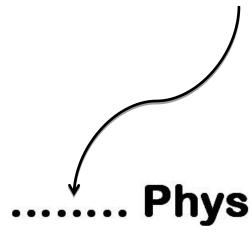


جامعة الملك سعود كلية العلوم قسم الفيزياء – طالبات اخر تحديث 1434/11/1


ملزمة تقاريس الفيزياء (102 فيز – 101 فيز – 101 أشع)

			: : a	الأسا

عزيزتي الطالبة:

هذه الملزمة هي عبارة عن تقارير مفرغة للتجارب الملزمة موجهة لمعامل الفيزياء (102 فيز – 111 فيز – 104 فيز – 101 اشع) ، لذا نرجوا كتابة رمز المعمل في الفراغ الموجود بداية كل تقرير .

	امو الطالبة
	الرؤو الجامعي
قانون أوم	امع التجربة
	يوء ووقص المعمل
	المجموعة العملية
	أمتاخة المعمار

	اسم الطالبة
	الرقو الجامعي
المحول الكهربائي	اسم التجربة
	يوء ووقت المعمل
	قيامعال قذهمبمال
	أستاخة المعمل

ربة:	من التج	الهدف ه
		.1

دائرة التجربة:

الجداول و الحسابات:

1. عندما يكون المحول رافع للجهد :

No.	$V_1(volt)$	$V_2(volt)$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

$$\frac{N_2}{N_1} =$$

No.	$V_1(volt)$	$V_2(volt)$
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

$$\frac{N_2}{N_1} =$$

Slope =

E% =

	اسم الطالبة
	الرقو الجامعي
ثابت ريدبيرج	اسم التجربة
	يوه ووقت المعمل
	قيلمعال قذهمجمال
	أستاخة المحمل

	الهدف من التجربة:
	الجداول و الحسابات:
ليوم () :	1. طيف ذرة الهي

No.	الألوان	الطول الموجي القياسي $\begin{pmatrix} 0 \\ A \end{pmatrix}$	الطول الموجي بعد التقريب $egin{pmatrix} 0 \ A \end{pmatrix}$	التدريج من المطياف (cm)
1	أحمر ضعيف	7065.19		
2	أحمر	6678.15		
3	أصفر	5876.87		
4	أخضر ضعيف	5047.74		
5	أخضر	5015.67		
6	أخضر مزرق	4921.93		
7	أزرق غامق	4713.14		
8	أزرق نيلي	4471.45		
9	بنفسجي	4387.93		

2. طيف ذرة الهيدروجين (......

No.	الألوان	رقم المدار	المسافة على التدريج (cm)	الطول الموجي من منحنى المعايرة $\begin{pmatrix} 0 \\ A \end{pmatrix}$	$\frac{1}{R_H}(m)$	$R_H \left(m^{-1} ight)$
1	أحمر	3				
2	أزرق مخضر	4				
3	أزرق	5				
4	بنفسجي	6				
R_{Hre}	_{al} =			$R_{H avg} =$		
ية	ة الخطأ المئو	نسبا				

	اسم الطالبة
	الرقو الجامعي
تعيين معامل الإنكسار	اسم التجربة
	يوء ووقت المعمل
	قيلمعال قذهمبمال
	أستاخة المحمل

الهدف من التجربة:	
3	

الجدول و الحسابات:

No.	$ heta(\deg)$ زاوية السقوط	زاوية الانحراف $\delta(\deg)$
1	35°	
2	40°	
3	45°	
4	50°	
5	55°	

: $\theta(\deg) = 35^\circ$ عند زاویة سقوط

:
$$\theta(\deg) = 40^\circ$$
 عند زاویة سقوط

:
$$\theta(\deg) = 45^\circ$$
 عند زاویة سقوط 3

:
$$\theta(\deg) = 50^\circ$$
 عند زاویة سقوط

: $\theta(\deg) = 55^{\circ}$ عند زاویة سقوط

	اسم الطالبة
	الرقو الجامعي
شحن المكثف	اسم التجربة
	يوء ووقت المعمل
	قيلمجال قذهمجمال
	أستاخة المحمل

هدف من التجربة:	الـ
ئرة التجربة:	دا

الجداول:

t ()	Ι()

الحسابات:

$$1 - R = \dots$$
, $C = \dots$

$$\tau = R C = \dots$$

2 - Convert the unit (sec) to (min):

$$3 - I_{\tau} = \dots, I_{max} = \dots,$$

$$\frac{I_{\tau}}{I_{max}} = \dots, \text{ this value called } \left(\frac{I_{\tau}}{I_{max}}\right)_{Ex}$$

4 - E % =

$$\left(\frac{I_{\tau}}{I_{max}}\right)_{Ex.} = \dots$$

$$\left(\frac{I_{\tau}}{I_{max}}\right)_{Th.} = \dots$$

..... Phys

	اسم الكالبة
	الرقو الجامعي
قانون أوم	اسع التجرية
	يوء ووقت المعمل
	قيلمعال قديممهمال
	أستاخة المحمل

∢ الدوائر الكهربية:

أُ<u>ولاً:</u> تحقيق قانوز أوم وتعيين المقاومة الجهولة R_1 :

حدول (1)

No.	I	V
110.	()	()
1		
2		
3		
4		
5		

Slope=

 $R_1 =$

 $:R_{2}$ تعيير المقاومة المجهولة المجهولة الماري

جدول (2)

No.		I	· ·	V	R_2								
110.	()	()	()							
1													
2													

 $\overline{R}_2 =$

<u>ثالثاً:</u> حساب المقاومة المكافئة للتوصيل على التسلسل:

1. عمليًا

جدول (3)

No		I	1	7	R	R_s								
No.	()	()	()								
1														
2														

$$\overline{R}_s =$$

<u>نظریًا</u>

$$R_s = R_1 + R_2 =$$

رابعاً: حساب المقاومة المكافئة للتوصيل علم التوازي:

1. عمليًا

حدول (4)

No.	ı	I	1	7	R	p	
NO.	()	()	()	
1							

2		
2		

$$\overline{R}_p =$$

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} =$$

	الرقو الجامعي
القنطرة المترية	اسم التجربة
	يوء ووقت المعمل
	قيامعال قذهمجمال
	أستاذة المحمل

الهدف من التجربة:

• •		0 (0	• •	• •	• •			•						0	• •	• •		• •		• •	•			• •				•	•	•	0		•	• •	•	• •	• •			• •	• •			• • •	• •	• .	1
• •		0 (• •	• •		• •	• •	• •	•	0 (•	•	• •	•		• •		• •	• •	0 1	• •	0	• •	• •	•		• •		• •	• •	• •	• •	•	0 (•	• •	• •	 •	• •	• •	• •	•	• •	• •	• •	> 0	• • •	• •	• 4	2
• •	0	•		•		• •	• •	• •		• •	• •		• •		D •	• •	0	• •	• •	0	• •		• •	• •	• •	0	• •	• •	• •	• •	• •	• •	• •		• •	• •	• •	 • •	• •	• •	• •		• •	• •	• •	> •	• • •	• •	••	3
																																																	4	4

دائرة التجربة:

الجداول:

	l l		
طول السلك المراد		:	
طول السلك المراد المقاومة المجهولة له R_{χ}			
R_x المجهولة له			

الحسابات:

$$R = \ldots \ldots (\ldots)$$
 قطر السلك : •

$$r=rac{R}{2}=\ldots\ldots(\ldots)=\ldots(m)$$
 نصف القطر: •

$$A=\pi\,r^2=$$
 مساحة مقطع السلك : (\ldots)

• المقاومة النوعية للسلك:

$$\rho = \frac{R_x A}{L} = \underbrace{R_x}_{L} A = slope \times A = \dots = \dots = \dots (\dots)$$

	اسم الطالبة
	الرقو الجامعيى
استخدام الجلفانومتر كأميتر	اسم التجربة
	يوء ووقت المعمل
	قيلمجال قذهمجمال
	أستاخة المحمل

الهدف من التجربة:

دائرة التجربة:

•	ت	ப	الحسبا	١

		يم ثابتة في التجربة:
التيار المار في الجلفانومتر = التيار المار ال	.1	,
المقاومة الداخلية للجلفانومتر $oldsymbol{R}_g$.2	
$1~\mathrm{mA}=1$ أقصى قيمة للتيار المار في التجربة ا I_{max}	.3	
$3 ext{ volt} = 3 ext{ volt}$ جهد البطارية المستخدمة	.4	

 r_s قيمة المقاومة الصغيرة •

: I_{max} المقابلة لـ R

الجداول:

1. التوصيل مع الأميتر:

من الأميتر	G من الجلفانوميتر

2. التوصيل بدون الأميتر:

No.	$R(K\Omega)$	G من الجلفانو ميتر	I(m من الجدول	A) من الرسم	المقارنة
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					

	اسم الطالبة
	الرقو الجامعي
البعد البؤري	اسم التجربة
	يوم ووقات المعمل
	قيلمعال قذهميمال
	أستاخة المحمل

الجزء الأول:

تعيين البعد البؤري لعدسة محدبة عملياً ، وذلك بطريقتين:

1. طريقة انطباق الصورة على المصدر نفسه : s=s'=f

f	r 1	J	f_2	j	f_3	f	avg	P = 100/f		
()	()	()	()	()	

هي	البؤري	للبعد	العملية	لقيمة

القيمة الحقيقية للبعد البؤري هي....

≻ E%=

2. الطريقة العامة:

No.		S		s'		$\frac{1}{s}$		$\frac{1}{s'}$
140.	()	()	()	()
1								
2								
3								
4								
5								

$$ightharpoonup$$
 الجزء المقطوع من محور السينات $\frac{1}{s} = \frac{1}{f_1} = \dots$

 $f_1 = \dots \dots \dots \dots \dots \dots \dots \dots$

$ ightharpoonup$ الجزء المقطوع من محور الصادات $rac{1}{s'}=rac{1}{f_2}=\dots\dots$
$f_2 = \dots \dots$
$f_{avg} = \dots \dots$
اذا تلاحظين عندما تقارنين بين قيمة متوسط البعد البؤري f_{avg} التي حصلت عليها من الطريقة الأولى g_{avg} ع قيمة متوسط البعد البؤري g_{avg} التي حصلت عليها من الطريقة الثانية g_{avg}

لجزء الثان<u>ي:</u>

الحصول على صورة مكبرة ، وحساب مقدار التكبير لها باستخدام علاقتين مختلفتين:

$$M = \frac{-s'}{s} \to (1) \qquad \Rightarrow M = \dots$$

$$M = \frac{h'}{h} \to (2) \qquad \Rightarrow M = \dots$$

ماذا تلاحظين عندما تقارنين بين قيمة التكبير التي حصلت عليها من العلاقة (1) مع قيمة التكبير التي حصلت عليها من العلاقة (2) ؟

.....

	اسم الطالبة
	الرقه الجامعي
مقياس الجهد	اسم التجربة
	يوء ووقت المعمل
	قيلمحال قذهمبمال
	أستاذة المحمل

ن التجربة:	الهدف ه
 	.1

دائرة التجربة:
الجداول و الحسابات:
أ. قياس القوة الدافعة الكهربائية لبطارية :

$R_1($	$L_0\left(\right)$	$L_1\left(\begin{array}{cc} \end{array} \right)$	$\varepsilon_1 = \varepsilon_0 \frac{L_1}{L_0} (\qquad)$

 $\varepsilon_{1_{avg}} =$

2. المقارنة بين القوة الدافعة الكهربائية لبطاريتين:

$R_1($)	L ₁ ()	L ₂ ()	$\frac{L_1}{L_2} = \frac{\varepsilon_1}{\varepsilon_2}$

$$\left(\frac{L_1}{L_2}\right)_{avg} =$$

Slope =

	اسم الطالبة
	الرقو الجامعي
راسم الاهتزاز المهبطي	اسم التجربة
	يوء ووقت المعمل
	قيلمعال قذهمجمال
	أستاخة المحمل

	جربة:	من الت	لهدف
			.1

 2
.4

الجداول و الحسابات:

أ) قياس فرق جهد مصدر مستمر (......):

جهد المصدر المستمر من الراسم	عدد التقسيمات على الشاشة = الإزاحة	مفتاح التكبير الرأسي للقناة المستخدمة	No.
()	()	()	
			1
			2
			3
		,	متوسط جهد المصدر ال (و هي القيمة العملية
			جهد المصدر المستمر (و هي القيمة الحقيقة
			نسبة الخطأ

ب) قیاس فرق جهد مصدر متردد (......):

_	عدد التقسيمات على الشاشة	مفتاح التكبير الرأسي	No.	
	= طول الخط المستقيم ()	للقناة المستخدمة		
()	()	(
			1	
			2	
			2	
			3	
		17 ä.ä liä.ä :	بت ایمانی این ت	
		V_{p-p} ن قمة إلى قمة	منوسط جهد الموجه م	
		V_{max} القيمة العظمى للجهد		
		V_{ei}	القيمة الفعالة للجهد	
		(\mathbf{X}^{2})	(و هي القيمة العملية	
		من الفراتين	جهد المصدر المتردد	
			جهد المصدر الملردد . (و هي القيمة الحقيق	
			نسبة الخطأ	
			, _	

:()	ج) قياس تردد موجة كهربائية	•
-----	----------------------------	---

f_1 التردد	الزمن الدور <i>ي</i> T	عدد التقسيمات على	مفتاح التحكم بقاعدة الزمن	No.
		الشاشة	الزمن	
()	()	()	()	
				1
				2
				3
		f_1 متوسط التردد		
			,,,	· ·

د) تولید منحنیات لیساجو:

الشكل	f2 () × مفتاح المضاعفات الكبيرة مفتاح المضاعفات الصغيرة	<i>f</i> ₁ ()