1 A ball of mass 0.5 kg is attached to the end of a cord whose length is 2 m . The ball is whirled in a horizontal circle. If the cord can withstand a maximum tension of 50 N , the maximum speed the ball can have before the cord breaks is:

a) $14.1 \mathrm{~m} / \mathrm{s}$
b) $12.2 \mathrm{~m} / \mathrm{s}$
c) $23.4 \mathrm{~m} / \mathrm{s}$
d) $28.5 \mathrm{~m} / \mathrm{s}$
e) $18.3 \mathrm{~m} / \mathrm{s}$

2 A curve in a road forms part of a horizontal circle. As a car goes around it at constant speed $12 \mathrm{~m} / \mathrm{s}$, the total force on the driver has magnitude 130 N . The vector total force on the driver if the speed is $17 \mathrm{~m} / \mathrm{s}$ instead is:
a) 142 N
b) 83 N
c) 261 N
d) 215 N
e) 311 N

3 A 4 kg block of mass 1.6 kg initially at rest is pulled to the right along a horizontal, frictionless surface by a constant horizontal force of 12 N , the speed of the block after it has moved 3 m is:
a) $1.3 \mathrm{~m} / \mathrm{s}$
b) $2.4 \mathrm{~m} / \mathrm{s}$
c) $5.3 \mathrm{~m} / \mathrm{s}$
d) $4.2 \mathrm{~m} / \mathrm{s}$
е) $3.5 \mathrm{~m} / \mathrm{s}$

4 If it takes 4 J of work to stretch a Hooke's-law spring 10 cm from its unstressed length, the extra work required to stretch it an additional 15 cm is:
a) 10 J
b) 21 J
c) 12 J
d) 24 J
e) 16 J

5 The force acting on a particle varies as shown in the Figure. The work done by the force on the particle as it moves from $x=0$ to $x=10 \mathrm{~m}$ is:
a) 21 J
b) 3 J
c) 24 J
d) 27 J
d) 34 J

6 Ali jumps vertically upward with a vertical velocity component $4 \mathrm{~m} / \mathrm{s}$. How far does his center of mass move up as he makes the jump?
a) 2.14 m
b) 0.92 m
c) 1.11 m
d) 0.82 m
e) 1.84 m
$7 \quad$ A 400 N child is in a swing that is attached to rope 2 m long The gravitational potential energy of the child-earth system if the child if the child is at the bottom of the circular arc is:
a) 800 J
b) 100 J
c) 0 J
d) 200 J
e) 500 J

8 The system shown in the Figure is in equilibrium. If the spring scale is calibrated in newton, what does it read? (Neglect the masses of the pulleys and strings)

a) 0 N
b) 5 N
c) 20 N
d) 15 N
e) 10 N

9 A dart is loaded into a spring-loaded toy dart gun (حمل سهم علي نابض بندقية لعبة قاذفة للاسهم) by pushing the spring a distance d . For the second loading, the spring is compressed a distance 2 d . How much faster does the second dart leave the gun compared to the first?
a) 4 times as fast
b) 3 times as fast
c) the same
d) half as fast
e) 2 times as fast

10 Choose of the correct answer. The gravitational potential energy of a system
a) is always positive
b) can be positive or
c) is always zero
d) is always negative
e) None of those negative or zero

11 If a person lifts a 20 kg bucket from a well and does a 6 kJ of work, the depth of the well is: (assume the speed of the bucket is constant)
a) 7.8 m
b) 30.6 m
c) 15.5 m
d) 42.2 m
e) 22.3 m

12 If you push a 40 kg box at a constant speed of $1.4 \mathrm{~m} / \mathrm{s}$ across a horizontal floor of $\mu_{\mathrm{k}}=0.25$, the rate of energy dissipation by the frictional force is:
a) 210 W
b) 98 W
c) 173 W
d) 137 W
e) 34 W

13 A block of mass 2 kg is kept at rest as it compresses a horizontal spring ($\mathrm{k}=100 \mathrm{~N} / \mathrm{m}$) a distance $x=10 \mathrm{~cm}$. As the block is released, it travels 0.25 m on a rough horizontal surface before stopping. The coefficient of
 kinetic friction between surface and block is:
a) 0.1
b) 0.2
c) 0.3
d) 0.4
e) 0.25

14 A skier starts from rest at the top of a frictionless incline $\left(\theta=20^{\circ}\right)$ of height $\mathrm{h}=30$ m (as in the figure). The speed of the skier at the bottom of the incline is:

a) $32.3 \mathrm{~m} / \mathrm{s}$
b) $7.6 \mathrm{~m} / \mathrm{s}$
c) $24.2 \mathrm{~m} / \mathrm{s}$
d) $17.1 \mathrm{~m} / \mathrm{s}$
е) $19.8 \mathrm{~m} / \mathrm{s}$

15 In the figure, find the work done by a force $\mathrm{F}=45 \mathrm{~N}$ to pull the suitcase at an angle $\theta=50^{\circ}$ for a distance $\mathrm{s}=$ 75 m

a) 0.92 kJ
b) 2.17 kJ
c) 3.52 kJ
d) 4.11 kJ
e) 1.71 kJ

16 A golf ball strikes a hard, smooth floor at an angle of 30° and rebounds at the same angle (as in the figure). The mass of the ball is 0.047 kg , and its speed is $45 \mathrm{~m} / \mathrm{s}$ just before and after striking the floor. The magnitude of the impulse applied to the golf ball by the floor is:
a) $4.5 \mathrm{~N} . \mathrm{s}$
b) $2.8 \mathrm{~N} . \mathrm{s}$
c) $1.2 \mathrm{~N} . \mathrm{s}$
d) $3.7 \mathrm{~N} . \mathrm{s}$
e) $5.6 \mathrm{~N} . \mathrm{s}$

17 A ball of mass $m_{1}=5 \mathrm{~kg}$, moving to the right at a velocity of $2 \mathrm{~m} / \mathrm{s}$ on a frictionless table, collides head-on with a stationary ball of mass $\mathrm{m}_{2}=7.5 \mathrm{~kg}$. If the collision is perfect inelastic, the final velocity of the two balls after collision is:
а) $0.8 \mathrm{~m} / \mathrm{s}$
b) $1.6 \mathrm{~m} / \mathrm{s}$
c) $0.4 \mathrm{~m} / \mathrm{s}$
d) $2.3 \mathrm{~m} / \mathrm{s}$
е) $0.5 \mathrm{~m} / \mathrm{s}$

18 If a fly (object 1) collides with the windshield of a fast moving bus (object 2), which object experiences an impact force with a larger magnitude
a) the fly
b) the bus
c) the same force is
d) None of those
e) both of them will experienced by both not experience any impact force

19 The figures show dropping different balls onto different surfaces. In figure (a), a hard steel ball will completely
 rebound to its original height
after striking a hard surface. In figure(b), a basketball will partially rebound after striking a soft surface. In Figure (c), a basketball will not rebound at all. In which of these figures the collision is elastic?
a) Figure (c)
b) Figure (b)
c) Figures $(\mathrm{b} \& \mathrm{c})$
d) Figure (a)
e) Figures (a \& b)

20 If we know the potential energy function $U(x)$ for a conservative system in which a onedimensional force $F(x)$ acts on a particle, we can find the force as:
a)
b)
c)
d)
e)
$F(x)=-\frac{d u(x)}{d x}+u(x)$
$F(x)=-d u(x)$
$F(x)=\frac{d u(x)}{d x}$
None of those
$F(x)=-\frac{d u(x)}{d x}$

21 If a particle of mass m moves with momentum P , the kinetic energy of the particle (k) is:
a) $\mathrm{P} / 2 \mathrm{~m}$
b) $\mathrm{P}^{2} / 2 \mathrm{~m}$
c) $\mathrm{P}^{2} / \mathrm{m}$
d) $\mathrm{m}^{2} / 2 \mathrm{p}$
e) $2 \mathrm{~m}^{2} / \mathrm{p}$

22 A car and a large truck traveling at the same speed make a head-on collision and stick together. Which vehicle experiences the larger change in the magnitude of momentum?
a) the car
b) the truck
c) The change in the magnitude of momentum is the same for both. d) impossible to determine

23
In the figure, a box ($\mathrm{m} 1=3.2 \mathrm{~kg}$) slides on a horizontal frictionless table and collides with a another box ($\mathrm{m} 2=2.0 \mathrm{~kg}$) initially at rest on the edge of the table, at height $\mathrm{h}=0.40 \mathrm{~m}$. The speed of the box m 1 is $3.0 \mathrm{~m} / \mathrm{s}$ just before the collision. If the two boxes stick together because of packing tape on their sides, what is their kinetic energy just before they strike the floor?
a) 12 J
b) 20 J
c) 29 J
d) 37 J
e) 55 J

24
A billiard ball moving at $5.00 \mathrm{~m} / \mathrm{s}$ strikes a stationary ball of the same mass. After the collision, the first ball moves, at $4.33 \mathrm{~m} / \mathrm{s}$, at an angle of 30.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity ($\mathrm{v}_{2 \mathrm{f}}$) after the collision.

a) $2.5 \mathrm{~m} / \mathrm{s}$
b) $1.5 \mathrm{~m} / \mathrm{s}$
c) $4.8 \mathrm{~m} / \mathrm{s}$
d) $3.7 \mathrm{~m} / \mathrm{s}$
e) $0.5 \mathrm{~m} / \mathrm{s}$

25 A 3.00-kg particle has a velocity of (3.00i $-4.00 \mathrm{j}) \mathrm{m} / \mathrm{s}$. Find the magnitude and direction of its momentum.
a) $15 \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 307^{\circ}$
b) $10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}, 260^{\circ}$
c) $19 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$,
d) $22 \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 170^{\circ}$
e) $5 \mathrm{~kg} . \mathrm{m} / \mathrm{s}, 60^{\circ}$

