Mock Exam (Ch6 -to- Ch9.2) Take $\mathrm{g}=9.8 \mathbf{~ m s}^{-2}$ where ever needed
1 A ball of mass 0.5 kg is attached to the end of a cord whose length is 2 m . The ball is whirled in a horizontal circle. If the cord can withstand a maximum tension of 50 N , the maximum speed the ball can have before the cord breaks is:
a) $14.1 \mathrm{~m} / \mathrm{s}$
b) $12.2 \mathrm{~m} / \mathrm{s}$
c) $23.4 \mathrm{~m} / \mathrm{s}$
d) $28.5 \mathrm{~m} / \mathrm{s}$
e) $18.3 \mathrm{~m} / \mathrm{s}$

2 A curve in a road forms part of a horizontal circle. As a car goes around it at constant speed 12 m / s, the total force on the driver has magnitude 130 N . The vector total force on the driver if the speed is $17 \mathrm{~m} / \mathrm{s}$ instead is:
a) 142 N
b) 83 N
c) 261 N
d) 215 N
e) 311 N

3 A 4 kg block of mass initially at rest is pulled to the right along a horizontal, frictionless surface by a constant horizontal force of 12 N , the speed of the block after it has moved 3 m is:
a) $1.3 \mathrm{~m} / \mathrm{s}$
b) $2.4 \mathrm{~m} / \mathrm{s}$
c) $5.3 \mathrm{~m} / \mathrm{s}$
d) $4.2 \mathrm{~m} / \mathrm{s}$
e) $3.5 \mathrm{~m} / \mathrm{s}$

4 If it takes 4 J of work to stretch a Hooke's-law spring 10 cm from its unstressed length, the extra work required to stretch it an additional 15 cm is:
a) 10 J
b) 21 J
c) 12 J
d) 24 J
e) 16 J

5 The force acting on a particle varies as shown in the Figure. The work done by the force on the particle as it moves from $x=0$ to $x=10 \mathrm{~m}$ is:
a) 21 J
b) 3 J
c) 24 J
d) 27 J
d) 34 J

6 Ali jumps vertically upward with a vertical velocity component $4 \mathrm{~m} / \mathrm{s}$. How far does his center of mass move up as he makes the jump?
a) 2.14 m
b) 0.92 m
c) 1.11 m
d) 0.82 m
e) 1.84 m
$7 \quad$ The apparent weight of a fish in an elevator is the same as the real weight when the elevator.
a) moves downward at constant velocity
b) accelerates
c) accelerates upward
d) None of those

8 Choose of the correct answer. The gravitational potential energy of a system
a) is always positive
b) can be positive or negative or zero
c) is always zero
d) is always negative
e) None of those

9 If a person lifts a 20 kg bucket from a well and does a 6 kJ of work, the depth of the well is: (assume the speed of the bucket is constant)
a) 7.8 m
b) 30.6 m
c) 15.5 m
d) 42.2 m
e) 22.3 m

10 If you push a 40 kg box at a constant speed of $1.4 \mathrm{~m} / \mathrm{s}$ across a horizontal floor of $\mu_{\mathrm{k}}=0.25$, the rate of energy dissipation by the frictional force is:
a) 210 W
b) 98 W
c) 173 W
d) 137 W
e) 34 W

11 A skier starts from rest at the top of a frictionless incline $(\theta=$ 20°) of height $\mathrm{h}=30 \mathrm{~m}$ (as in the figure). The speed of the skier at the bottom of the incline is:
a) $32.3 \mathrm{~m} / \mathrm{s}$
b) $7.6 \mathrm{~m} / \mathrm{s}$
c) $24.2 \mathrm{~m} / \mathrm{s}$
d) $17.1 \mathrm{~m} / \mathrm{s}$
e) $19.8 \mathrm{~m} / \mathrm{s}$

12 In the figure, find the work done by a force $\mathrm{F}=45 \mathrm{~N}$ to pull the suitcase at an angle $\theta=50^{\circ}$ for a distance $\mathrm{s}=75 \mathrm{~m}$

a) 0.92 kJ
b) 2.17 kJ
c) 3.52 kJ
d) 4.11 kJ
e) 1.71 kJ

13 A golf ball strikes a hard, smooth floor at an angle of 30° and rebounds at the same angle (as in the figure). The mass of the ball is 0.047 kg , and its speed is 45 m / s just before and after striking the floor. The magnitude of the impulse applied to the golf ball by the floor is:

b) $4.5 \mathrm{~N} . \mathrm{s}$
b) $2.8 \mathrm{~N} . \mathrm{s}$
c) $1.2 \mathrm{~N} . \mathrm{s}$
e) $3.7 \mathrm{~N} . \mathrm{s} \quad$ e) $5.6 \mathrm{~N} . \mathrm{s}$

14 If we know the potential energy function $U(x)$ for a conservative system in which a onedimensional force $F(x)$ acts on a particle, we can find the force as:
a)
c)
d)
e)
$F(x)=-\frac{d u(x)}{d x}+u(x) \quad$ b) $F(x)=-d u(x)$
$F(x)=\frac{d u(x)}{d x}$
None of those
$F(x)=-\frac{d u(x)}{d x}$

15 If a particle of mass m moves with momentum P, the kinetic energy of the particle (k) is:
a) $\mathrm{P} / 2 \mathrm{~m}$
b) $\mathrm{P}^{2} / 2 \mathrm{~m}$
c) $\mathrm{P}^{2} / \mathrm{m}$
d) $\mathrm{m}^{2} / 2 \mathrm{p}$
e) $2 \mathrm{~m}^{2} / \mathrm{p}$

