Biochemical Calculations

312 BCH

Prepared by: Nojood AlTwaijry

Office: Building 5, 3rd floor, 197

Reference: Biochemical calculations by Irwin H. Segel.

Midterm dates

1st Midterm:

- 5th week, Monday 4th of February (28 Jumad'a I).
- Time 12-1 pm.

2nd Midterm:

- 10th week, Monday 11th of March (4 Rajab)
- Time 12-1 pm.

Marks distribution

- Midterm 1: 15 marks (15%)
- Midterm 2: 20 marks (20%)
- Lab: 25 marks (25%)
- Final exam: 40 marks (40%)

Objective of this lecture

- 1) To be familiar with the names and type of glassware used in the labs.
- 2) To know how to calculate the molarity and normality of solutions

Glassware

Bottles

Wide neck, amber, bottles; can be used for a wide range of light sensitive liquid or solid storage.

Reagent bottles

Narrow neck bottles; can be used for a wide range of liquid storage, media preparation and sampling applications.

Media-lab bottles

Wash bottles

Beakers

Conical shape beakers; ideally used for titrations and mixing application, these conical shape beakers are a cross between a standard beaker and conical flask.

Griffin beaker; is great for general laboratory use.

Flasks

Volumetric flasks; are precision measuring instruments.

Boiling flasks

Distillation flasks

Cell culture flasks

Erlenmeyer Conical flasks

Volumetric ware

Burette

Burette clamp

Cylinder

Mixing cylinder

Test tubes

Test tubes

Test tubes with ground socket joint.

Culture Tubes

Centrifuge Tubes

Pipettes

One mark pipette

Graduated pipettes

Pasteur Pipettes

MINI.

SO THE PROPERTY OF THE

Two mark pipette with safety bulb at top.

Funnels

Filter funnels

Dropping & Separating Funnels

Buchner Funnels

Lab equipment

Petri dishes

Evaporating dishes

Ring Stand

Vial Racks

Test Tube Clamp

pH meter

Test Tube Rack

Balance

Lab equipment continued

Plates

Micropipettes

Multichannel micropipettes

Tips

Eppendorf tubes

Solution Composition

- A solute is the substance being dissolved.
- A solvent is the liquid in which the solute is dissolved.
- A solute is dissolved in a solvent.
- An aqueous solution has water as solvent.

Aqueous Solution

- The majority of reactions occur in solutions.
- There are several ways to express the concentration of a substance in a solution based on:
 - The volume
 - The weight
 - Degree of saturation

Concentration based on volume

- Here the concentrations are based on the amount of dissolved solute per unit volume
- The calculations depending on volume include:
 - Molarity (M)
 - Normality (N)
 - Activity (a)
 - Weight/Volume percent (w/v %)
 - Volume/volume percent (v/v%)
 - Milligram percent (mg %)
 - Osmolarity (osm)

1- Molarity

 Is the number of moles of solute per liter of solution No. of moles

M = Volume of solution in L

- No. of moles = Wt_g/MWT (molecular weight)
- 1 mole contains Avogadro's number of molecules per liter (6.023 x 10²³).
- Molar concentrations are usually given in square brackets
 - Example: [H+] = molarity of hydrogen ion
 [NaOH] = molarity of Sodium Hydroxide

Molarity cont'ed

- Examples:
 - A solution of NaCL had 0.8 moles of solute in 2 liters of solution. What is its molarity?

$$M = 0.8$$

$$M = 0.4 \text{ molar}$$

Molarity cont'ed

 Examples: How many grams of solid NaOH are required to prepared 500 ml of 0.04 M solution?

$$M = \frac{\text{no. of moles}}{\text{volume of solution in L}}$$

$$500 \text{ ml} = 500 \div 1000 = 0.5 \text{ L}$$

$$\text{no. of moles} = 0.04 \times 0.5$$

$$\text{no. of moles} = 0.02 \text{ mole}$$

$$\text{no. of moles} = \frac{\text{weight in gram}}{\text{molecular weight (MWT)}}$$

Molarity cont'ed

MWT of NaOH = 23 = 16 + 1 = 40

Wt in grams = no. of moles \times MWT

wt in grams = 0.02×40

wt in grams = 0.8 grams

2- Normality

Is the number of equivalents of solute per liter of solution

n = is the number of replaceable hydrogen (H in acids)or hydroxyl ions (OH in bases) per molecule

n = is the number of electrons gained or lost per molecule (in oxidizing or reducing agents)

```
N = weight in gram × n / volume of solution in L
MWT
no. of moles
volume of solution in L
M = weight in gram / volume of solution in L
MWT
```

$$N = n \times M$$

For example: A 0.01 M solution of H₂SO₄ is 0.02

- **Example:** What is the normality of H₂SO₄ solution that contains 24.5 g of solute in a total volume of 100 ml?
- $N = n \times M$
- n = 2
- M = No. of moles / $V_{(L)}$
- 100 ml = 100 ÷ 1000 = 0.1L
- No. of moles = Wt_g/MWT
- MWT of $H_2SO_4 = 2 + 32 + (16 \times 4) = 98g$

- No. of moles = 24.5/98
- No. of moles = 0.25 mole
- M = No. of moles / $V_{(L)}$
- M = 0.25/0.1 = 2.5 molar
- $N = n \times M$
- $N = 2 \times 2.5 = 5 \text{ normal}$

Another way to solve it:

- Normality (N) = No. of equivalents / $V_{(L)}$
- No. of equivalents = Wt_g of solute / equivalents weight (EW)
- EW= MWT of solute / n
- MWT of $H_2SO_4 = 2 + 32 + (16 \times 4) = 98 g$
- EW= 98 / 2 = 49
- No. of equivalents = Wt_g of solute / equivalents weight (EW)
- = 24.5 g / 49 = 0.5 eq
- Normality (N) = No. of equivalents / V_(L)

$$=0.5 / 0.1 = 5$$
 Normal