Mock Exam (Ch6 -to- Ch9.2) Take $g = 9.8 \text{ ms}^{-2}$ where ever needed

1	A ball of mass 0.5 kg is attached to the end of a cord whose length is 2 m. The ball is whirled in a horizontal circle. If the cord can withstand a maximum tension of 50 N, the maximum speed the ball can have before the cord breaks is:					
	a) 14.1 m/s	b) 12.2 m/s	c) 23.4 m/s	d) 28.5 m/s	e) 18.3 m/s	
2	A curve in a road m/s, the total force speed is 17 m/s ins a) 142 N	forms part of a hor e on the driver has r stead is: b) 83 N	izontal circle. As a nagnitude 130 N. (c) 261 N	a car goes around The vector total fo d) 215 N	it at constant speed 12 rce on the driver if the e) 311 N	
3	A 4 kg block of mass initially at rest is pulled to the right along a horizontal, frictionless surface by a constant horizontal force of 12 N, the speed of the block after it has moved 3 m is:					
	a) 1.3 m/s	b) 2.4 m/s	c) 5.3 m/s	d) 4.2 m/s	e) 3.5 m/s	
4	If it takes 4 J of w work required to st a) 10 J	rork to stretch a Hoo tretch it an additiona b) 21 J	bke's-law spring 10 al 15 cm is: c) 12 J) cm from its unstr d) 24 J	e) 16 J	
5	The force acting of by the force on the a) 21 J b	n a particle varies a e particle as it moves a) 3 J c) 24 J	s shown in the Fig s from $x = 0$ to $x =$ d) 27 J	ure. The work don 10 m is: d) 34 J	e $F_{x}(N)$ 6 4 2 -2 -4 -2 -4	
6	Ali jumps verticall mass move up as h	ly upward with a vene makes the jump?	rtical velocity com	ponent 4 m/s. Hov	v far does his center of	
	a) 2.14 m	b) 0.92 m	c) 1.11 m	d) 0.82 m	e) 1.84 m	
7	The apparent weig	ht of a fish in an ele	evator is the same a	is the real weight w	when the elevator.	
		a) moves downward at constant velocity	b) accelerates downward	c) accelerates upwa	rd d) None of those	
8	Choose of the corr	ect answer. The gra	vitational potential	energy of a system	n	
	a) is always positive	b) can be positive or negative or zero	c) is always zero	d) is always negativ	e e) None of those	

9	If a person lifts a 20 kg bucket from a well and does a 6 kJ of work, the depth of the well is:						
	(assume the speed of the bucket is constant)						
	a) 7.8 m	b) 30.6 m	c) 15.5 m	d) 42.2 m	e) 22.3 m		
10	If you push a 40 kg box at a constant speed of 1.4 m/s across a horizontal floor of $\mu_k = 0.25$, the						
	rate of energy dissipation by the frictional force is:						
	a) 210 W	b) 98 W	c) 173 W	d) 137 W	e) 34 W		

11	A skier starts from	n rest at the top o	f a frictionless inclin	$e(\theta = 0)$	and the second	
	20°) of height h =	= 30 m (as in the	e figure). The speed	of the		
	skier at the bottom	of the incline is:			-	
				h		
	a) 32.3 m/s	b) 7.6 m/s	c) 24.2 m/s	d) 17.1 m/s	e) 19.8 m/s	
12	In the figure, find	the work done by	a force $F = 45$ N to p	oull the suitcase	@ F @ F	
	at an angle $\theta = 50^{\circ}$ for a distance s = 75 m					
	a) 0.92 kJ	b) 2.17 kJ	c) 3.52 kJ	d) 4.11 kJ	e) 1.71 kJ	
13	A golf ball strikes	s a hard, smooth	floor at an angle of	30° and rebounds	at the 45 m/s	
	same angle (as in t	the figure) The m	hass of the hall is 0.04	47 kg and its spee	d is 45	
	m/s just before an	d after striking th	e floor. The magnitud	le of the impulse	applied	
	to the colf ball by	the floor is:	e noor. The magnitud		30.0° 30.0°	
	to the golf ball by				45 m/s	
		• \	`		¥	
	b) 4.5 N.s	b) 2.8 N.s	c) 1.2 N.s			
	e) 3.7 N.s	e) 5.6 N.s				
14	If we know the	potential energy	function $U(x)$ for a	a conservative sy	stem in which a one-	
	dimensional force	F(x) acts on a par	ticle, we can find the	force as:		
	dimensional force a)	F(x) acts on a par	ticle, we can find the c)	force as: d)	e)	
	dimensional force a) $E(x) = \frac{du(x)}{du(x)}$	F(x) acts on a par (x) b) $F(x) = -d$	ticle, we can find the c) $du(x) \qquad du(x)$	force as: d)	e) $du(x)$	
	dimensional force a) $F(x) = -\frac{du(x)}{dx} + u(x)$	F(x) acts on a par (x) b) $F(x) = -dx$	ticle, we can find the c) $f(x) = \frac{du(x)}{dx}$	force as: d) None of those	e) $F(x) = -\frac{du(x)}{dx}$	
15	dimensional force a) $F(x) = -\frac{du(x)}{dx} + u(x)$ If a particle of mass	F(x) acts on a par (x) b) $F(x) = -dx$ (x) $F(x) = -dx$	ticle, we can find the c) $u(x) = \frac{du(x)}{dx}$ momentum P, the kine	force as: d) None of those etic energy of the	e) $F(x) = -\frac{du(x)}{dx}$ particle (k) is:	
15	dimensional force a) $F(x) = -\frac{du(x)}{dx} + u(x)$ If a particle of mass a) P/2m	F(x) acts on a par (x) b) $F(x) = -dx$ ss m moves with r b) $P^{2}/2m$	ticle, we can find the c) $u(x) F(x) = \frac{du(x)}{dx}$ momentum P, the kind c) P ² /m	d) None of those etic energy of the d) m ² /2p	e) $F(x) = -\frac{du(x)}{dx}$ particle (k) is: e) 2m ² /p	
1-	dimensional force a) $F(x) = -\frac{du(x)}{dx} + u(x)$	F(x) acts on a par (x) b) $F(x) = -dx$	ticle, we can find the c) $u(x) F(x) = \frac{du(x)}{dx}$	force as: d) None of those	e) $F(x) = -\frac{du(x)}{dx}$	
15	dimensional force a) $F(x) = -\frac{du(x)}{dx} + u(x)$ If a particle of mass a) P/2m	F(x) acts on a par (x) b) $F(x) = -dx\overline{ss m moves with r}b) P^{2}/2m$	ticle, we can find the c) $F(x) = \frac{du(x)}{dx}$ momentum P, the kind c) P ² /m	force as: d) None of those etic energy of the d) m ² /2p	e) $F(x) = -\frac{du(x)}{dx}$ particle (k) is: e) 2m ² /p	