2.5 and 5.9 µM, respectively [90].

7. Novel Terpenoids

Valepotriates, which are triesters of monoterpene alcohol, are known for their excellent
anticancer properties [91]. Novel compounds belonging to this chemical class include com-
pounds 43–45 (Figure 6A) isolated from Valeriana jatamansi. These compounds obtained
as degradation products of valepotriates show selective cytotoxicity against PC-3M and
HCT-8 cancer cells with IC50 values between 2.1 and 6.5 µM [92]. Some new chlorinated
valepotriates (compounds 46–60, Figure 6A,B) isolated from Valeriana jatamansi were re-
ported to be cytotoxic on several cancer cell lines [93]. Some of these compounds (56–59)
had potent activity on A-549, PC-3, HCT-8, and Bel-7402 cancer cells with IC50 values
ranging between 1.06 and 10 µM.
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Compound 61 (Figure 6B), one of two new iridoids (named Jatamanvaltrate P) isolated
from Valeriana jatamansi, showed selective anticancer properties in vivo and in vitro [94]. It
inhibited the growth of triple-negative breast cancer (TNBC) and MCF-7 cancer cell lines in
a concentration-dependent manner (IC50 values 4.05–7.05 µM, respectively). Additionally,
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61 induced apoptosis and cell cycle arrest in treated cells. It also triggered autophagosome
formation, indicated by the upregulation of LC3-II level in treated cells [95]. Some new
sets of novel iridoids and bisiridoids were also reported from Patrinia scabiosaefolia. Three
iridoids (compounds 62–64) and one bisiridoid (compound 65) showed selective cytotoxic-
ity against HL-60, SMMC-7721, MCF-7, and SW-480, with IC50 values ranging from 1.2 to
23.9 µM [96].

Among the major challenges facing cancer chemotherapy is the resistance and cross-
resistance of cancer cells to anticancer agents. This menace results from the overexpression
of ATP-binding cassette (ABC) transporter proteins such as P-glycoprotein (P-gp) and
breast cancer resistance protein (BCRP, ABCG2) “drug efflux transport” [97]. These mem-
brane proteins are responsible for the excretion of drugs from the cell, resulting in low
intracellular accumulation and consequent inefficacy of the drug, even at lethal concen-
tration [98,99]. Examples of drugs against which cells have developed cross-resistance
are taxanes [100], anthracyclines [101], vinca alkaloids [102], platinum compounds [103],
and mitoxantrone [104]. Available MDR modulator drugs such as verapamil [105], cy-
closporine [106], dexverapamil [107], tariquidar [108], and zosuquidar [109] show high
toxicity and pharmacokinetic interactions with anticancer drugs [110].

Reports from various experiments have shown promising phytochemicals that are
more potent than the currently available MDR modulators. Recently, some new jatrophane
diterpenoids (compounds 66–70, Figure 6B) were isolated from Euphorbia welwitschia [111].
These compounds were reported to be stronger MDR modulators than verapamil [111].
At 2 µM, compounds 68, 69, and 70 showed distinct MDR phenotype reversal [112]. Com-
pounds 69 and 70 (Figure 6B) led to selective MDR reversal in EPG85-257RDB-, EPP85-
181RNOV-, and EPP85-181RDB-resistant cell lines. Compound 70 showed only minor
activity against EPG85-180RDB [111,112].

Some new diterpenoids from Euphorbia dendroides (compounds 71–77, Figure 6C) in-
hibited the growth of a resistant NCI-H460/R lung carcinoma cell line [113] Compounds
71 and 72 both showed strong anti-MDR activities, possessed strong synergy with paxl-
itatel and doxorubicin, and reversed the resistance to paclitaxel in the NCI-H460/R cell
line [114]. Some potent MDR reversal compounds were also isolated from Euphorbia
sororia (compounds 78–84, Figure 6C,D) [115–117]. Compounds 78–80 showed low cyto-
toxicity at 10 µM against a sensitive MCF-7 cancer cell line but had higher modulation of
P-glycoprotein (P-gp) transporter in doxorubicin-resistant MCF-7/ADR cells than vera-
pamil [113].

A novel mitotic arrest inducer belonging to ent-kaurene diterpenoids (compound 85,
Figure 6D) was purified from Isodon xerophilous. It was suggested that the compound’s
antimitotic activity was via abnormal activation of the mitotic spindle checkpoint protein
BubR1 [117]. More importantly, the compound also induced mitotic arrest in paclitaxel-
resistant Jurkat and U2OS cancer cell lines [117]. Novel anticancer triterpenes include
the three rarely found triterpene derivatives of C-27-carboxylated-lupine (compounds
86–88, Figure 6D) isolated from Potentilla discolor. These compounds demonstrate a higher
antiproliferative effect than matrine (a known anticancer agent) against HepG2, MCF7, and
T-84 cell lines. In contrast, they seem to be nontoxic against the HL-7702 noncancerous liver
cell line at 35 µM [118]. A pentacyclic triterpene (compound 89, Figure 6D) isolated from
Glechoma longituba induced apoptosis and cell cycle arrest in NCI-H460 lung carcinoma by
targeting the NF-κB/AP-1 signaling pathway [119]. Compound 90 (Figure 6D), a newly
isolated betulin derivative from the stem of Ziziphusspina christi, showed antiproliferative
property against a HepG2 cancer cell line [120].

8. Novel Alkaloids

The main phytochemical class, well known for its wide pharmaceutical spectrum, is the
alkaloids [121]. Anticancer alkaloids comprise a large number of chemical structures [18].
Prominent among anticancer alkaloids are paclitaxel [122], pyrrolizidines [123], indole [124],
quinoline [125], tropane [126], and acronycine alkaloids [127]. Figure 7 shows the chemical
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structures of some of the newly identified anticancer alkaloids. There are some new
taxane derivatives isolated from the ethanol extract of Taxus wallichiana. Compounds 91–94
(Figure 7) induced a tubulin effect similar to paclitaxel and had antiproliferative activities
at IC50 values between 0.077 and 7.48 µM against MCF -7, A549, 3-AO, and normal HUVEC
cells [128].
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Another phytochemical group of pharmacological importance are the naphtho-
quinones [129]. Some naphthoquinones have been reported as typical endoplasmic reticu-
lum stressors (ERS) [130,131]. Studies have shown that ERS is involved in the activation of
inositol-regulating enzyme 1 (IRE1), a representative of unfolded protein regulators (UPRs),
which are responsible for proteostasis [132,133]. Persistent ERS induces IRE1 to activate
ASK1 (apoptosis signal-regulating kinase 1) and subsequently, activation of the down-
stream c-Jun N-terminal kinases (JNK) phosphorylation, which induces cell death [134].
Naphthoquinones are potent anti-invasive agents acting on EMT (endothelial mesothelial
transition) of cancer stem cells and STAT3 signaling cascades [135–137]. Their modulation
of ROS enzymes such as ubiquitin-specific protease-2 (USP2) and NADPH Quinone Oxi-
doreductase 1 (NQO1) gave them selectivity against cancer cells [138]. Compounds 95–98
(Figure 7) isolated from Alkanna cappadocica showed intriguing cytotoxic activities against a
panel of cancer cells including HT-29, MDA-MB 231, PC-3, AU565, HepG2, LNCaP, MCF7,
HeLa, SK-BR-3, DU 145, Saos, and Hep3B at low micromolar concentration. Compound 95
showed significantly higher activity in these cell lines than doxorubicin and etoposide. [139].
Moreover, a new phytochemical from Alkanna tinctoria (Compound 99, Figure 7) was
isolated and evaluated for its cytotoxicity against HCT-116 and SW-480 (IC50: 4.4 and
9.6 µM, respectively) [123]. A novel naphthoquinone alkaloid (Compound 100, Figure 7)
isolated from Goniothalamus lanceolatus showed selective antiproliferative propery that was
more potent than 5-fluorouracil when tested against lung and colon carcinoma cells [140].

9. Novel Chalcones

A new chalcone isolated from Millettia pachycarpa (compound 101, Figure 8) showed
more potent antiproliferative effects (at 2 µM) against HeLa cell than cisplatin [141]. Re-
cently, two newly synthesized derivatives of compound 101 have been reported to have a
very potent cytotoxicity than compound 18 in vitro and in vivo (at nanomolar concentra-
tion) against many cancer cell lines. These compounds induced apoptosis via G2/M arrest,
inhibited tububin polymerization, repressed MDR phenotype, and had little cytotoxicity
against normal cells [142,143]. Two new chalcone dimers (compound 102 and 103, Figure 8)
isolated from Helichrysum zivojinii inhibited the growth of both sensitive and resistant lung
carcinoma NCI-H460, NCI-H460/R, and HaCaT cells [144]. Compound 102 suppressed
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the topoisomerase IIα and significantly enhanced doxorubicin activity (a typical anticancer
drug that suppresses topoisomerase IIα) when combined. Compounds 103 increased the ef-
ficacy of tipifarnib (farnesyltransferase inhibitor used in the treatment of leukemia) against
MDR cancer cells [144].
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A novel antiproliferative phytochemical belonging to polyprenylated benzophenone
(Compound 104, Figure 9) was isolated from Garcinia epunctata [145]. The compound
showed anti-MDR effects with relative reversal (RR) values of 0.5, 0.73, and 0.86 in HCT116
(p53−/−), CEM/ADR5000, and U87MG.∆EGFR glioblastoma cell lines, respectively, and
a collateral resistance (CR) value of 0.22 in MDA-MB-231-BCRP cancer cell [146]. A novel
polyene (compound 105, Figure 9) isolated from the root bark of Oplopanax horridus [147]
was found to inhibit growth of HCT-116, MCF-7, and SW-480 cancer cells at <10 µM [148].
A new phytosterol (compound 106, Figure 9) belonging to the withanolides was recently
isolated from Datura inoxia. This phytosterol was reported to inhibit the growth of HCT15
lung carcinoma at 4 µM [149]. A juglone analogue (compound 107, Figure 9) isolated from
the root of Polygonum cuspidatum inhibited the growth of hepatocellular carcinoma (HCC)
and HCC cancer stem cells via the blockage of the STAT3 signaling pathway [150]. New
phytochemicals isolated from Brugmansia suaveolens (compounds 108 and 109, Figure 9)
showed immunomodulatory potentials against PBMC-immunostimulated MCF7, A549,
and HL-60 cell lines via enhanced IL-2 and IFN-γ secretions and IL-1β reduction [151,152].

Finally, polysaccharides from various plants have been reported to have anticancer
effects due to their scavenging, antioxidant, and reducing ability, as well as their cy-
totoxicity [153,154]. A newly isolated polysaccharide from fractions of Meliato osendan
water extract, named pMTPS-3, inhibited the growth of BGC-823 gastric cancer cells at
400 µg/mL [155]. Another novel polysaccharide, named APP3a, was isolated from Auricu-
laria polytrichais. APP3a was reported to be a strong scavenger of free radicals, including
hydroxyl, superoxide, and DPPH radicals, along with its strong reducing power [156].
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10. Conclusions

In summary, phytochemicals in chemotherapy have always had a promising future.
Many of the phytochemicals reported have, in one way or the other, laid the foundation
for resolving the chemotherapy-related setbacks earlier mentioned. Some have shown
selective and higher potency than some of the existing anticancer drugs; some work in
synergy with existing anticancer drugs, increasing their effectiveness; and some reverse
multiple-drug-resistance phenotypes (a worrying situation in chemotherapy). However,
it must be said that new compounds are often declared as potential anticancer agents,
although only tests with established cell lines are available. This initially only identifies
the compounds as cytotoxic. There are usually no attempts to determine whether they
really have the potential to become a cancer drug in vivo. More extensive investigations
would have to be carried out much earlier, e.g., with xenografts in mice. However, since the
effort is great, more advanced models would also have to be established in vitro to identify
promising compounds at an early stage. The available information about the biological
activities, the cellular targets, and the names of the sensitive and nonsensitive cell lines to
the 109 compounds included in this review are summarized in Supplementary Table S1.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27238307/s1, Supplementary Table S1: Chemical classes
and biological activities of the phytochemicals.
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Milosavljević, S.M. Two structurally distinct chalcone dimers from Helichrysum zivojinii and their activities in cancer cell lines.
Phytochemistry 2014, 98, 190–196. [CrossRef]

145. Fotso, G.W.; Ntumy, A.N.; Ngachussi, E.; Dube, M.; Mapitse, R.; Kapche, G.D.; Andrae-Marobela, K.; Ngadjui, B.T.; Abegaz, B.M.
Epunctanone, a new benzophenone, and further secondary metabolites from Garcinia epunctata Stapf (Guttiferae). Helv. Chim.
Acta 2014, 97, 957–964. [CrossRef]

146. Mbaveng, A.T.; Fotso, G.W.; Ngnintedo, D.; Kuete, V.; Ngadjui, B.T.; Keumedjio, F.; Andrae-Marobela, K.; Efferth, T. Cytotoxicity
of epunctanone and four other phytochemicals isolated from the medicinal plants Garcinia epunctata and Ptycholobium contortum
towards multi-factorial drug resistant cancer cells. Phytomedicine 2018, 48, 112–119. [CrossRef] [PubMed]

147. Huang, W.-H.; Zhang, Q.-W.; Wang, C.-Z.; Yuan, C.-S.; Li, S.-P. Isolation and Identification of Two New Polyynes from a North
American Ethnic Medicinal Plant—Oplopanax horridus (Smith) Miq. Molecules 2010, 15, 1089–1096. [CrossRef] [PubMed]

148. Wang, C.-Z.; Zhang, Z.; Huang, W.-H.; Du, G.-J.; Wen, X.-D.; Calway, T.; Yu, C.; Nass, R.; Zhao, J.; Du, W.; et al. Identification of
potential anticancer compounds from Oplopanax horridus. Phytomedicine 2013, 20, 999–1006. [CrossRef]

149. Gajendran, B.; Durai, P.; Varier, K.M.; Chinnasamy, A. A novel phytosterol isolated from Datura inoxia, RinoxiaB is a potential
cure colon cancer agent by targeting BAX/Bcl2 pathway. Bioorganic Med. Chem. 2019, 28, 115242. [CrossRef]

150. Li, W.; Zhang, Q.; Chen, K.; Sima, Z.; Liu, J.; Yu, Q.; Liu, J. 2-Ethoxystypandrone, a novel small-molecule STAT3 signaling
inhibitor from Polygonum cuspidatum, inhibits cell growth and induces apoptosis of HCC cells and HCC Cancer stem cells. BMC
Complement. Altern. Med. 2019, 19, 38. [CrossRef] [PubMed]

151. Abreu, L.S.; Nascimento, Y.M.D.; Espirito-Santo, R.F.D.; Meira, C.S.; Santos, I.P.; Brandão, R.B.; Souto, A.L.; Guedes, M.L.S.;
Soares, M.B.P.; Villarreal, C.F.; et al. Phenylpropanoids from Croton velutinus with cytotoxic, trypanocidal and anti-inflammatory
activities. Fitoterapia 2020, 145, 104632. [CrossRef]

152. Kumar, S.; Gupta, A.; Saini, R.V.; Kumar, A.; Dhar, K.L.; Mahindroo, N.J.B.; Chemistry, M. Immunomodulation-mediated
anticancer activity of a novel compound from Brugmansia suaveolens leaves. Bioorganic Med. Chem. 2020, 28, 115552. [CrossRef]

153. Zong, A.; Cao, H.; Wang, F. Anticancer polysaccharides from natural resources: A review of recent research. Carbohydr. Polym.
2012, 90, 1395–1410. [CrossRef]

154. Sreelekha, T.T.; Joseph, M.M.; Aravind, S.R.; Varghese, S.; Mini, S. Evaluation of antioxidant, antitumor and immunomodulatory
properties of polysaccharide isolated from fruit rind of Punica granatum. Mol. Med. Rep. 2011, 5, 489–496. [CrossRef] [PubMed]

155. He, L.; Ji, P.; Gong, X.; Li, W.; Cheng, J.; Qian, H.; Song, X. Physico-chemical characterization, antioxidant and anticancer activities
in vitro of a novel polysaccharide from Melia toosendan Sieb. Et Zucc fruit. Int. J. Biol. Macromol. 2011, 49, 422–427. [CrossRef]
[PubMed]

156. Chen, Y.; Xue, Y. Purification, chemical characterization and antioxidant activities of a novel polysaccharide from Auricularia
polytricha. Int. J. Biol. Macromol. 2018, 120 Pt A, 1087–1092. [CrossRef] [PubMed]

http://doi.org/10.3389/fimmu.2020.543022
http://www.ncbi.nlm.nih.gov/pubmed/33324392
http://doi.org/10.1155/2015/453679
http://doi.org/10.3389/fphar.2020.00748
http://www.ncbi.nlm.nih.gov/pubmed/32536866
http://doi.org/10.2174/1389450120666190821160730
http://www.ncbi.nlm.nih.gov/pubmed/31433755
http://doi.org/10.1016/j.phymed.2019.153133
http://www.ncbi.nlm.nih.gov/pubmed/31790893
http://doi.org/10.1039/C6SC02758J
http://www.ncbi.nlm.nih.gov/pubmed/28451143
http://doi.org/10.1021/np900778j
http://doi.org/10.1016/j.phytol.2018.01.009
http://doi.org/10.1016/j.fitote.2012.08.001
http://doi.org/10.1016/j.ejphar.2021.173975
http://www.ncbi.nlm.nih.gov/pubmed/33647258
http://doi.org/10.1039/C6OB02507B
http://doi.org/10.1016/j.phytochem.2013.11.025
http://doi.org/10.1002/hlca.201300350
http://doi.org/10.1016/j.phymed.2017.12.016
http://www.ncbi.nlm.nih.gov/pubmed/30195869
http://doi.org/10.3390/molecules15021089
http://www.ncbi.nlm.nih.gov/pubmed/20335964
http://doi.org/10.1016/j.phymed.2013.04.013
http://doi.org/10.1016/j.bmc.2019.115242
http://doi.org/10.1186/s12906-019-2440-9
http://www.ncbi.nlm.nih.gov/pubmed/30709346
http://doi.org/10.1016/j.fitote.2020.104632
http://doi.org/10.1016/j.bmc.2020.115552
http://doi.org/10.1016/j.carbpol.2012.07.026
http://doi.org/10.3892/mmr.2011.638
http://www.ncbi.nlm.nih.gov/pubmed/22012001
http://doi.org/10.1016/j.ijbiomac.2011.05.028
http://www.ncbi.nlm.nih.gov/pubmed/21664924
http://doi.org/10.1016/j.ijbiomac.2018.08.160
http://www.ncbi.nlm.nih.gov/pubmed/30170055

	Introduction 
	Phytochemicals in Bioprospecting Research 
	Carcinogenesis and Phytochemicals: Mechanisms of Action and Cellular Targets 
	Novel Glycosides 
	Novel Polyphenolic Compounds 
	Novel Xanthones 
	Novel Terpenoids 
	Novel Alkaloids 
	Novel Chalcones 
	Conclusions 
	References

