1	A ball of mass 0.5 kg is attached to the end of a cord whose length is 2 m. The ball is whirled in a horizontal circle. If the cord can withstand a maximum tension of 50 N, the maximum speed the ball can have before the cord breaks is:						
	a) 14.1 m/s	b) 12.2 m/s	c) 23.4 m/s	d) 28.5 m/s	e) 18.3 m/s		
2		force on the driver		-	nd it at constant speed otal force on the driver		
	a) 142 N	b) 83 N	c) 261 N	d) 215 N	e) 311 N		
3	-		horizontal, frictionless after it has moved 3 m				
	a) 1.3 m/s	b) 2.4 m/s	c) 5.3 m/s	d) 4.2 m/s	e) 3.5 m/s		
4	If it takes 4 J of work to stretch a Hooke's-law spring 10 cm from its unstressed length, the extra work required to stretch it an additional 15 cm is:						
	a) 10 J	b) 21 J	c) 12 J	d) 24 J	e) 16 J		
5	Figure. The wor	g on a particle va- k done by the for 0 to $x = 10$ m is: b) 3 J c) d) 34 J			4 6 8 10 x(m)		
6	Ali jumps vertically upward with a vertical velocity component 4 m/s. How far does his center of mass move up as he makes the jump?						
	a) 2.14 m	b) 0.92 m	c) 1.11 m	d) 0.82 m	e) 1.84 m		
7	A 400 N child is in a swing that is attached to rope 2 m long The gravitational potential energy of the child-earth system if the child if the child is at the bottom of the circular arc is						
	a) 800 J	b) 100 J	c) 0 J	d) 200 J	e) 500 J		
8	The system shown in the Figure is in equilibrium. If the spring scale is calibrated in newton, what does it read? (Neglect the masses of the pulleys and strings)						
	a) 0 N	b) 5 N	c) 20 N	5 kg d) 15 N	5 kg e) 10 N		
9	A dart is loaded into a spring-loaded toy dart gun (حمل سهم علي نابض بندقية لعبة قاذفة للاسهم) by pushing the spring a distance d. For the second loading, the spring is compressed a distance 2d. How much faster does the second dart leave the gun compared to the first?						
			ond dart leave the	gun compared to t	he first?		

10	Choose of the corr	the correct answer. The gravitational potential energy of a system			
	a) is always positive	b) can be positive or negative or zero	c) is always zero	d) is always negative	e) None of those

11	-	-		a 6 kJ of work, th	e depth of the well is:
	(assume the sp	eed of the bucket is	constant)		
	a) 7.8 m	b) 30.6 m	c) 15.5 m	d) 42.2 m	e) 22.3 m
12	If you push a 4	0 kg box at a consta	ant speed of 1.4 m	/s across a horizo	ntal floor of $\mu_k = 0.25$,
		rgy dissipation by th	-		•
	a) 210 W	b) 98 W	c) 173 W	d) 137 W	e) 34 W
13	,	ass 2 kg is kept at r	,	,	≪ −x→
		ng (k=100 N/m) a d	_		
	-	released, it travels			
	horizontal sur	face before stoppin	g. The coefficier	nt of	
		between surface an			
	a) <mark>0.1</mark>	b) 0.2	c) 0.3	d) 0.4	e) 0.25
14	A skier starts	from rest at the	top of a		
	frictionless inc	line ($\theta = 20^\circ$) of hei	ght $h = 30$		1
	m (as in the fig	gure). The speed of t	he skier at		
	the bottom of t	he incline is:			
				h	
				↑	
			, Y		20.0°
	a) 32.3 m/s	b) 7.6 m/s	c) 24.2 m/s	d) 17.1 m/s	e) 19.8 m/s
15		ind the work done by	· · · · · · · · · · · · · · · · · · ·		
		se at an angle $\theta = 5$			Ē 👘 🖉 Ē
	75 m	C		ALK	
				AT A	4
				S	SR
				OB B	en la la
	a) 0.92 kJ	b) 2.17 kJ	c) 3.52 kJ	d) 4.11 kJ	e) 1.71 kJ
16	-	kes a hard, smooth f	-		
		gle (as in the figure	·	0	
		is 45 m/s just befor he impulse applied t			
	magnitude of t	ne impulse applied i	to the golf ball by	the moor is:	30.0° 30.0°
	a) 4.5 N.s	b) 2.8 N.s	c) 1.2 N.s		
	d) 4.3 N.s d) 3.7 N.s	e) 5.6 N.s	C) 1.2 N.8		45 m/s
	,				¥
17		$m_1 = 5 \text{ kg}, \text{ moving}$			<i>m</i> ₂
		frictionless table, o		with a 🧴 📬	→ v ₀₂ = 0 m/s
	•	of mass $m_2 = 7.5$ kg.	1		102 - 0 1103
		inal velocity of the	two balls after col	llision	
	is:			1)	
10	a) 0.8 m/s	b) 1.6 m/s	c) 0.4 m/s	d) 2.3 m/s	e) 0.5 m/s
18					object 2), which object
	-	impact force with a			
	a) the fly	b) the bus	c) the same force experienced by both		e) both of them will not experience any
			experienced by both		impact force
					-

19	-	nto different e (a), a hard completely iginal height ard surface. In figu igure (c), a basketb		(b) a 1 will partially rebound at all. In which d	•		
20	· · · · · · · · · · · · · · · · · · ·	· · ·		a conservative syste			
	dimensional force $F(x)$ acts on a particle, we can find the force as:						
	a) $du(x)$	b)	c)	d)	e)		
	$F(x) = -\frac{du(x)}{dx} +$	u(x) F(x) = -du(x)	$F(x) = \frac{du(x)}{dx}$	None of those	$F(x) = -\frac{du(x)}{dx}$		
21	$F(x) = -\frac{du(x)}{dx} + u(x) \qquad F(x) = -du(x) \qquad F(x) = \frac{du(x)}{dx} \qquad \text{None of those} \qquad F(x) = -\frac{du(x)}{dx}$ If a particle of mass m moves with momentum P, the kinetic energy of the particle (k) is:						
	a) P/2m	b) P ² /2m	c) P ² /m	d) m ² /2p	e) 2m ² /p		
22	 A car and a large truck traveling at the same speed make a head-on collision and stick together. Which vehicle experiences the larger change in the magnitude of momentum? a) the car b) the truck c) The change in the magnitude of momentum is the same for both. d) impossible to determine 						
In the figure, a box $(m1=3.2 \text{ kg})$ slides on a horizontal frictionless table and collides with a another box $(m2=2.0 \text{ kg})$ initially at rest on the edge of the table, at height h= 0.40 m. The speed of the box m1 is 3.0 m/s just before the collision. If the two boxes stick together because of packing tape on their sides, what is their kinetic energy just before they strike the floor?							
	a) 12 J	b) 20 J	c) 29 J	d) 37 J	e) 55 J		
24	A billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves, at 4.33 m/s, at an angle of 30.0° with respect to the original line of motion. Assuming an elastic collision (and ignoring friction and rotational motion), find the struck ball's velocity (v _{2f}) after the collision.						
	a) 2.5 m/s	b) 1.5 m/s	c) 4.8 m/s	d) 3.7 m/s	e) 0.5 m/s		
25	A 3.00-kg particle has a velocity of (3.00i - 4.00j) m/s. Find the magnitude and direction of its momentum.						
	a) 15 kg.m/s, 307°	b) 10 kg.m/s, 260°	c) 19 kg.m/s,	d) 22 kg.m/s, 170°	e) 5 kg.m/s, 60°		