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chapter 2
c o m p l e x f u n c t i o n s

✬

✫

✩

✪

Overview
The last chapter developed a basic theory of complex numbers. For the next few
chapters, we turn our attention to functions of complex numbers. They are de-
fined in a similar way to functions of real numbers that you studied in calculus;
the only difference is that they operate on complex numbers rather than real
numbers. This chapter focuses primarily on very basic functions, their represen-
tations, and properties associated with functions such as limits and continuity.
You will learn some interesting applications as well as some exciting new ideas.

2.1 FUNCTIONS AND LINEAR MAPPINGS

A complex-valued function f of the complex variable z is a rule that assigns
to each complex number z in a set D one and only one complex number w.
We write w = f (z) and call w the image of z under f . A simple example
of a complex-valued function is given by the formula w = f (z) = z2. The set
D is called the domain of f , and the set of all images {w = f (z) : z ∈ D}
is called the range of f . When the context is obvious, we omit the phrase
complex-valued, and simply refer to a function f, or to a complex function f.

We can define the domain to be any set that makes sense for a given rule,
so for w = f (z) = z2, we could have the entire complex plane for the domain
D, or we might artificially restrict the domain to some set such as D = D1 (0) =
{z : |z| < 1} . Determining the range for a function defined by a formula is not
always easy, but we will see plenty of examples later on. In some contexts
functions are referred to as mappings or transformations.

In Section 1.6, we used the term domain to indicate a connected open set.
When speaking about the domain of a function, however, we mean only the set
of points on which the function is defined. This distinction is worth noting, and
context will make clear the use intended.
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54 Chapter 2 � Complex Functions

y

x

v

u

w = f (z) = u + iv

u = u(x, y) 
v = v(x, y)

Domain
D

Range
R

Figure 2.1 The mapping w = f (z).

Just as z can be expressed by its real and imaginary parts, z = x + iy, we
write f (z) = w = u+ iv, where u and v are the real and imaginary parts of w,
respectively. Doing so gives us the representation

w = f (z) = f (x, y) = f (x+ iy) = u+ iv.

Because u and v depend on x and y, they can be considered to be real-valued
functions of the real variables x and y; that is,

u = u (x, y) and v = v (x, y) .

Combining these ideas, we often write a complex function f in the form

f (z) = f (x+ iy) = u (x, y) + iv (x, y) . (2-1)

Figure 2.1 illustrates the notion of a function (mapping) using these symbols.

� EXAMPLE 2.1 Write f (z) = z4 in the form f (z) = u (x, y) + iv (x, y).

Solution Using the binomial formula, we obtain

f (z) = (x+ iy)4 = x4 + 4x3iy + 6x2 (iy)2 + 4x (iy)3 + (iy)4

=
(
x4 − 6x2y2 + y4

)
+ i

(
4x3y − 4xy3

)
,

so that u (x, y) = x4 − 6x2y2 + y4 and v (x, y) = 4x3y − 4xy3.

� EXAMPLE 2.2 Express the function f (z) = z Re (z) + z2 + Im (z) in the
form f (z) = u (x, y) + iv (x, y) .

Solution Using the elementary properties of complex numbers, it follows that

f (z) = (x− iy)x+
(
x2 − y2 + i2xy

)
+ y =

(
2x2 − y2 + y

)
+ i (xy) ,

so that u (x, y) = 2x2 − y2 + y and v (x, y) = xy.

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION. 

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



✐

✐

“04455˙CH02˙Mathews” — 2010/11/20 — 8:07 — page 55 — #3
✐

✐

✐

✐

✐

✐

2.1 � Functions and Linear Mappings 55

Examples 2.1 and 2.2 show how to find u (x, y) and v (x, y) when a rule
for computing f is given. Conversely, if u (x, y) and v (x, y) are two real-valued
functions of the real variables x and y, they determine a complex-valued function
f (x, y) = u (x, y) + iv (x, y), and we can use the formulas

x =
z + z

2
and y =

z − z
2i

to find a formula for f involving the variables z and z.

� EXAMPLE 2.3 Express f (z) = 4x2 + i4y2 by a formula involving the vari-
ables z and z.

Solution Calculation reveals that

f (z) = 4
(
z + z

2

)2

+ i4
(
z − z

2i

)2

= z2 + 2zz + z2 − i
(
z2 − 2zz + z2

)
= (1 − i) z2 + (2 + 2i) zz + (1 − i) z2.

Using z = reiθ in the expression of a complex function f may be convenient.
It gives us the polar representation

f (z) = f
(
reiθ

)
= u (r, θ) + iv (r, θ) , (2-2)

where u and v are real functions of the real variables r and θ.

Remark 2.1 For a given function f , the functions u and v defined here are
different from those defined by Equation (2-1) because Equation (2-1) involves
Cartesian coordinates and Equation (2-2) involves polar coordinates. �

� EXAMPLE 2.4 Express f (z) = z2 in both Cartesian and polar form.

Solution For the Cartesian form, a simple calculation gives

f (z) = f (x+ iy) = (x+ iy)2 =
(
x2 − y2

)
+ i (2xy) = u (x, y) + iv (x, y)

so that

u (x, y) = x2 − y2, and v (x, y) = 2xy.

For the polar form, we refer to Equation (1-39) to get

f
(
reiθ

)
=

(
reiθ

)2
= r2ei2θ = r2 cos 2θ + ir2 sin 2θ = U (r, θ) + iV (r, θ) ,

so that

U (r, θ) = r2 cos 2θ, and V (r, θ) = r2 sin 2θ.
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56 Chapter 2 � Complex Functions

Once we have defined u and v for a function f in Cartesian form, we must use
different symbols if we want to express f in polar form. As is clear here, the
functions u and U are quite different, as are v and V. Of course, if we are working
only in one context, we can use any symbols we choose.

� EXAMPLE 2.5 Express f (z) = z5 + 4z2 − 6 in polar form.

Solution Again, using Equation (1-39) we obtain

f (z) = f
(
reiθ

)
= r5 (cos 5θ + i sin 5θ) + 4r2 (cos 2θ + i sin 2θ) − 6

=
(
r5 cos 5θ + 4r2 cos 2θ − 6

)
+ i

(
r5 sin 5θ + 4r2 sin 2θ

)
= u (r, θ) + iv (r, θ) .

We now look at the geometric interpretation of a complex function. If D is
the domain of real-valued functions u (x, y) and v (x, y), the equations

u = u (x, y) and v = v (x, y)

describe a transformation (or mapping) from D in the xy plane into the uv plane,
also called the w plane. Therefore, we can also consider the function

w = f (z) = u (x, y) + iv (x, y)

to be a transformation (or mapping) from the set D in the z plane onto the
range R in the w plane. This idea was illustrated in Figure 2.1. In the following
paragraphs we present some additional key ideas. They are staples for any kind
of function, and you should memorize all the terms in bold.

If A is a subset of the domain D of f , the set B = {f (z) : z ∈ A} is called
the image of the set A, and f is said to map A onto B. The image of a single
point is a single point, and the image of the entire domain, D, is the range, R.
The mapping w = f (z) is said to be from A into S if the image of A is contained
in S. Mathematicians use the notation f : A → S to indicate that a function
maps A into S.

Figure 2.2 illustrates a function f whose domain is D and whose range is
R. The shaded areas depict that the function maps A onto B. The function also
maps A into R, and, of course, it maps D onto R.

The inverse image of a point w is the set of all points z in D such that
w = f (z). The inverse image of a point may be one point, several points, or
nothing at all. If the last case occurs then the point w is not in the range of f .
For example, if w = f (z) = iz, the inverse image of the point −1 is the single
point i, because f (i) = i (i) = −1, and i is the only point that maps to −1. In
the case of w = f (z) = z2, the inverse image of the point −1 is the set {i,−i}.
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x

y

u

v

D

A

R

B

Range

w = f (z) = u + iv

Domain 

Figure 2.2 f maps A onto B; f maps A into R.

You will learn in Chapter 5 that if w = f (z) = ez, the inverse image of the point
0 is the empty set—there is no complex number z such that ez = 0.

The inverse image of a set of points, S, is the collection of all points in the
domain that map into S. If f mapsD onto R, it is possible for the inverse image of
R to be a function as well, but the original function must have a special property:
A function f is said to be one-to-one if it maps distinct points z1 �= z2 onto
distinct points f (z1) �= f (z2). Many times an easy way to prove that a function
f is one-to-one is to suppose f (z1) = f (z2) , and from this assumption deduce
that z1 must equal z2. Thus, f (z) = iz is one-to-one because if f (z1) = f (z2) ,
then iz1 = iz2. Dividing both sides of the last equation by i gives z1 = z2. Figure
2.3 illustrates the idea of a one-to-one function: Distinct points get mapped to
distinct points.

The function f (z) = z2 is not one-to-one because −i �= i, but f (i) =
f (−i) = −1. Figure 2.4 depicts this situation: At least two different points get
mapped to the same point.

In the exercises we ask you to demonstrate that one-to-one functions give
rise to inverses that are functions. Loosely speaking, if w = f (z) maps the set
A one-to-one and onto the set B, then for each w in B there exists exactly one
point z in A such that w = f (z). For any such value of z we can take the

x

y

u

vf

Figure 2.3 A one-to-one function.
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58 Chapter 2 � Complex Functions

x

y

u

vf (z) = z2

Figure 2.4 The function f(z) = z2 is not one-to-one.

equation w = f (z) and “solve” for z as a function of w. Doing so produces an
inverse function z = g (w) where the following equations hold:

g (f (z)) = z for all z ∈ A, and
f (g (w)) = w for all w ∈ B. (2-3)

Conversely, if w = f (z) and z = g (w) are functions that map A into B
and B into A, respectively, and Equations (2-3) hold, then f maps the set A
one-to-one and onto the set B.

Further, if f is a one-to-one mapping from D onto T and if A is a subset
of D, then f is a one-to-one mapping from A onto its image B. We can also
show that if ζ = f (z) is a one-to-one mapping from A onto B and w = g (ζ) is a
one-to-one mapping from B onto S, then the composite mapping w = g (f (z))
is a one-to-one mapping from A onto S.

We usually indicate the inverse of f by the symbol f−1. If the domains of f
and f−1 are A and B, respectively, we can rewrite Equations (2-3) as

f−1 (f (z)) = z for all z ∈ A, and

f
(
f−1 (w)

)
= w for all w ∈ B. (2-4)

Also, for z0 ∈ A and w0 ∈ B,

w0 = f (z0) iff f−1 (w0) = z0. (2-5)

� EXAMPLE 2.6 If w = f (z) = iz for any complex number z, find f−1 (w) .

Solution We can easily show f is one-to-one and onto the entire complex
plane. We solve for z, given w = f (z) = iz, to get z = w

i = −iw. By Equations
(2-5), this result implies that f−1 (w) = −iw for all complex numbers w.

Remark 2.2 Once we have specified f−1 (w) = −iw for all complex numbers
w, we note that there is nothing magical about the symbol w. We could just as
easily write f−1 (z) = −iz for all complex numbers z. �
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2.1 � Functions and Linear Mappings 59

We now show how to find the image B of a specified set A under a given
mapping u+ iv = w = f (z). The set A is usually described with an equation or
inequality involving x and y. Using inverse functions, we can construct a chain
of equivalent statements leading to a description of the set B in terms of an
equation or an inequality involving u and v.

� EXAMPLE 2.7 Show that the function f (z) = iz maps the line y = x + 1
in the xy plane onto the line v = −u− 1 in the w plane.

Solution (Method 1): With A = {(x, y) : y = x+ 1}, we want to describe
B = f (A). We let z = x+ iy ∈ A and use Equations (2-5) and Example 2.6 to
get

u+ iv = w = f (z) ∈ B ⇐⇒ f−1 (w) = z = x+ iy ∈ A
⇐⇒ −iw ∈ A
⇐⇒ v − iu ∈ A
⇐⇒ (v, −u) ∈ A
⇐⇒ −u = v + 1
⇐⇒ v = −u− 1,

where ⇐⇒ means if and only if (iff ).
Note what this result says: u+ iv = w ∈ B ⇐⇒ v = −u− 1. The image of

A under f , therefore, is the set B = {(u, v) : v = −u− 1} .
(Method 2): We write u+iv = w = f (z) = i(x+iy) = −y+ix and note that

the transformation can be given by the equations u = −y and v = x. Because A
is described by A = {x+ iy : y = x+ 1}, we can substitute u = −y and v = x
into the equation y = x + 1 to obtain −u = v + 1, which we can rewrite as
v = −u− 1. If you use this method, be sure to pay careful attention to domains
and ranges.

We now look at some elementary mappings. If we let B = a + ib denote a
fixed complex constant, the transformation

w = T (z) = z +B = x+ a+ i (y + b)

is a one-to-one mapping of the z plane onto the w plane and is called a transla-
tion. This transformation can be visualized as a rigid translation whereby the
point z is displaced through the vector B = a+ ib to its new position w = T (z).
The inverse mapping is given by

z = T−1 (w) = w −B = u− a+ i (v − b)

and shows that T is a one-to-one mapping from the z plane onto the w plane.
The effect of a translation is depicted in Figure 2.5.
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y

x

w = z + B

u = x + a 
v = y + b

v

u
z = x + iy

B = a + ib B = a + ib

w = T(z)

Figure 2.5 The translation w = T (z) = z + B = x + a + i (y + b).

y

x

w = rei(θ + α)

w = R(z)

ρ = r ρ 
= 

r
φ = θ + α

φ = θ + α

v

u

z = reiθ

θ

α

r θrr

Figure 2.6 The rotation w = R (z) = rei(θ+α).

If we let α be a fixed real number, then for z = reiθ, the transformation

w = R (z) = zeiα = reiθeiα = rei(θ+α)

is a one-to-one mapping of the z plane onto the w plane and is called a rotation.
It can be visualized as a rigid rotation whereby the point z is rotated about
the origin through an angle α to its new position w = R (z). If we use polar
coordinates and designate w = ρiφ in the w plane, then the inverse mapping is

z = R−1 (w) = we−iα = ρeiφe−iα = ρei(φ−α).

This analysis shows that R is a one-to-one mapping of the z plane onto the w
plane. The effect of rotation is depicted in Figure 2.6.

� EXAMPLE 2.8 The ellipse centered at the origin with a horizontal major
axis of four units and vertical minor axis of two units can be represented by the
parametric equation

s (t) = 2 cos t+ i sin t = (2 cos t, sin t) , for 0 ≤ t ≤ 2π.
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2
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1 2

1 1.5 2 2.5 3 3.5

Figure 2.7 (a) Plot of the original ellipse; (b) plot of the rotated ellipse.

Suppose that we wanted to rotate the ellipse by an angle of π
6 radians and shift

the center of the ellipse 2 units to the right and 1 unit up. Using complex
arithmetic, we can easily generate a parametric equation r (t) that does so:

r (t) = s (t) ei
π
6 + (2 + i)

= (2 cos t+ i sin t)
(
cos
π

6
+ i sin

π

6

)
+ (2 + i)

=
(
2 cos t cos

π

6
− sin t sin

π

6

)
+ i

(
2 cos t sin

π

6
+ sin t cos

π

6

)
+ (2 + i)

=
(√

3 cos t− 1
2

sin t+ 2
)

+ i

(
cos t+

√
3

2
sin t+ 1

)

=

(
√

3 cos t− 1
2

sin t+ 2, cos t+
√

3
2

sin t+ 1

)
, for 0 ≤ t ≤ 2π.

Figure 2.7 shows parametric plots of these ellipses, using the software program
Maple.

If we let K > 0 be a fixed positive real number, then the transformation

w = S (z) = Kz = Kx+ iKy

is a one-to-one mapping of the z plane onto the w plane and is called a magni-
fication. If K > 1, it has the effect of stretching the distance between points
by the factor K. If K < 1, then it reduces the distance between points by the
factor K. The inverse transformation is given by

z = S−1 (w) =
1
K
w =

1
K
u+ i

1
K
v

and shows that S is one-to-one mapping from the z plane onto the w plane. The
effect of magnification is shown in Figure 2.8.
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y

Ki

K1

i

x

w = Kz

u = Kx
v = Ky

v

Ki

K1

i

u

Figure 2.8 The magnification w = S (z) = Kz = Kx + iKy.

Finally, if we let A = Keiα and B = a + ib, where K > 0 is a positive real
number, then the transformation

w = L (z) = Az +B

is a one-to-one mapping of the z plane onto the w plane and is called a linear
transformation. It can be considered as the composition of a rotation, a mag-
nification, and a translation. It has the effect of rotating the plane through an
angle given by α = Arg A, followed by a magnification by the factor K = |A|,
followed by a translation by the vector B = a+ ib. The inverse mapping is given
by z = L−1 (w) = 1

Aw − B
A and shows that L is a one-to-one mapping from the

z plane onto the w plane.

� EXAMPLE 2.9 Show that the linear transformation w = iz + i maps the
right half-plane Re (z) ≥ 1 onto the upper half-plane Im (w) ≥ 2.

Solution (Method 1): Let A = {(x, y) : x ≥ 1}. To describe B = f (A), we
solve w = iz + i for z to get z = w−i

i = −iw − 1 = f−1 (w) . Using Equations
(2-5) and the method of Example 2.7 we have

u+ iv = w = f (z) ∈ B ⇐⇒ f−1 (w) = z ∈ A
⇐⇒ −iw − 1 ∈ A
⇐⇒ v − 1 − iu ∈ A
⇐⇒ (v − 1, −u) ∈ A
⇐⇒ v − 1 ≥ 1
⇐⇒ v ≥ 2.

Thus, B = {w = u+ iv : v ≥ 2}, which is the same as saying Im (w) ≥ 2.
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2.1 � Functions and Linear Mappings 63

(Method 2): When we write w = f (z) in Cartesian form as

w = u+ iv = i (x+ iy) + i = −y + i (x+ 1) ,

we see that the transformation can be given by the equations u = −y and
v = x + 1. Substituting x = v − 1 in the inequality Re (z) = x ≥ 1 gives
v − 1 ≥ 1, or v ≥ 2, which is the upper half-plane Im (w) ≥ 2.

(Method 3): The effect of the transformation w = f (z) is a rotation of the plane
through the angle α = π

2 (when z is multiplied by i) followed by a translation
by the vector B = i. The first operation yields the set Im (w) ≥ 1. The second
shifts this set up 1 unit, resulting in the set Im (w) ≥ 2.

We illustrate this result in Figure 2.9.

x

y

u

v

w = iz + i

Figure 2.9 The linear transformation w = f (z) = iz + i.

Translations and rotations preserve angles. First, magnifications rescale dis-
tance by a factorK, so it follows that triangles are mapped onto similar triangles,
preserving angles. Then, because a linear transformation can be considered to
be a composition of a rotation, a magnification, and a translation, it follows
that linear transformations preserve angles. Consequently, any geometric object
is mapped onto an object that is similar to the original object; hence linear
transformations can be called similarity mappings.

� EXAMPLE 2.10 Show that the image of D1 (−1 − i) = {z : |z + 1 + i| < 1}
under the transformation w = (3 − 4i) z+6+2i is the open disk D5 (−1 + 3i) =
{w : |w + 1 − 3i| < 5}.
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64 Chapter 2 � Complex Functions

Solution The inverse transformation is z = w−6−2i
3−4i , so if we designate the

range of f as B, then

w = f (z) ∈ B ⇐⇒ f−1 (w) = z ∈ D1 (−1 − i)

⇐⇒ w − 6 − 2i
3 − 4i

∈ D1 (−1 − i)

⇐⇒
∣∣∣∣w − 6 − 2i

3 − 4i
+ 1 + i

∣∣∣∣ < 1

⇐⇒
∣∣∣∣w − 6 − 2i

3 − 4i
+ 1 + i

∣∣∣∣ |3 − 4i| < 1 · |3 − 4i|

⇐⇒ |w − 6 − 2i+ (1 + i) (3 − 4i)| < 5
⇐⇒ |w + 1 − 3i| < 5.

Hence the disk with center −1 − i and radius 1 is mapped one-to-one and onto
the disk with center −1 + 3i and radius 5 as shown in Figure 2.10.

v

u

y

x

w = S(z)

Figure 2.10 The mapping w = S (z) = (3 − 4i) z + 6 + 2i.

� EXAMPLE 2.11 Show that the image of the right half-plane Re (z) ≥ 1
under the linear transformation w = (−1 + i) z−2+3i is the half-plane v ≥ u+7.

Solution The inverse transformation is given by

z =
w + 2 − 3i
−1 + i

=
u+ 2 + i (v − 3)

−1 + i
,

which we write as

x+ iy =
−u+ v − 5

2
+ i

−u− v + 1
2

.

Substituting x = (−u+v−5)
2 into Re(z) = x ≥ 1 gives (−u+v−5)

2 ≥ 1, which
simplifies to v ≥ u+ 7. Figure 2.11 illustrates the mapping.
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w = f(z)

v

u

y

x

Figure 2.11 The mapping w = f (z) = (−1 + i) z − 2 + 3i.

EXERCISES FOR SECTION 2.1

1. Find f (1 + i) for the following functions.

(a) f (z) = z + z−2 + 5.

(b) f (z) = 1
z2+1

.

(c) f (z) = f (x + iy) = x + y + i
(
x3y − y2

)
.

(d) f (z) = z2 + 4zz − 5Re (z) + Im (z) .

2. Let f (z) = z21 − 5z7 + 9z4. Use polar coordinates to find

(a) f (−1 + i) .

(b) f
(
1 + i

√
3
)
.

3. Express the following functions in the form u (x, y) + iv (x, y).

(a) f (z) = z3.

(b) f (z) = z2 + (2 − 3i) z.

(c) f (z) = 1
z2 .

4. Express the following functions in the polar coordinate form u (r, θ) + iv (r, θ).

(a) f (z) = z5 + z5.

(b) f (z) = z5 + z3.

(c) For what values of z are the above expressions valid? Why?

5. Let f (z) = f (x + iy) = ex cos y + iex sin y. Find

(a) f (0) .

(b) f (iπ) .

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION. 

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



✐

✐

“04455˙CH02˙Mathews” — 2010/11/20 — 8:07 — page 66 — #14
✐

✐

✐

✐

✐

✐

66 Chapter 2 � Complex Functions

(c) f
(
i 2π

3

)
.

(d) f (2 + iπ) .

(e) f (3πi) .

(f) Is f a one-to-one function? Why or why not?

6. For z �= 0, let f (z) = f (x + iy) = 1
2

ln
(
x2 + y2

)
+ i arctan y

x
. Find

(a) f (1) .

(b) f
(√

3 + i
)
.

(c) f
(
1 + i

√
3
)
.

(d) f (3 + 4i) .

(e) Is f a one-to-one function? Why or why not?

7. For z �= 0, let f (z) = ln r + iθ, where r = |z|, and θ = Arg z. Find

(a) f (1) .

(b) f (−2) .

(c) f (1 + i) .

(d) f
(
−
√

3 + i
)
.

(e) Is f a one-to-one function? Why or why not?

8. Suppose that f maps A into B, g maps B into A, and that Equations (2-3) hold.

(a) Show that f is one-to-one.

(b) Show that f maps A onto B.

9. Suppose f is a one-to-one mapping from D onto T and that A is a subset of D.

(a) Show that f is one-to-one from A onto B, where B = {f (z) : z ∈ A} .
(b) Show, additionally, that if g is one-to-one from B onto S, then h (z) is

one-to-one from A onto S, where h (z) = g (f (z)) .

10. Let w = f (z) = (3 + 4i) z − 2 + i.

(a) Find the image of the disk |z − 1| < 1.

(b) Find the image of the line x = t, y = 1 − 2t for −∞ < t < ∞.

(c) Find the image of the half-plane Im (z) > 1.

(d) For parts (a) and (b), and (c), sketch the mapping. Identify three
points of your choice and their corresponding images.

11. Let w = (2 + i) z − 2i. Find the triangle onto which the triangle with vertices
z1 = −2 + i, z2 = −2 + 2i, and z3 = 2 + i is mapped.
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12. Let S (z) = Kz, where K > 0 is a positive real constant. Show that the equation
|S (z1) − S (z2)| = K |z1 − z2| holds and interpret this result geometrically.

13. Find the linear transformations w = f (z) that satisfy the following conditions.

(a) The points z1 = 2 and z2 = −3i map onto w1 = 1 + i and w2 = 1.

(b) The circle |z| = 1 maps onto the circle |w − 3 + 2i| = 5, and f (−i) =
3 + 3i.

(c) The triangle with vertices −4 + 2i, −4 + 7i, and 1 + 2i maps onto the
triangle with vertices 1, 0, and 1 + i, respectively.

14. Give a proof that the image of a circle under a linear transformation is a circle.
Hint : Let the circle have the parametrization z = z0 + Reit, 0 ≤ t ≤ 2π.

15. Prove that the composition of two linear transformations is a linear transformation.

16. Show that a linear transformation that maps the circle |z − z0| = R1 onto the
circle |w − w0| = R2 can be expressed in the form

A (w − w0)R1 = (z − z0)R2, where |A| = 1.

2.2 THE MAPPINGS w = zn and w = z
1
n

In this section we turn our attention to power functions.
For z = reiθ �= 0, we can express the function w = f (z) = z2 in polar

coordinates as

w = f (z) = z2 = r2ei2θ.

If we also use polar coordinates for w = ρeiφ in the w plane, we can express this
mapping by the system of equations

ρ = r2 and φ = 2θ.

Because an argument of the product (z) (z) is twice an argument of z, we
say that f doubles angles at the origin. Points that lie on the ray r > 0, θ = α
are mapped onto points that lie on the ray ρ > 0, φ = 2α. If we now restrict the
domain of w = f (z) = z2 to the region

A =
{
reiθ : r > 0 and

−π
2
< θ ≤ π

2

}
, (2-6)

then the image of A under the mapping w = z2 can be described by the set

B =
{
ρeiφ : ρ > 0 and − π < φ ≤ π

}
, (2-7)

which consists of all points in the w plane except the point w = 0.
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The inverse mapping of f , which we denote g, is then

z = g (w) = w
1
2 = ρ

1
2 ei

φ
2 ,

where w ∈ B. That is,

z = g (w) = w
1
2 = |w|

1
2 ei

Arg(w)
2 ,

where w �= 0. The function g is so important that we call special attention to it
with a formal definition.

Definition 2.1: Principal square root

The function

g (w) = w
1
2 = |w|

1
2 ei

Arg(w)
2 , for w �= 0, (2-8)

is called the principal square root function.

We leave as an exercise to show that f and g satisfy Equations (2-3) and
thus are inverses of each other that map the set A one-to-one and onto the set B
and the set B one-to-one and onto the set A, respectively. Figure 2.12 illustrates
this relationship.

What are the images of rectangles under the mapping w = z2? To find out,
we use the Cartesian form

w = u+ iv = f (z) = z2 = x2 − y2 + i2xy =
(
x2 − y2, 2xy

)
= (u, v)

and the resulting system of equations

u = x2 − y2 and v = 2xy. (2-9)

w = z2

z = w

v

u

y

x

1
2

Figure 2.12 The mappings w = z2 and z = w
1
2 .
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� EXAMPLE 2.12 Show that the transformation w = f (z) = z2, for z �= 0,
usually maps vertical and horizontal lines onto parabolas and use this fact to
find the image of the rectangle {(x, y) : 0 < x < a, 0 < y < b} .
Solution Using Equations (2-9), we determine that the vertical line x = a is
mapped onto the set of points given by the equations u = a2 − y2 and v = 2ay.
If a �= 0, then y = v

2a and

u = a2 − v2

4a2
. (2-10)

Equation (2-10) represents a parabola with vertex at a2, oriented horizontally,
and opening to the left. If a > 0, the set

{
(u, v) : u = a2 − y2, v = 2ay

}
has

v > 0 precisely when y > 0, so the part of the line x = a lying above the x-axis
is mapped to the top half of the parabola.

The horizontal line y = b is mapped onto the parabola given by the equations
u = x2 − b2 and v = 2xb. If b �= 0, then as before we get

u = −b2 +
v2

4b2
. (2-11)

Equation (2-11) represents a parabola with vertex at −b2, oriented horizon-
tally and opening to the right. If b > 0, the part of the line y = b to the
right of the y-axis is mapped to the top half of the parabola because the set{
(u, v) : u = x2 − b2, v = 2bx

}
has v > 0 precisely when x > 0.

Quadrant I is mapped onto quadrants I and II by w = z2, so the rectangle
0 < x < a, 0 < y < b is mapped onto the region bounded by the top halves of
the parabolas given by Equations (2-10) and (2-11) and the u-axis. The vertices
0, a, a + ib, and ib of the rectangle are mapped onto the four points 0, a2,
a2 − b2 + i2ab, and − b2, respectively, as indicated in Figure 2.13.

Finally, we can easily verify that the vertical line x = 0, y �= 0 is mapped
to the set

{(
−y2, 0

)
: y �= 0

}
. This is simply the set of negative real numbers.

Similarly, the horizontal line y = 0, x �= 0 is mapped to the set
{(
x2, 0

)
: x �= 0

}
,

which is the set of positive real numbers.

What happens to images of regions under the mapping

w = f (z) = |z|
1
2 ei

Arg(z)
2 = r

1
2 ei

θ
2 for z = reiθ �= 0,

where −π < θ ≤ π? If we use polar coordinates for w = ρeiφ in the w plane, we
can represent this mapping by the system

ρ = r
1
2 and φ =

θ

2
. (2-12)

Equations (2-12) indicate that the argument of f (z) is half the argument of
z and that the modulus of f (z) is the square root of the modulus of z. Points
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−4 −3 −2 −1

−2

−1

1

2

a2
u

v

x

y

a + i bi b

−b2

a2 − b2 + i 2ab2

0.5

a

w = z2

Figure 2.13 The transformation w = z2.

ux

vy

w = z

ρ = r

−π < θ ≤ π

φ =
2
θ

1
2

1
2

Figure 2.14 The mapping w = z
1
2 .

that lie on the ray r > 0, θ = α are mapped onto the ray ρ > 0, φ = α
2 . The

image of the z plane (with the point z = 0 deleted) consists of the right half-
plane Re (w) > 0 together with the positive v-axis. The mapping is shown in
Figure 2.14.

We can use knowledge of the inverse mapping z = w2 to get further insight
into how the mapping w = z

1
2 acts on rectangles. If we let z = x+ iy �= 0, then

z = w2 = u2 − v2 + i2uv,

and we note that the point z = x + iy in the z plane is related to the point
w = u+ iv = z

1
2 in the w plane by the system of equations

x = u2 − v2 and y = 2uv. (2-13)
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� EXAMPLE 2.13 Show that the transformation w = f (z) = z
1
2 usually maps

vertical and horizontal lines onto portions of hyperbolas.

Solution Let a > 0. Equations (2-13) map the right half-plane given by
Re (z) > a (i.e., x > a) onto the region in the right half-plane satisfying u2−v2 >
a and lying to the right of the hyperbola u2 − v2 = a. If b > 0, Equations (2-13)
map the upper half-plane Im (z) > b (i.e., y > b) onto the region in quadrant
I satisfying 2uv > b and lying above the hyperbola 2uv = b. This situation
is illustrated in Figure 2.15. We leave as an exercise the investigation of what
happens when a = 0 or b = 0.

−3 3 6 9

4

9

1 2 3

1

2

3

x = a

2uv = b

z = w2

w = z

u2 − v2  = a

y

x u

v

y = b

1
2

Figure 2.15 The mapping w = z
1
2 .

We can easily extend what we’ve done to integer powers greater than 2. We
begin by letting n be a positive integer, considering the function w = f (z) = zn,
for z = reiθ �= 0, and then expressing it in the polar coordinate form

w = f (z) = zn = rneinθ. (2-14)

If we use polar coordinates w = ρeiφ in the w plane, the mapping defined
by Equation (2-14) can be given by the system of equations

ρ = rn and φ = nθ.

The image of the ray r > 0, θ = α is the ray ρ > 0, φ = nα, and the angles
at the origin are increased by the factor n. The functions cosnθ and sinnθ are
periodic with period 2π

n , so f is in general an n-to-one function; that is, n points
in the z plane are mapped onto each nonzero point in the w plane.

If we now restrict the domain of w = f (z) = zn to the region

E =
{
reiθ : r > 0 and

−π
n
< θ ≤ π

n

}
,

then the image of E under the mapping w = zn can be described by the set

F =
{
ρeiφ : ρ > 0 and − π < φ ≤ π

}
,
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which consists of all points in the w plane except the point w = 0. The inverse
mapping of f , which we denote g, is then

z = g (w) = w
1
n = ρ

1
n ei

φ
n ,

where w ∈ F . That is,

z = g (w) = w
1
n = |w|

1
n ei

Arg(w)
n ,

where w �= 0. As with the principal square root function, we make an analogous
definition for nth roots.

Definition 2.2: Principal nth root

The function

g (w) = w
1
n = |w|

1
n ei

Arg(w)
n , for w �= 0,

is called the principal nth root function.

We leave as an exercise to show that f and g are inverses of each other that
map the set E one-to-one and onto the set F and the set F one-to-one and onto
the set E, respectively. Figure 2.16 illustrates this relationship.

w = zn

z = w 1

v

u

y

x

π
n

–π
 n

n

Figure 2.16 The mappings w = zn and z = w
1
n .

The Quadratic Formula

We are now able to present a familiar result. It’s proof, which is left as an
exercise, depends on the ideas of this section, and Section 1.5.
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◗ Theorem 2.1 (The Quadratic Formula) The solutions to the equation
az2 + bz + c = 0 are

z =
−b+

√
b2 − 4ac

2a
and z =

−b−
√
b2 − 4ac

2a
,

where the principal square root, Equation (2-8 ), is used in each case.

� EXAMPLE 2.14 Find all solutions to the equation z2 + z + iz + 5i = 0.

Solution First, rewrite the equation as z2 + (1 + i)z + 5i = 0. The quadratic
formula then gives

z =
−(1 + i) ±

√
(1 + i)2 − 4(1)(5i)
2(1)

=
−(1 + i) ±

√
−18i

2
.

Now, Arg(−18i) = −π
2 , and |−18i| = 18, so by Theorem 2.1 and Equation (2-8)

the solutions are

z =
−(1 + i) ± 18

1
2 e−i π

4

2
=

−(1 + i) ± 3
√

2e−i π
4

2
=

−(1 + i) ± 3
√

2
(√

2
2 − i

√
2

2

)
2

.

Simplifying the last expression gives z = 1 − 2i and z = −2 + i.

EXERCISES FOR SECTION 2.2

1. Find the images of the mapping w = z2 in each case, and sketch the mapping.

(a) The horizontal line {(x, y) : y = 1}.
(b) The vertical line {(x, y) : x = 2}.
(c) The rectangle {(x, y) : 0 < x < 2, 0 < y < 1}.
(d) The triangle with vertices 0, 2, and 2 + 2i.

(e) The infinite strip {(x, y) : 1 < x < 2} .
(f) The right half-plane region to the right of the hyperbola x2 − y2 = 1.

(g) The first quadrant region between the hyperbolas xy = 1
2

and xy = 4.

2. For what values of z does
(
z2

) 1
2 = z hold if the principal value of the square root

is to be used?

3. Solve the following quadratics; use Theorem 2.1 if necessary.

(a) 2z2 + 5iz − 2 = 0 (useful for Exercise 2, Section 8.2).
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(b) 3z2 − 10z + 3 (useful for Exercise 6, Section 8.2).

(c) z2 + 2z + 5 = 0 (useful for Exercise 4a, Section 12.3).

(d) 2z2 + 2z + 1 = 0 (useful for Exercise 5a, Section 12.3).

4. Prove Theorem 2.1, the quadratic formula.

5. Use your knowledge of the principal square root function to explain the fallacy in
the following logic: 1 =

√
(−1) (−1) =

√
(−1)

√
(−1) = (i) (i) = −1.

6. Show that the functions f (z) = z2 and g (w) = w
1
2 = |w| 12 ei

Arg(w)
2 with domains

given by Equations (2-6) and (2-7), respectively, satisfy Equations (2-3) of Sec-
tion 2.1. Thus, f and g are inverses of each other that map the shaded regions in
Figure 2.14 one-to-one and onto each other.

7. Sketch the set of points satisfying the following relations.

(a) Re
(
z2

)
> 4.

(b) Im
(
z2

)
> 6.

8. Find and illustrate the images of the following sets under the mapping w = z
1
2 .

(a)
{
reiθ : r > 1 and π

3
< θ < π

2

}
.

(b)
{
reiθ : 1 < r < 9 and 0 < θ < 2π

3

}
.

(c)
{
reiθ : r < 4 and − π < θ < π

2

}
.

(d) The vertical line {(x, y) : x = 4} .
(e) The infinite strip {(x, y) : 2 < y < 6}.

(f) The region to the right of the parabola x = 4 − y2

16
.

Hint : Use the inverse mapping z = w2 to show that the answer is the
right half-plane Re (w) > 2.

9. Find the image of the right half-plane Re (z) > 1 under the mapping w = z2+2z+1.

10. Find the image of the following sets under the mapping w = z3.

(a)
{
reiθ : 1 < r < 2 and π

4
< θ < π

3

}
.

(b)
{
reiθ : r > 3 and 2π

3
< θ < 3π

4

}
.

11. Find the image of
{
reiθ : r > 2, and π

4
< θ < π

3

}
under the following mappings.

(a) w = z3.

(b) w = z4.

(c) w = z6.

12. Find the image of the sector r > 0, −π < θ < 2π
3

under the following mappings.

(a) w = z
1
2 .

(b) w = z
1
3 .

(c) w = z
1
4 .
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13. Show what happens when a = 0 and b = 0 in Example 2.13

14. Establish the result referred to in the comment after Definition 2.2.

2.3 LIMITS AND CONTINUITY

Let u = u (x, y) be a real-valued function of the two real variables x and y.
Recall that u has the limit u0 as (x, y) approaches (x0, y0) provided the value of
u (x, y) can be made to get as close as we want to the value u0 by taking (x, y)
to be sufficiently close to (x0, y0). When this happens we write

lim
(x,y)→(x0,y0)

u (x, y) = u0.

In more technical language, u has the limit u0 as (x, y) approaches (x0, y0)
iff |u (x, y) − u0| can be made arbitrarily small by making both |x− x0| and
|y − y0| small. This condition is like the definition of a limit for functions of one
variable. The point (x, y) is in the xy plane, and the distance between (x, y)

and (x0, y0) is
√

(x− x0)
2 + (y − y0)2. With this perspective we can now give

a precise definition of a limit.

Definition 2.3: Limit of u (x, y)

The expression lim
(x,y)→(x0,y0)

u (x, y) = u0 means that for each number ε > 0,

there is a corresponding number δ > 0 such that

|u (x, y) − u0| < ε whenever 0 <
√

(x− x0)
2 + (y − y0)2 < δ. (2-15)

� EXAMPLE 2.15 Show, if u (x, y) = 2x3

(x2+y2) , then lim
(x,y)→(0,0)

u (x, y) = 0.

Solution If x = r cos θ and y = r sin θ, then

u (x, y) =
2r3 cos3 θ

r2 cos2 θ + r2 sin2 θ
= 2r cos3 θ.

Because
√

(x− 0)2 + (y − 0)2 = r and because
∣∣cos3 θ

∣∣ < 1,

|u (x, y) − 0| = 2r
∣∣cos3 θ

∣∣ < ε whenever 0 <
√
x2 + y2 = r <

ε

2
.

Hence, for any ε > 0, Inequality (2-15) is satisfied for δ = ε
2 ; that is, u (x, y) has

the limit u0 = 0 as (x, y) approaches (0, 0).
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76 Chapter 2 � Complex Functions

The value u0 of the limit must not depend on how (x, y) approaches (x0, y0),
so u (x, y) must approach the value u0 when (x, y) approaches (x0, y0) along any
curve that ends at the point (x0, y0). Conversely, if we can find two curves C1

and C2 that end at (x0, y0) along which u (x, y) approaches two distinct values
u1 and u2, then u (x, y) does not have a limit as (x, y) approaches (x0, y0).

� EXAMPLE 2.16 Show that the function u (x, y) = xy
x2+y2 does not have a

limit as (x, y) approaches (0, 0).

Solution If we let (x, y) approach (0, 0) along the x-axis, then

lim
(x,0)→(0,0)

u (x, 0) = lim
(x,0)→(0,0)

(x)(0)
x2 + 02

= 0.

But if we let (x, y) approach (0, 0) along the line y = x, then

lim
(x,x)→(0,0)

u (x, x) = lim
(x,x)→(0,0)

(x)(x)
x2 + x2

=
1
2
.

Because the value of the limit differs depending on how (x, y) approaches (0, 0),
we conclude that u (x, y) does not have a limit as (x, y) approaches (0, 0).

Let f (z) be a complex function of the complex variable z that is defined for
all values of z in some neighborhood of z0, except perhaps at the point z0. We
say that f has the limit w0 as z approaches z0, provided the value f (z) can be
made as close as we want to the value w0 by taking z to be sufficiently close to
z0. When this happens we write

lim
z→z0

f (z) = w0.

The distance between the points z and z0 can be expressed by |z − z0|, so
we can give a precise definition similar to the one for a function of two variables.

Definition 2.4: Limit of f (z)

The expression lim
z→z0

f (z) = w0 means that for each real number ε > 0, there

exists a real number δ > 0 such that

|f (z) − w0| < ε whenever 0 < |z − z0| < δ.
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w = f(z)
w0z0

v

u

f(z)

ε
δ

y

x

z

Figure 2.17 The limit f (z) → w0 as z → z0.

Using Equations (1-49) and (1-51), we can also express the last relationship
as

f (z) ∈ Dε (w0) whenever z ∈ D∗
δ (z0) .

The formulation of limits in terms of open disks provides a good context
for looking at this definition. It says that for each disk of radius ε about the
point w0 (represented by Dε (w0)) there is a punctured disk of radius δ about
the point z0 (represented by D∗

δ (z0)) such that the image of each point in the
punctured δ disk lies in the ε disk. The image of the δ disk does not have to fill
up the entire ε disk; but if z approaches z0 along a curve that ends at z0, then
w = f (z) approaches w0. The situation is illustrated in Figure 2.17.

� EXAMPLE 2.17 Show that if f (z) = z, then lim
z→z0

f (z) = z0, where z0 is

any complex number.

Solution As f merely reflects points about the y-axis, we suspect that any ε
disk about the point z0 would contain the image of the punctured δ disk about
z0 if δ = ε. To confirm this conjecture, we let ε be any positive number and
set δ = ε. Then we suppose that z ∈ D∗

δ (z0) = D∗
ε (z0), which means that

0 < |z − z0| < ε. The modulus of a conjugate is the same as the modulus of
the number itself, so the last inequality implies that 0 < |z − z0| < ε. This is
the same as 0 < |z − z0| < ε. Since f (z) = z and w0 = z0, this is the same as
0 < |f(z) − w0| < ε, or f(z) ∈ Dε (w0), which is what we needed to show.

If we consider w = f (z) as a mapping from the z plane into the w plane
and think about the previous geometric interpretation of a limit, then we are led
to conclude that the limit of a function f should be determined by the limits of
its real and imaginary parts, u and v. This conclusion also gives us a tool for
computing limits.
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78 Chapter 2 � Complex Functions

◗ Theorem 2.2 Let f (z) = u (x, y) + iv (x, y) be a complex function that is
defined in some neighborhood of z0, except perhaps at z0 = x0 + iy0. Then

lim
z→z0

f (z) = w0 = u0 + iv0 (2-16)

iff

lim
(x,y)→(x0,y0)

u (x, y) = u0 and lim
(x,y)→(x0,y0)

v (x, y) = v0. (2-17)

Proof We first assume that Statement (2-16) is true and show that State-
ment (2-17) is true. According to the definition of a limit, for each ε > 0,
there is a corresponding δ > 0 such that

f (z) ∈ Dε (w0) whenever z ∈ D∗
δ (z0) ;

that is,

|f (z) − w0| < ε whenever 0 < |z − z0| < δ.

Because f (z) − w0 = u (x, y) − u0 + i (v (x, y) − v0), we can use Inequalities
(1-21) to conclude that

|u (x, y) − u0| ≤ |f (z) − w0| and |v (x, y) − v0| ≤ |f (z) − w0| .

It now follows that |u (x, y) − u0| < ε and |v (x, y) − v0| < ε whenever
0 < |z − z0| < δ, and so Statement (2-17) is true.

Conversely, we now assume that Statement (2-17) is true. Then for each
ε > 0, there exists δ1 > 0 and δ2 > 0 so that

|u (x y) − u0| <
ε

2
whenever 0 < |z − z0| < δ1 and

|v (x y) − v0| <
ε

2
whenever 0 < |z − z0| < δ2.

We choose δ to be the minimum of the two values δ1 and δ2. Then we can
use the triangle inequality

|f (z) − w0| ≤ |u (x, y) − u0| + |v (x, y) − v0|

to conclude that

|f (z) − w0| <
ε

2
+
ε

2
= ε whenever 0 < |z − z0| < δ;

that is,

f (z) ∈ Dε (w0) whenever z ∈ D∗
δ (z0) .

Hence the truth of Statement (2-17) implies the truth of Statement (2-16),
and the proof of the theorem is complete.
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2.3 � Limits and Continuity 79

� EXAMPLE 2.18 Show that lim
z→1+i

(
z2 − 2z + 1

)
= −1.

Solution We let

f (z) = z2 − 2z + 1 = x2 − y2 − 2x+ 1 + i (2xy − 2y) .

Computing the limits for u and v, we obtain

lim
(x, y)→(1, 1)

u (x, y) = 1 − 1 − 2 + 1 = −1 and

lim
(x, y)→(1, 1)

v (x, y) = 2 − 2 = 0,

so our previous theorem implies that lim
z→1+i

f (z) = −1.

Limits of complex functions are formally the same as those of real functions,
and the sum, difference, product, and quotient of functions have limits given by
the sum, difference, product, and quotient of the respective limits. We state this
result as a theorem and leave the proof as an exercise.

◗ Theorem 2.3 Suppose that lim
z→z0

f (z) = A and lim
z→z0

g (z) = B. Then

lim
z→z0

[f (z) ± g (z)] = A±B, (2-18)

lim
z→z0

f (z) g (z) = AB, and (2-19)

lim
z→z0

f (z)
g (z)

=
A

B
, where B �= 0. (2-20)

Definition 2.5: Continuity of u (x, y)

Let u (x, y) be a real-valued function of the two real variables x and y. We
say that u is continuous at the point (x0, y0) if three conditions are satisfied:

lim
(x,y)→(x0,y0)

u (x, y) exists; (2-21)

u (x0, y0) exists; and (2-22)

lim
(x,y)→(x0,y0)

u (x, y) = u (x0, y0) . (2-23)
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80 Chapter 2 � Complex Functions

Condition (2-23) actually implies Conditions (2-21) and (2-22) because the
existence of the quantity on each side of Equation (2-23) is implicitly understood
to exist. For example, if u (x, y) = x3

x2+y2 when (x, y) �= (0, 0) and if u (0, 0) = 0,
then u (x, y) → 0 as (x, y) → (0, 0) so that Conditions (2-21), (2-22), and (2-23)
are satisfied. Hence u (x, y) is continuous at (0, 0).

There is a similar definition for complex-valued functions.

Definition 2.6: Continuity of f (z)

Let f (z) be a complex function of the complex variable z that is defined for
all values of z in some neighborhood of z0. We say that f is continuous at
z0 if three conditions are satisfied:

lim
z→z0

f (z) exists; (2-24)

f (z0) exists; (2-25)

lim
z→z0

f (z) = f (z0) . (2-26)

Remark 2.3 Example 2.17 shows that the function f (z) = z is continuous. �

A complex function f is continuous iff its real and imaginary parts, u
and v, are continuous. The proof of this fact is an immediate consequence of
Theorem 2.2. Continuity of complex functions is formally the same as that of
real functions, and sums, differences, and products of continuous functions are
continuous; their quotient is continuous at points where the denominator is not
zero. These results are summarized by the following theorems. We leave the
proofs as exercises.

◗ Theorem 2.4 Let f (z) = u (x, y)+iv (x, y) be defined in some neighborhood
of z0. Then f is continuous at z0 = x0 + iy0 iff u and v are continuous at
(x0, y0).
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◗ Theorem 2.5 Suppose that f and g are continuous at the point z0. Then
the following functions are continuous at z0:

� the sum f + g, where (f + g) (z) = f (z) + g (z) ;

� the difference f − g, where (f − g) (z) = f (z) − g (z) ;

� the product fg, where (fg) (z) = f (z) g (z) ;

� the quotient f
g , where f

g (z) = f(z)
g(z) , provided g (z0) �= 0; and

� the composition f ◦ g, where (f ◦ g) (z) = f (g (z)), provided f is contin-
uous in a neighborhood of g (z0) .

� EXAMPLE 2.19 Show that the polynomial function given by

w = P (z) = a0 + a1z + a2z2 + · · · + anz
n

is continuous at each point z0 in the complex plane.

Solution If a0 is the constant function, then lim
z→z0

a0 = a0; and if a1 �= 0,

then we can use Definition 2.3 with f (z) = a1z and the choice δ = ε
|a1| to prove

that lim
z→z0

(a1z) = a1z0. Using Property (2-19) and mathematical induction, we

obtain

lim
z→z0

(
akz

k
)

= akz
k
0 for k = 0, 1, 2, ... , n. (2-27)

We can extend Property (2-18) to a finite sum of terms and use the result of
Equation (2-27) to get

lim
z→z0

P (z) = lim
z→z0

(
n∑

k=0

akz
k

)
=

n∑
k=0

akz
k
0 = P (z0) .

Conditions (2-24), (2-25), and (2-26) are satisfied, so we conclude that P is
continuous at z0.

One technique for computing limits is to apply Theorem 2.5 to quotients. If
we let P and Q be polynomials and if Q (z0) �= 0, then

lim
z→z0

P (z)
Q (z)

=
P (z0)
Q (z0)

.
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82 Chapter 2 � Complex Functions

Another technique involves factoring polynomials. If both P (z0) = 0 and
Q (z0) = 0, then P and Q can be factored as P (z) = (z − z0)P1 (z) and Q (z) =
(z − z0)Q1 (z). If Q1 (z0) �= 0, then the limit is

lim
z→z0

P (z)
Q (z)

= lim
z→z0

(z − z0)P1 (z)
(z − z0)Q1 (z)

=
P1 (z0)
Q1 (z0)

.

� EXAMPLE 2.20 Show that lim
z→1+i

z2−2i
z2−2z+2 = 1 − i.

Solution Here P and Q can be factored in the form

P (z) = (z − 1 − i) (z + 1 + i) and Q (z) = (z − 1 − i) (z − 1 + i)

so that the limit is obtained by the calculation

lim
z→1+i

z2 − 2i
z2 − 2z + 2

= lim
z→1+i

(z − 1 − i) (z + 1 + i)
(z − 1 − i) (z − 1 + i)

= lim
z→1+i

z + 1 + i
z − 1 + i

=
(1 + i) + 1 + i
(1 + i) − 1 + i

=
2 + 2i

2i
= 1 − i.

EXERCISES FOR SECTION 2.3

1. Find the following limits.

(a) lim
z→2+i

(
z2 − 4z + 2 + 5i

)
.

(b) lim
z→i

z2+4z+2
z+1

.

(c) lim
z→i

z4−1
z−i

.

(d) lim
z→1+i

z2+z−2+i
z2−2z+1

.

(e) lim
z→1+i

z2+z−1−3i
z2−2z+2

by factoring.

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION. 

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



✐

✐

“04455˙CH02˙Mathews” — 2010/11/20 — 8:07 — page 83 — #31
✐

✐

✐

✐

✐

✐

2.3 � Limits and Continuity 83

2. Determine where the following functions are continuous.

(a) z4 − 9z2 + iz − 2.

(b) z+1
z2+1

.

(c) z2+6z+5
z2+3z+2

.

(d) z4+1
z2+2z+2

.

(e) x+iy
x−1

.

(f) x+iy
|z|−1

.

3. State why lim
z→z0

(
ex cos y + ix2y

)
= ex0 cos y0 + ix2

0y0.

4. State why lim
z→z0

[
ln

(
x2 + y2

)
+ iy

]
= ln

(
x2

0 + y2
0

)
+ iy0, provided |z0| �= 0.

5. Show that

(a) lim
z→0

|z|2
z

= 0.

(b) lim
z→0

x2

z
= 0.

6. Let f (z) = zRe(z)
|z| when z �= 0, and let f (0) = 0. Show that f (z) is continuous for

all values of z.

7. Let f (z) = z2

|z|2 = x2−y2+i2xy
x2+y2 .

(a) Find lim
z→0

f (z) as z → 0 along the line y = x.

(b) Find lim
z→0

f (z) as z → 0 along the line y = 2x.

(c) Find lim
z→0

f (z) as z → 0 along the parabola y = x2.

(d) What can you conclude about the limit of f (z) as z → 0? Why?

8. Let f (z) = f (x, y) = xy3

x2+2y6 + i x3y
5x6+y2 when z �= 0, and let f (0) = 0.

(a) Show that lim
z→0

f (z) = f (0) = 0 if z approaches zero along any straight

line that passes through the origin.

(b) Show that f is not continuous at the point 0.

9. For z �= 0, let f (z) = z
z
. Does f (z) have a limit as z → 0?

10. Does lim
z→−4

Arg z exist? Why? Hint: Use polar coordinates and let z approach −4

from the upper and lower half-planes.

11. Let f (z) = z
1
2 = r

1
2

(
cos θ

2
+ i sin θ

2

)
, where z = reiθ, r > 0, and −π < θ ≤ π. Use

the polar form of z and show that

(a) f (z) → i as z → −1 along the upper semicircle r = 1, 0 < θ ≤ π.

(b) f (z) → −i as z → −1 along the lower semicircle r = 1, −π < θ < 0.
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12. Let f (z) = x2+iy2

|z|2 when z �= 0, and let f (0) = 1. Show that f (z) is not continuous
at z0 = 0.

13. Let f (z) = xey + iy2e−x. Show that f (z) is continuous for all values of z.

14. Use the definition of the limit to show that lim
z→3+4i

z2 = −7 + 24i.

15. Let f (z) = Re(z)
|z| when z �= 0, and let f (0) = 1. Is f (z) continuous at the origin?

16. Let f (z) = [Re(z)]2

|z| when z �= 0, and let f (0) = 0. Is f (z) continuous at the
origin?

17. Let f (z) = z
1
2 = |z| 12 ei

Arg(z)
2 , where z �= 0. Show that f (z) is discontinuous at

each point along the negative x-axis.

18. Let f (z) = ln |z|+iArg z, where −π < Arg z ≤ π. Show that f (z) is discontinuous
at z0 = 0 and at each point along the negative x-axis.

19. Let |g (z)| < M and lim
z→z0

f (z) = 0. Show that lim
z→z0

f (z) g (z) = 0. Note:

Theorem 2.3 is of no use here because you don’t know whether lim
z→z0

g (z) exists.

Give an ε, δ argument.

20. Let ∆z = z − z0. Show that lim
z→z0

f (z) = w0 iff lim
∆z→0

f (z0 + ∆z) = w0.

21. Let f (z) be continuous for all values of z.

(a) Show that g (z) = f (z) is continuous for all z.

(b) Show that g (z) = f (z) is continuous for all z.

22. Verify the identities

(a) (2-18).

(b) (2-19).

(c) (2-20).

23. Verify the results of Theorem 2.5.

24. Show that the principal branch of the argument, Arg z, is discontinuous at 0 and
all points along the negative real axis.

2.4 BRANCHES OF FUNCTIONS

In Section 2.2 we defined the principal square root function and investigated some
of its properties. We left unanswered some questions concerning the choices
of square roots. We now look at these questions because they are similar to
situations involving other elementary functions.

In our definition of a function in Section 2.1, we specified that each value of
the independent variable in the domain is mapped onto one and only one value
in the range. As a result, we often talk about a single-valued function, which
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2.4 � Branches of Functions 85

emphasizes the “only one” part of the definition and allows us to distinguish
such functions from multiple-valued functions, which we now introduce.

Let w = f (z) denote a function whose domain is the set D and whose range
is the set R. If w is a value in the range, then there is an associated inverse
relation z = g (w) that assigns to each value w the value (or values) of z in D
for which the equation f (z) = w holds. But unless f takes on the value w at
most once in D, then the inverse relation g is necessarily many valued, and we
say that g is a multivalued function. For example, the inverse of the function
w = f (z) = z2 is the square root function z = g (w) = w

1
2 . For each value z

other than z = 0, then, the two points z and −z are mapped onto the same point
w = f (z); hence g is, in general, a two-valued function.

The study of limits, continuity, and derivatives loses all meaning if an ar-
bitrary or ambiguous assignment of function values is made. For this reason
we did not allow multivalued functions to be considered when we defined these
concepts. When working with inverse functions, you have to specify carefully
one of the many possible inverse values when constructing an inverse function,
as when you determine implicit functions in calculus. If the values of a function
f are determined by an equation that they satisfy rather than by an explicit for-
mula, then we say that the function is defined implicitly or that f is an implicit
function. In the theory of complex variables we present a similar concept.

We now let w = f (z) be a multiple-valued function. A branch of f is any
single-valued function f0 that is continuous in some domain (except, perhaps, on
the boundary). At each point z in the domain, it assigns one of the values of f (z).

� EXAMPLE 2.21 We consider some branches of the two-valued square root
function f (z) = z

1
2 (z �= 0). Recall that the principal square root function is

f1 (z) = |z|
1
2 ei

Arg(z)
2 = r

1
2 ei

θ
2 = r

1
2 cos

θ

2
+ ir

1
2 sin

θ

2
, (2-28)

where r = |z| and θ = Arg (z) so that −π < θ ≤ π. The function f1 is a branch
of f . Using the same notation, we can find other branches of the square root
function. For example, if we let

f2 (z) = |z|
1
2 ei

Arg(z)+2π
2 = r

1
2 ei

θ+2π
2 = r

1
2 cos

(
θ + 2π

2

)
+ ir

1
2 sin

(
θ + 2π

2

)
,

(2-29)

then

f2 (z) = r
1
2 ei

θ+2π
2 = r

1
2 ei

θ
2 eiπ = −r 1

2 ei
θ
2 = −f1 (z) ,

so f1 and f2 can be thought of as “plus” and “minus” square root functions.
The negative real axis is called a branch cut for the functions f1 and f2. Each
point on the branch cut is a point of discontinuity for both functions f1 and f2.
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86 Chapter 2 � Complex Functions

� EXAMPLE 2.22 Show that the function f1 is discontinuous along the neg-
ative real axis.

Solution Let z0 = r0eiπ denote a negative real number. We compute the limit
as z approaches z0 through the upper half-plane {z : Im (z) > 0} and the limit as
z approaches z0 through the lower half-plane {z : Im (z) < 0}. In polar coordi-
nates these limits are given by

lim
(r,θ)→(r0,π)

f1

(
reiθ

)
= lim

(r,θ)→(r0,π)
r

1
2

(
cos

θ

2
+ i sin

θ

2

)
= ir

1
2
0 , and

lim
(r,θ)→(r0,−π)

f1

(
reiθ

)
= lim

(r,θ)→(r0,−π)
r

1
2

(
cos

θ

2
+ i sin

θ

2

)
= −ir

1
2
0 .

The two limits are distinct, so the function f1 is discontinuous at z0.

Remark 2.4 Likewise, f2 is discontinuous at z0. The mappings w = f1 (z),
w = f2 (z), and the branch cut are illustrated in Figure 2.18. �

We can construct other branches of the square root function by specifying
that an argument of z given by θ = arg z is to lie in the interval α < θ ≤ α+2π.
The corresponding branch, denoted fα, is

fα (z) = r
1
2 cos

θ

2
+ ir

1
2 sin

θ

2
, (2-30)

where z = reiθ �= 0 and α < θ ≤ α+ 2π.

y

x
–1

y

x
–1

u

–i

i

–i

i

v

v

u

w = f1(z)

z = w2

w = f2(z)

z = w2

Figure 2.18 The branches f1 and f2 of f (z) = z
1
2 .
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y

x u

v

w = fα(z)

z = w2

α

α/2

Figure 2.19 The branch fα of f (z) = z
1
2 .

The branch cut for fα is the ray r ≥ 0, θ = α, which includes the origin.
The point z = 0, common to all branch cuts for the multivalued square root
function, is called a branch point. The mapping w = fα (z) and its branch cut
are illustrated in Figure 2.19.

2.4.1 The Riemann Surface for w = z
1
2

A Riemann surface is a construct useful for visualizing a multivalued function.
It was introduced by G. F. B. Riemann (1826–1866) in 1851. The idea is ingen-
ious—a geometric construction that permits surfaces to be the domain or range
of a multivalued function. Riemann surfaces depend on the function being in-
vestigated. We now give a nontechnical formulation of the Riemann surface for
the multivalued square root function.

Consider w = f (z) = z
1
2 , which has two values for any z �= 0. Each function

f1 and f2 in Figure 2.18 is single-valued on the domain formed by cutting the z
plane along the negative x-axis. Let D1 and D2 be the domains of f1 and f2,
respectively. The range set for f1 is the set H1 consisting of the right half-plane,
and the positive v-axis; the range set for f2 is the set H2 consisting of the left
half-plane and the negative v-axis. The sets H1 and H2 are “glued together”
along the positive v-axis and the negative v-axis to form the w plane with the
origin deleted.

We stack D1 directly above D2. The edge of D1 in the upper half-plane
is joined to the edge of D2 in the lower half-plane, and the edge of D1 in the
lower half-plane is joined to the edge of D2 in the upper half-plane. When these
domains are glued together in this manner, they form R, which is a Riemann
surface domain for the mapping w = f (z) = z

1
2 . The portions of D1, D2, and

R that lie in {z : |z| < 1} are shown in Figure 2.20.
The beauty of this structure is that it makes this “full square root func-

tion” continuous for all z �= 0. Normally, the principal square root function
would be discontinuous along the negative real axis, as points near −1 but above
that axis would get mapped to points close to i, and points near −1 but below
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x

y

A

C

u

v

A'

C'

x

y

B

B'

u

v

A'B'

C'

u

v

(a) A portion of D1 and its image under w =

(c) A portion of R and its image under w = z .

(b) A portion of D2 and its image under w =

1
2

A

B C

Figure 2.20 Formation of the Riemann surface for w = z
1
2 : (a) a portion of D1 and its

image under w = z
1
2 ; (b) a portion of D2 and its image under w = z

1
2 ; (c) a portion of

R and its image under w = z
1
2 .
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the axis would get mapped to points close to −i. As Figure 2.20(c) indicates,
however, between the point A and the point B, the domain switches from the
edge of D1 in the upper half-plane to the edge of D2 in the lower half-plane.
The corresponding mapped points A

′
and B

′
are exactly where they should be.

The surface works in such a way that going directly between the edges of D1 in
the upper and lower half-planes is impossible (likewise for D2). Going counter-
clockwise, the only way to get from the point A to the point C, for example, is
to follow the path indicated by the arrows in Figure 2.20(c).

EXERCISES FOR SECTION 2.4

1. Let f1 (z) and f2 (z) be the two branches of the square root function given by
Equations (2-28) and (2-29), respectively. Use the polar coordinate formulas in
Section 2.2 to find the image of

(a) quadrant II, x < 0 and y > 0, under the mapping w = f1 (z).

(b) quadrant II, x < 0 and y > 0, under the mapping w = f2 (z).

(c) the right half-plane Re(z) > 0 under the mapping w = f1 (z).

(d) the right half-plane Re(z) > 0 under the mapping w = f2 (z).

2. Let α = 0 in Equation (2-30). Find the range of the function w = fα (z).

3. Let α = 2π in Equation (2-30). Find the range of the function w = fα (z).

4. Find a branch of the square root that is continuous along the negative x-axis.

5. Let f1 (z) = |z| 13 ei
Arg(z)

3 = r
1
3 cos θ

3
+ir

1
3 sin θ

3
, where |z| = r �= 0, and θ = Arg (z).

f1 denotes the principal cube root function.

(a) Show that f1 is a branch of the multivalued cube root f (z) = z
1
3 .

(b) What is the range of f1?

(c) Where is f1 continuous?

6. Let f2 (z) = r
1
3 cos

(
θ+2π

3

)
+ ir

1
3 sin

(
θ+2π

3

)
, where r > 0 and −π < θ ≤ π.

(a) Show that f2 is a branch of the multivalued cube root f (z) = z
1
3 .

(b) What is the range of f2?

(c) Where is f2 continuous?

(d) What is the branch point associated with f?

7. Find a branch of the multivalued cube root function that is different from those in
Exercises 5 and 6. State the domain and range of the branch you find.

8. Let f (z) = z
1
n denote the multivalued nth root, where n is a positive integer.

(a) Show that f is, in general, an n-valued function.

(b) Write the principal nth root function.
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90 Chapter 2 � Complex Functions

(c) Write a branch of the multivalued nth root function that is different
from the one in part (b).

9. Describe a Riemann surface for the domain of definition of the multivalued function

(a) w = f (z) = z
1
3 .

(b) w = f (z) = z
1
4 .

10. Discuss how Riemann surfaces should be used for both the domain and the range

to help describe the behavior of the multivalued function w = f (z) = z
2
3 .

2.5 THE RECIPROCAL TRANSFORMATION
w = 1

z

The mapping w = f (z) = 1
z is called the reciprocal transformation and maps

the z plane one-to-one and onto the w plane except for the point z = 0, which
has no image, and the point w = 0, which has no preimage or inverse image.
Using exponential notation w = ρeiφ, if z = reiθ �= 0, we have

w = ρeiφ =
1
z

=
1
r
e−iθ. (2-31)

The geometric description of the reciprocal transformation is now evident.
It is an inversion (that is, the modulus of 1

z is the reciprocal of the modulus of
z) followed by a reflection through the x-axis. The ray r > 0, θ = α, is mapped
one-to-one and onto the ray ρ > 0, φ = −α. Points that lie inside the unit circle
C1 (0) = {z : |z| = 1} are mapped onto points that lie outside the unit circle,
and vice versa. The situation is illustrated in Figure 2.21.

We can extend the system of complex numbers by joining to it an “ideal”
point denoted by ∞ and called the point at infinity. This new set is called the

y

x

w = 

z2

z1

1

1
z

α

v

u

w1

w2
1

–α

Figure 2.21 The reciprocal transformation w = 1
z
.
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extended complex plane. You will see shortly that the point ∞ has the property,
loosely speaking, that lim

n→∞
z = ∞ iff lim

n→∞
|z| = ∞.

An ε neighborhood of the point at infinity is the set
{
z : |z| > 1

ε

}
. The usual

way to visualize the point at infinity is by using what we call the stereographic
projection, which is attributed to Riemann. Let Ω be a sphere of diameter 1 that
is centered at the point

(
0, 0, 1

2

)
in three-dimensional space where coordinates

are specified by the triple of real numbers (x, y, ξ). Here the complex number
z = x+ iy is associated with the point z = (x, y, 0).

The point N = (0, 0, 1) on Ω is called the north pole of Ω. If we let z be
a complex number and consider the line segment L in three-dimensional space
that joins z to the north pole N = (0, 0, 1), then L intersects Ω in exactly one
point Z. The correspondence z ↔ Z is called the stereographic projection of the
complex z plane onto the Riemann sphere Ω.

A point z = x + iy = (x, y, 0) of unit modulus will correspond with Z =(
x
2 ,

y
2 ,

1
2

)
. If z has modulus greater than 1, then Z will lie in the upper hemisphere

where for points Z = (x, y, ξ) we have ξ > 1
2 . If z has modulus less than 1,

then Z will lie in the lower hemisphere where for points Z = (x, y, ξ) we have
ξ < 1

2 . The complex number z = 0 = 0 + 0i corresponds with the south pole,
S = (0, 0, 0). Now you can see that indeed z → ∞ iff |z| → ∞ iff Z → N.
Hence N corresponds with the “ideal” point at infinity. The situation is shown
in Figure 2.22.

Let’s reconsider the mapping w = 1
z by assigning the images w = ∞ and

w = 0 to the points z = 0 and z = ∞, respectively. We now write the reciprocal
transformation as

w = f (z) =




1
z when z �= 0 and z �= ∞;
0 when z = ∞;
∞ when z = 0.

(2-32)

Note that the transformation w = f (z) is a one-to-one mapping of the
extended complex z plane onto the extended complex w plane. Further, f is a
continuous mapping from the extended z plane onto the extended w plane. We
leave the details to you.

L

z

Figure 2.22 The Riemann sphere.
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92 Chapter 2 � Complex Functions

� EXAMPLE 2.23 Show that the image of the half-planeA =
{
z : Re (z) ≥ 1

2

}
under the mapping w = 1

z is the closed disk D1 (1) = {w : |w − 1| ≤ 1}.

Solution Proceeding as we did in Example 2.7, we get the inverse mapping of
u+ iv = w = f (z) = 1

z as z = f−1 (w) = 1
w . Then

u + iv = w ∈ B ⇐⇒ f−1 (w) = z = x + iy ∈ A

⇐⇒ 1

u + iv
= x + iy ∈ A

⇐⇒ u

u2 + v2
+ i

−v

u2 + v2
= x + iy ∈ A

⇐⇒ u

u2 + v2
= x = Re (x + iy) ≥ 1

2

⇐⇒ u

u2 + v2
≥ 1

2
(2-33)

=⇒ u2 − 2u + 1 + v2 ≤ 1 (2-34)

⇐⇒ (u− 1)2 + (v − 0)2 ≤ 1,

which describes the disk D1 (1). As the reciprocal transformation is one-to-
one, preimages of the points in the disk D1 (1) will lie in the right half-plane
Re (z) ≥ 1

2 . Figure 2.23 illustrates this result.

−1

i

−i

1 2−2−1

i

−i

1 21
2

1
zw =

y v

x u

Figure 2.23 The image of Re(z) ≥ 1
2

under the mapping w = 1
z
.

Remark 2.5 Alas, there is a fly in the ointment here. As our notation indicates,
Equations (2-33) and (2-34) are not equivalent. The former implies the latter,
but not conversely. That is, Equation (2-34) makes sense when (u, v) = (0, 0),
whereas Equation (2-33) does not. Yet Figure 2.23 seems to indicate that f maps
Re (z) ≥ 1

2 onto the entire disk D1 (0), including the point (0, 0). Actually, it
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does not, because (0, 0) has no preimage in the complex plane. The way out
of this dilemma is to use the complex point at infinity. It is that quantity that
gets mapped to the point (u, v) = (0, 0), for as we have already indicated in
Equation (2-32), the preimage of 0 under the mapping 1

z is indeed ∞. �

� EXAMPLE 2.24 For the transformation 1
z , find the image of the portion of

the half-plane Re (z) ≥ 1
2 that is inside the closed disk D1

(
1
2

)
=

{
z :

∣∣z − 1
2

∣∣
≤ 1} .
Solution Using the result of Example 2.23, we need only find the image of the
disk D1

(
1
2

)
and intersect it with the closed disk D1 (1). To begin, we note that

D1

(
1
2

)
=

{
(x, y) : x2 + y2 − x ≤ 3

4

}
.

Because z = f−1 (w) = 1
w , we have, as before,

u+ iv = w ∈ f
(
D1

(
1
2

))
⇐⇒ f−1 (w) ∈ D1

(
1
2

)

⇐⇒ 1
w

∈ D1

(
1
2

)

⇐⇒ u

u2 + v2
+ i

−v
u2 + v2

∈ D1

(
1
2

)

⇐⇒
(

u

u2 + v2

)2

+
( −v
u2 + v2

)2

− u

u2 + v2
≤ 3

4

⇐⇒ 1
u2 + v2

− u

u2 + v2
≤ 3

4

⇐⇒
(
u+

2
3

)2

+ v2 ≥
(

4
3

)2

,

which is an inequality that determines the set of points in the w plane that lie on
and outside the circle C 4

3

(
− 2

3

)
=

{
w :

∣∣w + 2
3

∣∣ = 4
3

}
. Note that we do not have

to deal with the point at infinity this time, as the last inequality is not satisfied
when (u, v) = (0, 0).

When we intersect this set with D1 (1), we get the crescent-shaped region
shown in Figure 2.24.

To study images of “generalized circles,” we consider the equation

A
(
x2 + y2

)
+Bx+ Cy +D = 0,

© Jones & Bartlett Learning, LLC.  NOT FOR SALE OR DISTRIBUTION. 

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION

© Jones & Bartlett Learning, LLC
NOT FOR SALE OR DISTRIBUTION



✐

✐

“04455˙CH02˙Mathews” — 2010/11/20 — 8:07 — page 94 — #42
✐

✐

✐

✐

✐

✐

94 Chapter 2 � Complex Functions

−1

−i

i

1 2−2

v

u
−1

−i

i

1 2

y

x

w = 1
z

Figure 2.24 The mapping w = 1
z

discussed in Example 2.24.

where A, B, C, and D are real numbers. This equation represents either a circle
or a line, depending on whether A �= 0 or A = 0, respectively. Transforming the
equation to polar coordinates gives

Ar2 + r (B cos θ + C sin θ) +D = 0.

Using the polar coordinate form of the reciprocal transformation given in
Equation (2-31), we can express the image of the curve in the preceding equa-
tion as

A+ ρ (B cosφ− C sinφ) +Dρ2 = 0,

which represents either a circle or a line, depending on whether D �= 0 or D = 0,
respectively. Therefore, we have shown that the reciprocal transformation w = 1

z
carries the class of lines and circles onto itself.

� EXAMPLE 2.25 Find the images of the vertical lines x = a and the hori-
zontal lines y = b under the mapping w = 1

z .

Solution Taking into account the point at infinity, we see that the image of
the line x = 0 is the line u = 0; that is, the y-axis is mapped onto the v-axis.
Similarly, the x-axis is mapped onto the u-axis. Again, the inverse mapping is
z = 1

w = u
u2+v2 + i −v

u2+v2 , so if a �= 0, the vertical line x = a is mapped onto
the set of (u, v) points satisfying u

u2+v2 = a. For (u, v) �= (0, 0), this outcome is
equivalent to

u2 − 1
a
u+

1
4a2

+ v2 =
(
u− 1

2a

)2

+ v2 =
(

1
2a

)2

,

which is the equation of a circle in the w plane with center w0 = 1
2a and radius∣∣ 1

2a

∣∣. The point at infinity is mapped to (u, v) = (0, 0) .
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b = −

b = −
a = −

a 
=

 −

a =

a 
=

 

b =

b =
b = −1

b = −1

a = −1

a 
=

 −
1

v
y

ux
a = 1

a 
=

 1
b = 1

b = 1 w = 1
z

1
2

1
2

1
2

1
2

1 2

1 2

1
2

1
2

Figure 2.25 The images of horizontal and vertical lines under the reciprocal trans-
formation.

Similarly, the horizontal line y = b is mapped onto the circle

u2 + v2 +
1
b
v +

1
4b2

= u2 +
(
v +

1
2b

)2

=
(

1
2b

)2

,

which has center w0 = − i
2b and radius

∣∣ 1
2b

∣∣.
Figure 2.25 illustrates the images of several lines.

EXERCISES FOR SECTION 2.5

For Exercises 1–8, find the image of the given circle or line under the reciprocal
transformation w = 1

z .

1. The horizontal line Im (z) = 1
5
.

2. The circle C 1
2

(
− i

2

)
=

{
z :

∣∣z + i
2

∣∣ = 1
2

}
.

3. The vertical line Re z = −3.

4. The circle C1 (−2) = {z : |z + 2| = 1}.
5. The line 2x + 2y = 1.

6. The circle C1

(
i
2

)
=

{
z :

∣∣z − i
2

∣∣ = 1
}
.

7. The circle C1

(
3
2

)
=

{
z :

∣∣z − 3
2

∣∣ = 1
}
.

8. The circle C2 (−1 + i) = {z : |z + 1 − i| = 2}.
9. Limits involving ∞. The function f (z) is said to have the limit L as z approaches

∞, and we write lim
z→∞

f (z) = L iff for every ε > 0 there exists an R > 0 such that

f (z) ∈ Dε (L) (i.e., |f (z) − L| < ε) whenever |z| > R. Likewise, lim
z→z0

f (z) = ∞
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iff for every R > 0 there exists δ > 0 such that |f (z)| > R whenever z ∈ D∗
δ (z0)

(i.e., 0 < |z − z0| < δ). Use this definition to

(a) show that lim
z→∞

1
z

= 0.

(b) show that lim
z→0

1
z

= ∞.

10. A line that carries a charge of q
2

coulombs per unit length is perpendicular to the
z plane and passes through the point z0. The electric field intensity E (z) at the
point z varies inversely as the distance from z0 and is directed along the line from
z0 to z. Show that E (z) = k

z−z0
, where k is some constant. (In Section 11.11 we

show that, in fact, k = q so that actually E (z) = q
z−z0

.)

11. Use the result of Exercise 10 to find the points z where the electric field intensity
E(z) = 0 given the following conditions.

(a) Three positively charged rods carry a charge of q
2

coulombs per unit
length and pass through the points 0, 1 − i, and 1 + i.

(b) A positively charged rod carrying a charge of q
2

coulombs per unit
length passes through the point 0, and positively charged rods carrying
a charge of q coulombs per unit length pass through the points 2 + i
and −2 + i.

12. Show that the reciprocal transformation w = 1
z

maps the vertical strip given by
0 < x < 1

2
onto the region in the right half-plane Re (w) > 0 that lies outside the

disk D1 (1) = {w : |w − 1| < 1}.
13. Find the image of the disk D 4

3

(
− 2i

3

)
=

{
z :

∣∣z + 2i
3

∣∣ < 4
3

}
under f (z) = 1

z
.

14. Show that the reciprocal transformation maps the disk |z − 1| < 2 onto the region
that lies exterior to the circle

{
w :

∣∣w + 1
3

∣∣ = 2
3

}
.

15. Find the image of the half-plane y > 1
2
− x under the mapping w = 1

z
.

16. Show that the half-plane y < x − 1
2

is mapped onto the disk |w − 1 − i| <
√

2 by
the reciprocal transformation.

17. Find the image of the quadrant x > 1, y > 1 under the mapping w = 1
z
.

18. Show that the transformation w = 2
z

maps the disk |z − i| < 1 onto the lower
half-plane Im (w) < −1.

19. Show that the transformation w = 2−z
z

= −1 + 2
z

maps the disk |z − 1| < 1 onto
the right half-plane Re (w) > 0.

20. Show that the parabola 2x = 1 − y2 is mapped onto the cardioid ρ = 1 + cosφ by
the reciprocal transformation.

21. Use the definition in Exercise 9 to prove that lim
z→∞

z+1
z−1

= 1.

22. Show that z = x + iy is mapped onto the point
(

x
x2+y2+1

, y
x2+y2+1

, x2+y2

x2+y2+1

)
on

the Riemann sphere.

23. Explain how the quantities +∞, −∞, and ∞ differ. How are they similar?
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18.04 Practice problems exam 1, Spring 2018 

Problem 1. Complex arithmetic 

(a) Find the real and imaginary part of � + 2 . 
� − 1 

(b) Solve �4 − � = 0. √√ 
(c) Find all possible values of �. 

(d) Express cos(4�) in terms of cos(�) and sin(�). 

(e) When does equality hold in the triangle inequality |�1 + �2| ≤ |�1| + |�2|? 

(f) Draw a picture illustrating the polar coordinates of � and 1∕�. 

Problem 2. Functions 
(a) Show that sinh(�) = −� sin(��). 

(b) Give the real and imaginary part of cos(�) in terms of � and � using regular and hyperbolic sin 
and cos. 

(c) Is it true that |��| = |�||�|? 

Problem 3. Mappings 
�−� (a) Show that the function � (�) = maps the upper half plane to the unit disk. 
�+�

(i) Show it maps the real axis to the unit circle.
(ii) Show it maps � to 0. 
(iii) Conclude that the upper half plane is mapped to the unit disk. 

� + 2 (b) Show that the function � (�) = maps the unit circle to the line � = −1∕2. 
� − 1 

Problem 4. Analytic functions 
(a) Show that � (�) = e� is analytic using the Cauchy Riemann equations. 

(b) Show that � (�) = � is not analytic. 

(c) Give a region in the �-plane for which � = �3 is a one-to-one map onto the entire �-plane. 

(d) Choose a branch of �1∕3 and a region of the �-plane where this branch is analytic. Do this so 
that the image under �1∕3 is contained in your region from part (c). 

Problem 5. Line integrals 

(a) Compute ∫� 
� ��, where � is the unit square. 

1 (b) Compute ∫� |�| ��, where � is the unit circle. 

(c) Compute ∫� 
� cos(�2) ��, where � is the unit circle. 

(d) Draw the region � −{� + � sin(�) for � ≥ 0}. Is this region simply connected? Could you define 
a branch of log on this region? 

�2 
(e) Compute ∫ over the circle of radius 3 with center 0. � �4−1 

e� 
(f) Does ∫� 

�� = 0?. Here � is a simple closed curve. 
�2 

1 
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∞ 1 (g) Compute ∫ 
��. 

−∞ �4 + 16 

Problem 6. 
Suppose � (�) is entire and |� (�)| > 1 for all �. Show that � is a constant. 

Problem 7. 
Suppose � (�) is analytic and |� | is constant on the disk |� − �0| ≤ �. Show that � is constant on the 
disk. 

Extra problems from pset 4 

Problem 8. (a) Let � (�) = ecos(�)�2. Let � be the disk |� − 5| ≤ 2. Show that � (�) attains both its 
maximum and minimum modulus in � on the circle |� − 5| = 2. 

Hint: Consider 1∕� (�). 

(b) Suppose � (�) is entire. Show that if � (4)(�) is bounded in the whole plane then � (�) is a 
polynomial of degree at most 4. 

(c) The function � (�) = 1∕�2 goes to 0 as � → ∞, but it is not constant. Does this contradict 
Liouville’s theorem? 

Problem 9.� 

Show ∫ 
ecos � cos(sin(�)) �� = �. Hint, consider e�∕� over the unit circle. 

0 

Problem 10. 
(a) Suppose � (�) is analytic on a simply connected region � and � is a simple closed curve in �.. 
Fix �0 in �, but not on � . Use the Cauchy integral formulas to show that 

� ′(�) � (�) 
�� = ∫� 

��. ∫� � − �0 (� − �0)2 

(b) Challenge: Redo part (a), but drop the assumption that � is simply connected. 

Problem 11. 
cos(�) (a) Compute ∫� 

��, where � is the unit circle. 
� 

sin(�) (b) Compute ∫� 
��, where � is the unit circle. 

� 

�2 
(c) Compute ∫� 

��, where � is the circle |�| = 2. 
� − 1 

e� 
(d) Compute ∫� 

��, where � is the circle |�| = 1. 
�2 

�2 − 1 (e) Compute ∫� 
��, where � is the circle |�| = 2. 

�2 + 1 

1 (f) Compute ∫� 
�� where � is the circle |�| = 2. 

�2 + � + 1 

Problem 12. 
� (�) 

Suppose � (�) is entire and lim = 0. Show that � (�) is constant. 
�→∞ � 
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You may use Morera’s theorem: if �(�) is analytic on � − {�0} and continuous on �, then � is 
analytic on �. 
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18.04 Practice problems exam 1, Spring 2018 Solutions 

Problem 1. Complex arithmetic 

(a) Find the real and imaginary part of � + 2 . 
� − 1 

(b) Solve �4 − � = 0. √√ 
(c) Find all possible values of �. 

(d) Express cos(4�) in terms of cos(�) and sin(�). 

(e) When does equality hold in the triangle inequality |�1 + �2| ≤ |�1| + |�2|? 

(f) Draw a picture illustrating the polar coordinates of � and 1∕�. 
� + 2 + �� � − 1 − �� (� + 2)(� − 1) + �2 −3� Answers. (a) ⋅ = + � 
� − 1 + �� � − 1 − �� (� − 1)2 + �2 (� − 1)2 + �2 

(b) � = e�(�∕2+2��). So � = �1∕4 = e�(�∕8+��∕2) = ±1e��∕8, ±�e��∕8. 

(c) Same answer as part (b). 

(d) Euler: 

cos(4�) + � sin(4�) = e�4� = (cos(�) + � sin(�))4 

= cos4(�) − 6 cos2(�) sin2(�) + sin4(�) + �(4 cos3(�) sin(�) − 4 cos(�) sin3(�)). 

Therefore, cos(4�) = cos4(�) − 6 cos2(�) sin2(�) + sin4(�). 

(e) When �1 and �2 have the same argument, i.e. are on the same ray from the origin. 

(f) 

Re(z)

Im(z)

r1

z1 = r1e
iθ1

θ1

1/r1

1
z1

= 1
r1
e−iθ1

−θ1 1

Problem 2. Functions 
(a) Show that sinh(�) = −� sin(��). 

e�⋅�� − e−�⋅�� 
= −e−� − e� 

Solution: −� sin(��) = −� = sinh(�). QED 
2� 2 

(b) Give the real and imaginary part of cos(�) in terms of � and � using regular and hyperbolic sin 
and cos. 

1 
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Solution: We calculate this using exponentials. 

e�� + e−�� e−�+�� + e�−�� 
cos(�) = = 

2 2 
e−�e�� + e�e−�� 

= 
2 

e−�(cos(�) + � sin(�)) + e�(cos(�) − � sin(�)) = 
2 

e−� + e� e−� − e� 
= cos(�) + � sin(�) 

2 2 
= cos(�) cosh(�) − � sin(�) sinh(�) 

Alternatively using the cosine addition formula: 

cos(�) = cos(� + ��) = cos(�) cos(��) − sin(�) sin(��) = cos(�) cosh(�) − � sin(�) sinh(�). 

(c) Is it true that |��| = |�||�|? 

Solution: No: here’s a counterexample: |e�| = 1, but |�||�| = e1 = e. 

Problem 3. Mappings 
�−� (a) Show that the function � (�) = maps the upper half plane to the unit disk. 
�+�

(i) Show it maps the real axis to the unit circle. 
(ii) Show it maps � to 0. 
(iii) Conclude that the upper half plane is mapped to the unit disk. 

Solution: (i) If � is real then � − � = � + �, so numerator and denominator have the same norm, i.e. 
the fraction has norm 1. QED 

(ii) Clearly � (�) = 0. 

(iii) The boundary of the half plane is mapped to the boundary of the disk and a point in the interior
of the half plane is mapped to the interior of the disk. This is enough to conclude that the image of
the half plane is inside the disk. 

1 + � Since it’s easy to invert � = � (�): � = � . It is easy to see that the map is in fact one-to-one and 
1 − � 

onto the disk. 
� + 2 (b) Show that the function � (�) = maps the unit circle to the line � = −1∕2. 
� − 1 

Solution: We will learn good ways to manipulate expressions like this later in the course. Here we 
can do a direct calculation. Let � = e�� = cos(�) + � sin(�) be a point on the unit circle. Then 

cos(�) + 2 + � sin(�) cos(�) − 1 − � sin(�) 
� (�) = ⋅ 

cos(�) − 1 + � sin(�) cos(�) − 1 − � sin(�) 
(cos(�) + 2)(cos(�) − 1) + sin2(�) + �() = 

(cos(�) − 1)2 + sin2(�) 
−1 + cos(�) + �(⋯) = 

2 − 2 cos(�) 
(⋯) = −1 

2
+ � 

2 − 2 cos(�) 
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Here we left the imaginary part uncomputed because the question is to show that the real part is 
−1∕2. Which we did! 

Problem 4. Analytic functions 
(a) Show that � (�) = e� is analytic using the Cauchy Riemann equations. 

Solution: e� = e� cos(�) + �e� sin(�). Call the real and imaginary parts � and � respectively. Putting 
the partials in a matrix we have ( ) ( ) 

�� �� e� cos(�) −e� sin(�) = . �� �� e� sin(�) e� cos(�) 

We see that �� = �� and �� = −��. Thus we have verified the Cauchy Riemann equations. So, � (�) 
is analytic. 

(b) Show that � (�) = � is not analytic. 

Solution: � (�) = � − �� = � + ��, where � = � and � = −�. Taking partials ( ) ( ) 
�� �� 1 0 
�� �� 

= 0 −1 
. 

We see that �� ≠ ��. So the Cauchy Riemann equations are not satisfied and so, � (�) is not analytic. 

(c) Give a region in the �-plane for which � = �3 is a one-to-one map onto the entire �-plane. 

Solution: Since �3 triples arguments, we divide the plane into thirds and pick one third. We’ve 
chosen the shaded region in the figure below. 

Re(z)

Im(z)

2π/3

The region includes the the positive �-axis but not the dashed line. 

(d) Choose a branch of �1∕3 and a region of the �-plane where this branch is analytic. Do this so 
that the image under �1∕3 is contained in your region from part (c). 

Solution: We choose the branch of arg with 0 < arg(�) < 2�. So, the plane has a branch cut along 
the nonnegative real axis. Under � = �1∕3 the image points all have 0 < arg(�) < 2�∕3, as required 
by the problem. 
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Re(z)

Im(z)

Problem 5. Line integrals 

(a) Compute ∫� 
� ��, where � is the unit square. 

Solution: First note that as a function � means Re(�). We do the integral for each of the four sides 
separately. 

Re(z)

Im(z)

γ1

γ2

γ3

γ4

1

i

1 

�1: �1(�) = �, with 0 ≤ � ≤ 1. So, ∫�1 

� �� = ∫ 
� �� = 1∕2. 

0 

1 

�2: �2(�) = 1 + ��, with 0 ≤ � ≤ 1. So, ∫�2 

� �� = ∫ 
1 � �� = �. 

0 

1 

�3: �3(�) = 1 − � + �, with 0 ≤ � ≤ 1. So, ∫�3 

� �� = ∫ 
(1 − �) (−��) = −1∕2. 

0 

1 

�4: �3(�) = (1 − �)�, with 0 ≤ � ≤ 1. So, ∫�4 

� �� = ∫ 
0 (−��) = 0. 

0 

Addding the together: the integral over the square is �. 
1 (b) Compute ∫� |�| ��, where � is the unit circle. 

Solution: Parametrize the circle, as usual, by �(�) = e��. Since |�(�)| = 1 the integral is 
2� 1 �� = ∫ 

�e�� �� = 0. ∫� |�| 0 

(c) Compute ∫� 
� cos(�2) ��, where � is the unit circle. 

Solution: Since � cos(�2) is entire, it is analytic on and inside the closed curve � . Therefore by 
Cauchy’s theorem, the integral is 0. 

(d) Draw the region � −{� + � sin(�) for � ≥ 0}. Is this region simply connected? Could you define 
a branch of log on this region? 
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Solution: Yes, the region is simply connected. Yes, you can define a branch of log on this region: To 
define a branch of log you have to have a region where the argument is well defined and continuous.
You can do this as long as the cut blocks any path that circles the origin. The figure below illustrates
values of arg(�) at a few points in the region. 

Re(z)

Im(z)

2π

i

arg ≈ 0

arg ≈ 2π

arg ≈ 0.16

arg ≈ −0.21

�2 
over the circle of radius 3 with center 0. 

�4−1 
(e) Compute ∫� 

Solution: The fourth roots of 1 are ±1, ±�. Thus, 

�2 �2 
� (�) = = 

�4 − 1 (� − 1)(� + 1)(� − �)(� + �)
. 

Since the curve contains all four roots we need to write it as four loops each containing just one of
the roots. Then we use Cauchy’s formula to compute the integral over each loop. 

�2 
Loop around 1: Let �(�) = 

(� + 1)(� − �)(� + �)
. The integral of � over this loop equals 2���(1) = 

��∕2. 

Loop around -1: The integral of � over this loop is −��∕2. 

Loop around i: The integral of � over this loop is �∕2. 

Loop around -i: The integral of � over this loop is −�∕2. 

Summing all 4 contributions we get 0. 
e� 

(f) Does ∫� 
�� = 0?. Here � is a simple closed curve. 

�2 

Solution: Not always. We know � (�) = e� is entire. So, if � goes around 0 then, by Cauchy’s 
formula for derivatives 

� (�) 
�� = 2��� ′(0) = 2��. ∫ �2 

If � does not go around 0 then the integral is 0. 
∞ 1 (g) Compute ∫ 

��. 
−∞ �4 + 16 

Solution: Let � (�) = 1∕(�4 + 16) and let � be the integral we want to compute. The trick is to 
integrate � over the closed contour �1 + �� shown, and then show that the contribution of �� to 
this integral vanishes as � goes to ∞. 
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Re(z)

Im(z)

CRCR

C1 R−R

√
2 + i

√
2−

√
2 + i

√
2

√ √ 
The 4 singularities of � (�) are 2e�(�∕4+��∕2) = ± 2± � 2. The ones inside the contour are 2e��∕4 = √ √ √ √ 

2, 2e3��∕4 2+ � = − 2+ � 2. As usual we break �1 + �� into two loops, one surrounding each
singularity and use Cauchy’s formula to compute the integral over each loop separately. Factoring, 
we have 

1 1 � (�) = = √ √ √ √ √ √ √ √ . 
�4 + 16 (� − ( 2 + � 2))(� − ( 2 − � 2))(� − (− 2 + � 2))(� − (− 2 − � 2)) √ √ 

1 Loop around 2 + � 2: Let �1(�) = √ √ √ √ √ √ . By Cauchy’s integral 
(�−( 2−� 2))(�−(− 2+� 2))(�−(− 2−� 2)) √ √ √ 2�(1 − �) 

formula the integral is 2���1( 2 + � 2) = . 
32 √ 

2�(1 + �) 
Loop around −1 + �: the integral is 

32 
. √ 

Summing, the integral around �1 + �� is 2�∕16. 

Now we’ll look at �1 and �� separately: 

Parametrize �1 by �(�) = �, with −� ≤ � ≤ �. So 

� 1 � (�) �� = ∫ 
��. ∫�1 −� �4 + 16 

This goes to the � as � → ∞. 

We parametrize �� by �(�) = �e��, with 0 ≤ � ≤ �. So 

� 1 � (�) �� = ∫ 
��e�� ��∕ 

�4e4�� + 16 ∫�� 0 

By the triangle inequality, if � > 1 

� � �� � (�) �� �� = ≤ ∫ |∫�� | 0 �4 − 16 �4 − 16 

Clearly this goes to 0 as � goes to infinity. 

Thus, the integral over the contour �1 + �� goes to � as � gets large. But this integral always has √ √ 
the same value 2�∕16. We have shown that � = 2�∕16. 

As a sanity check, we note that our answer is real and positive as it needs to be. 
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Problem 6. 
Suppose � (�) is entire and |� (�)| > 1 for all �. Show that � is a constant. 

Answer. Since |� (�)| > 1 we know � is never 0. Therefore 1∕� (�) is entire and |1∕� (�)| < 1. 
Being entire and bounded it is constant by Liouville’s theorem. 

Problem 7. 
Suppose � (�) is analytic and |� | is constant on the disk |� − �0| ≤ �. Show that � is constant on the 
disk. 

Answer. This follows from the maximum modulus principle. Since |� | is constant on the disk, its 
maximum modulus does not occur only on the boundary. Therefore it must be constant. 

Extra problems from pset 4 

Problem 8. (a) Let � (�) = ecos(�)�2. Let � be the disk |� − 5| ≤ 2. Show that � (�) attains both its 
maximum and minimum modulus in � on the circle |� − 5| = 2. 

Hint: Consider 1∕� (�). 

Solution: Since � (�) is analytic on and inside the disk, the maximum modulus principle tells us it
attains its maximum modulus on the boundary. 

Since e� is never 0 and �2 is not zero anywhere in � we know that 1∕� (�) is analytic on and inside 
the disk. Therefore it attains its maximum modulus on the boundary. But the point where 1∕|� (�)| 
is maximized is the point where |� (�)| is minimized. 

(b) Suppose � (�) is entire. Show that if � (4)(�) is bounded in the whole plane then � (�) is a polyno-
mial of degree at most 4. 

Solution: By the maximum modulus principle � (4)(�) is a constant. Integrating a constant 4 times 
leads to a polynomial of degree a most 4. 

(c) The function � (�) = 1∕�2 goes to 0 as � → ∞, but it is not constant. Does this contradict 
Liouville’s theorem? 

Solution: No, Liouville’s theorem requires the function be entire. � (�) has a singularity at the origin, 
so it is not entire. 

Problem 9.� 

Show ∫ 
ecos � cos(sin(�)) �� = �. Hint, consider e�∕� over the unit circle. 

0 

Solution: (Follow the hint.) Parametrize the unit circle as �(�) = e��, with 0 ≤ � ≤ 2�. So, 

e� 2� e����+� sin � 2� 

�� = ∫ 
�e�� �� = � ∫ 

e����+� sin �� 
e�� � ∫� 0 0 

2� 2� 

= � ∫ 
ecos �(cos(sin �) + � sin(sin �)) �� = ∫ 

ecos �(� cos(sin �) − sin(sin �)) ��. 
0 0 

This is close to what we want. Let’s use Cauchy’s integral formula to evaluate it and then extract the 
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value we need. By Cauchy the integral is 2��e0 = 2��. So, 

2� 

ecos �(� cos(sin �) − sin(sin �)) �� = 2��. ∫0 

Taking the imaginary part we have 

2� 

ecos � cos(sin �) �� = 2�. ∫0 

This integral is 2�, while our integral is supposed to be �. But, by symmetry ours is half the above. 
(It might be easier to see this if you use the limits [−�, �] instead of [0, 2�].) 

So, we have shown that the integral is �. 

Problem 10. 
(a) Suppose � (�) is analytic on a simply connected region � and � is a simple closed curve in �.. 
Fix �0 in �, but not on � . Use the Cauchy integral formulas to show that 

� ′(�) � (�) 
�� = ∫� 

��. ∫� � − �0 (� − �0)2 

′ Since � is simply connected we know � and � are analytic on and inside � . Therefore we can use 
Cauchy’s formulas. 

� ′(�) 
�� = 2��� ′(�0) (by Cauchy’s integral formula.) ∫� � − �0 

� (�) 
��. = 2��� ′(�0) (by Cauchy’s formula for derivatives.) ∫� (� − �0)2 

These are the same, so we are done. 

(b) Challenge: Redo part (a), but drop the assumption that � is simply connected. 

� (�) � ′(�) � (�) 
Let �(�) = . � is analytic on a neighborhood of � . Note: � ′(�) = − . So, 

�−�0 � − �0 (� − �0)2 

� ′(�) � (�) 
�� − ∫� 

�� = ∫� 
� ′(�) �� = 0. ∫� � − �0 (� − �0)2 

It equals 0 because the integral of a derivative around a closed curve is 0. So, the two integrals on
the left side are equal. 

Problem 11. 
cos(�) (a) Compute ∫� 

��, where � is the unit circle. 
� 

Solution: 2�� cos(0) = 2��. 
sin(�) (b) Compute ∫� 

��, where � is the unit circle. 
� 
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Solution: 2�� sin(0) = 0. 
�2 

(c) Compute ∫� 
��, where � is the circle |�| = 2. 

� − 1 

Solution: 2���2|�=1 = 2��. 
e� 

(d) Compute ∫� 
��, where � is the circle |�| = 1. 

�2 

Solution: 2�� �e
� 

= 2��. 
�� |�=0 

�2 − 1 (e) Compute ∫� 
��, where � is the circle |�| = 2. 

�2 + 1 
Solution: Singularities are at ±�. 

−2 −2 Integral = 2�� + 2�� = 0. 
2� −2� 

1 (f) Compute ∫� 
�� where � is the circle |�| = 2. 

�2 + � + 1 
Solution: There are two roots. Splitting the contour as we’ve done several times leads to a total 
integral of 0. 

Problem 12. 
� (�) 

Suppose � (�) is entire and lim = 0. Show that � (�) is constant. 
�→∞ � 

You may use Morera’s theorem: if �(�) is analytic on � − {�0} and continuous on �, then � is 
analytic on �. 

� (�) − � (0) 
Solution: Let �(�) = . Since �(�) is analytic on � − {0} and continuous on � it is 

� 
analytic on all of �, by Morera’s theorem 

We claim �(�) ≡ 0. 

Suppose not, then we can pick a point �0 with �(�0) ≠ 0. Since �(�) goes to 0 as |�| gets large we can 
pick � large enough that |�(�)| < |�(�0)| for all |�| = �. But this violates the maximum modulus 
theorem, which says that the maximum modulus of �(�) on the disk |�| ≤ � occurs on the circle |�| = �. This disaster means our assumption that �(�) ≠ 0 was wrong. We conclude �(�) ≡ 0 as 
claimed. 

This means that � (�) = � (�0) for all �, i.e. � (�) is constant. 
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18.04 Practice problems exam 2, Spring 2018 

Problem 1. Harmonic functions 
(a) Show �(�, �) = �3 − 3��2 + 3�2 − 3�2 is harmonic and find a harmonic conjugate. 

(b) Find all harmonic functions � on the unit disk such that �(1∕2) = 2 and �(�) ≥ 2 for all � in the 
disk. 

(c) The temperature of the boundary of the unit disk is maintained at � = 1 in the first quadrant, 
� = 2 in the second quadrant, � = 3 in the third quadrant and � = 4 in the fourth quadrant. What 
is the temperature at the center of the disk 

(d) Show that if � and � are conjugate harmonic functions then �� is harmonic. 

(e) Show that if � is harmonic then �� is harmonic. 

(f) Show that if � is harmonic and �2 is harmonic the � is constant. 

(We always assume harmonic functions are real valued.) 

Problem 2. 
Let � (�) = 

1 . Find Laurent series for � on each of the 3 annular regions centered at 
(� − 1)(� − 3) 

� = 0 where � is analytic. 

Problem 3. 
Find the first few terms of the Laurent series around 0 for the following. 

(a) � (�) = �2 cos(1∕3�) for 0 < |�|. 
1 (b) � (�) = for 0 < |�| < �. What is �? 

e� − 1 

Problem 4. 
∞∑ �� 

What is the annulus of convergence for 
2|�| . �=−∞ 

Problem 5. 
Find and classify the isolated singularities of each of the following. Compute the residue at each 
such singularity. 

�3 + 1 (a) �1(�) = 
�2(� + 1) 

(b) �2(�) = 
1 

e� − 1 
(c) �3(�) = cos(1 − 1∕�) 

Problem 6. 
(a) Find a function � that has a pole of order 2 at � = 1 + � and essential singularies at � = 0 and 
� = 1. 

(b) Find a function � that has a removable singularity at � = 0, a pole of order 6 at � = 1 and an 
essential singularity at � = �. 

Problem 7. 
True or false. If true give an argument. If false give a counterexample 

1 
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(a) If � and � have a pole at �0 then � + � has a pole at �0. 

(b) If � and � have a pole at �0 and both have nonzero residues the �� has a pole at �0 with a nonzero 
residue. 

(c) If � has an essential singularity at � = 0 and � has a pole of finite order at � = 0 the � + � has 
an essential singularity at � = 0. 

(d) If � (�) has a pole of order � at � = 0 then � (�2) has a pole of order 2� 

Problem 8. 
Find the Laurent series for each of the following. 

(a) 1∕e(1−�) for 1 < |�|. 
Problem 9. 

1 − 1 2� Let ℎ(�) = + in the disk |�| < 2�. 
sin(�) � �2 − �2 

(a) Show that all the apparent singularities are removable. 

(b) Find the first 4 terms of the Taylor series around � = 0. 

Problem 10. 
Find the residue at ∞ of each of the following. 

(a) � (�) = e� 

� − 1 (b) � (�) = . 
� + 1 

Problem 11. 
Use the following steps to sketch the stream lines for the flow with complex potential Φ(�) = � + 
log(� − �) + log(� + �) 

(i) Identify the components, i.e. sources, sinks, etc of the flow. 

(ii) Find the stagnation points. 

(iii) Sketch the flow near each of the sources. 

(iv) Sketch the flow far from the sources. 

(v) Tie the picture together. 

Problem 12. 
Compute the following definite integrals 

� √ 1 (a) ∫ 
��. (Solution: � 2) 

−� 1 + sin2(�) 
∞ � (b) ∫ 

��. (Solution: −�∕27) 
−∞ (�2 + 4� + 13)2 

∞ � sin(�) (c) p.v. ∫ 
��. 

−∞ 1 + �2 

∞ cos(�) (d) p.v. ∫ 
��. 

� + � −∞ 
∞ �e2�� 

(e) � = p.v. ∫ 
��. 

−∞ �2 − 1 
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18.04 Practice problems exam 2, Spring 2018 Solutions 

Problem 1. Harmonic functions 
(a) Show �(�, �) = �3 − 3��2 + 3�2 − 3�2 is harmonic and find a harmonic conjugate. 

It’s easy to compute: 

�� = 3�2 − 3�2 + 6�, ��� = 6� + 6 

�� = −6�� − 6�, ��� = −6� − 6 

It’s clear that ∇2� = ��� + ��� = 0, so � is harmonic. 

If � is a conjugate harmonic function to �, then � + �� is analytic and the Cauchy-Riemann equations 
tell us that �� = −�� and �� = ��. Therefore, we can integrate �� and �� to find �. 

�� = −�� = 6�� + 6� ⇒ � = 3�2� + 6�� + �(�) 

�� = �� = 3�2 − 3�2 + 6� ⇒ � = 3�2� − �3 + 6�� + ℎ(�) 

Comparing the two expressions for � we see that �(�) = −�3+� and ℎ(�) = � . So � = 3�2� − �3 + 6�� + � . 

(b) Find all harmonic functions � on the unit disk such that �(1∕2) = 2 and �(�) ≥ 2 for all � in the 
disk. 

Solution: The only possibility is the constant function �(�) ≡ 2. The maximum principle for har-
monic functions says that if � takes a relative maximum or minimum at an interior point then it is
constant. (This is a consequence of the mean value theorem.) 

(c) The temperature of the boundary of the unit disk is maintained at � = 1 in the first quadrant, 
� = 2 in the second quadrant, � = 3 in the third quadrant and � = 4 in the fourth quadrant. What 
is the temperature at the center of the disk 

Solution: The mean value theorem says that � (0) is the average over any circle centered at 0. This
is clearly the average of the (constant) values in each quadrant. So � (0) = 2.5. 

(d) Show that if � and � are conjugate harmonic functions then �� is harmonic. 

Solution: Easy method. We know � = � + �� is analytic. Therefore � 2 = �2 − �2 + 2��� is also 
analytic. So, Im(� 2) = 2�� is harmonic. QED 

Calculation method. 

(��)�� = ���� + 2���� + ���� 

(��)�� = ���� + 2���� + ���� 

We know �, � are harmonic and satisfy the Cauchy-Riemann equations �� = ��, �� = −��. So 
adding the above equations we get 

(��)�� + (��)�� = (��� + ���)� + 2(−���� + ����) + �(��� + ���) = 0. 

We have shown that �� is harmonic. 

(e) Show that if � is harmonic then �� is harmonic. 

1 



2 18.04 Practice problems exam 2, Spring 2018 Solutions 

′ Solution: Easy method. For some conjugate �, � = � + �� is harmonic. Since � = �� + ���, we 
know Re(� ′) = �� is harmonic. 

Direct calculation (��)�� + (��)�� = (��� + ���)� = 0. 

(f) Show that if � is harmonic and �2 is harmonic the � is constant. 

(We always assume harmonic functions are real valued.) 

Solution: We calculate this directly. 

(�2)�� = 2(��)2 + 2����, (�2)�� = 2(��)2 + 2����. 

Assume that � and �2 are harmonic, then 

0 = (�2)�� + (�2)�� = 2((��)2 + (��)2) + 2�(��� + ���) = 2((��)2 + (��)2). 

As a sum of squares, (��)2 + (��)2 = 0 implies �� = �� = 0. This implies � is constant. QED. 

Problem 2. 
1 Let � (�) =

(� − 1)(� − 3)
. Find Laurent series for � on each of the 3 annular regions centered at 

� = 0 where � is analytic. 

Solution: The poles are at � = 1 and � = 3. This divides the plane into 3 annular regions, with � 
analytic on each region: 

�1 ∶ |�| < 1, �2 ∶ 1 < |�| < 3, �3 ∶ 3 < |�|. 

Re(z)

Im(z)

1 3

A1

A2

A3

1 1 Using partial fractions we get � (�) = −1 ⋅ + 1 ⋅ . We write each of these terms as geometric 2 �−1 2 �−3 
series in each region. 

1 1 = − = −(1 + � + �2 +…) (converges for |�| < 1) 
� − 1 1 − � ( ) 1 1 1 1 = = 1 + 

1 + +… (converges for |�| > 1) 
� − 1 �(1 − 1∕� � � �2 

1 1 = − = −(1 + (�∕3) + (�∕3)2 + …) (converges for |�| < 3) 
� − 3 3(1 − �∕3) ( ) 
1 1 1 32 

= = 1 + 
3 + +… (converges for |�| > 3) 

� − 3 �(1 − 3∕� � � �2 
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On each region we can add the appropriate form of these series. 

On �1 ∶ |�| < 1: 

∞ ( ) ( ) ∑( ) 1 1 1 1 � (�) = 1 + � + �2 +… − 1 
⋅ 1 + �∕3 + (�∕3)2 +… = 1 − ��. 

2 2 3 2 3�+1 
�=0 

On �2 ∶ 1 < |�| < 3: ( ) ∞ ∞ ( ) ∑ ∑ 1 1 − 1 = −1 1 − 1 � (�) = −1 
⋅ 1 + 

1 + +… 1 + �∕3 + (�∕3)2 +… (�∕3)�. 
2 � � �2 6 2 �� 6 �=1 �=0 

On �3 ∶ |�| > 3: ( ) ( ) ∞ 
1 1 1 33 1 ∑ (−1 + 3�−1) 

� (�) = −1 
⋅ 1 + 

1 + +… + 1 + 
3 + +… = . 

2 � � �2 2� � �2 2 �� 
�=1 

Problem 3. 
Find the first few terms of the Laurent series around 0 for the following. 

(a) � (�) = �2 cos(1∕3�) for 0 < |�|. 
Solution: Using the known series for cos(�) we get ( ) 1 1 1 1 � (�) = �2 1 − + −… = �2 − + −… 

2! ⋅ 32�2 4! ⋅ 34�4 2! ⋅ 32 4! ⋅ 34�2 

1 (b) � (�) = for 0 < |�| < �. What is �? 
e� − 1 

Solution: Writing out e� as a power series we have 

1 1 1 � (�) = = ⋅ 
� + �2∕2! + �3∕3! + … � 1 + �∕2! + �2∕3! + … 

For � near 0 the expression �∕2! + �2∕3! + … is small so we can use the geometric series: ( ) 
� (�) = 1 1 − (�∕2! + �2∕3! + …) + (�∕2! + �2∕3! +…)2 − (�∕2! + �2∕3! +…)3 +… . 

� 

It is hard to get a general expression for the terms of this series, but we can compute the first few
explicitly. ( ) ( ) 

1 1 �2 
� (�) = 1 − 

� + �2(−1∕3! + 1∕4) + �3(−1∕4! + 2∕(2!3!) − 1∕8) = 1 − 
� + − 0 ⋅ �3 +… 

� 2 � 2 12 

Problem 4. 
∞∑ �� 

What is the annulus of convergence for . 
2|�| �=−∞ 
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Solution: We find region for singular and regular parts seperately. 
∞ 

1 Singular part: 
∑ 

. Either by recognizing this as a geometric series or using the ratio test we 
2��� 

�=1
see it converges if |�| > 1∕2. 

∞∑ �� 
Regular part: . Either by recognizing this as a geometric series or using the ratio test we see 

2� 

it converges if
� |=0 
�| < 2. 

The annulus of convergence is 1∕2 < |�| < 2 . 

Problem 5. 
Find and classify the isolated singularities of each of the following. Compute the residue at each 
such singularity. 

�3 + 1 (a) �1(�) = 
�2(� + 1) 

Solution: �1 has a pole of order 2 at � = 0 and a apparently a simple pole at � = −1. (In fact we will 
see that � = −1 is a removable singularity.) 

�3+1 Res(�1, 0): Let �(�) = �2�1(�) = . Clearly we want the coefficient of � in the Taylor series for 
�+1 

�. That is Res(�1, 0) = � ′(0) = −1 . (Alternatively we could have written 1∕(� + 1) as a geometric 
series and found the coefficient of � from that.) 

�3+1 ���(�1, −1): Let �(�) = (� + 1)�1(�) = . Res(�1, −1) = �(−1) = 0. So the singularity is 
�2 

removable. In retrospect we could have seen this because �+1 = (� + 1)(�2 − � + 1). 
1 (b) �2(�) = 

e� − 1 
Solution: �2 has poles whenever e� − 1 = 0, i.e. when � = 2��� for any integer �. We’ll show the 
poles are simple and compute their residues all at once by computing lim (� − 2���)��(�). �→2��� 

� − 2��� 1 Res(�, 2���) = lim (� − 2���)��(�) = lim = = 1. 
�→2��� �→2��� e� − 1 e2��� 

(The limit was computed using L’Hospital’s rule.) Since the limit exists the pole is simple and the
limit is the residue. 

(c) �3(�) = cos(1 − 1∕�) 

Solution: �3 has exactly one singularity, which is at � = 0. We’ll find the residue by computing the 
first few terms of the Laurent expansion. 

e�(1−1∕�) + e−�(1−1∕�) e�e−�∕� + e−�e�∕� 
cos(1 − 1∕�) = = . 

2 2 

Using the power series for e� we have ( ) 
e� −�∕� = e� 1 e 1 − 

� − +… 
� 2�2 ( ) 

−�e�∕� −� 1 e = e 1 + 
� − +… 
� 2�2 
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Looking at just the 1∕� terms we have 

−�e� + �e−� Res(�3, 0) = = sin(1). 
2 

Alternatively we could have used the trig identity cos(1 − 1∕�) = cos(1) cos(1∕�) + sin(1) sin(1∕�). 

Problem 6. 
(a) Find a function � that has a pole of order 2 at � = 1 + � and essential singularies at � = 0 and 
� = 1. 

Solution: It’s easiest to write this as a sum. 

� (�) = e1∕� + e1∕(�−1) + 
1 

(� − 1 − �)2 
. 

The term e1∕� has an essential singularty at � = 0. Since the other two terms are analytic at � = 1, 
� has an essential singurity at � = 0. 

The singularities at 1 and 1 + � can be analyzed in the same manner. 

(b) Find a function � that has a removable singularity at � = 0, a pole of order 6 at � = 1 and an 
essential singularity at � = �. 

Solution: We’ll do this in the same way as part (a). 

�2 + 8� 1 � (�) = + + e1∕(�−�). 
sin(�) (� − 1)6 

Problem 7. 
True or false. If true give an argument. If false give a counterexample 

(a) If � and � have a pole at �0 then � + � has a pole at �0. 

(b) If � and � have a pole at �0 and both have nonzero residues the � � has a pole at �0 with a 
nonzero residue. 

(c) If � has an essential singularity at � = 0 and � has a pole of finite order at � = 0 the � + � has 
an essential singularity at � = 0. 

(d) If � (�) has a pole of order � at � = 0 then � (�2) has a pole of order 2� 

Answers.(a) False. Counterexample: � (�) = 1∕�, �(�) = −1∕�. 

(b) False. Counterexample: � (�) = 1∕�, �(�) = 1∕�. 

(c) True. When you add Laurent series you simply add the coefficients. The singular part of the 
series for � has infinitely many nonzero coefficients. After a certain point, the singular part of � has 
all zero coefficients. So after that point, the singular part of � + � has the same coefficients as � . 
That is, it has infinitely many nonzero coefficients, so the singularity is essential. 

(d) True. We know � (�) = �−��(�), where �(0) ≠ 0. So, � (�)2 = �−2��(�2), where �(02) ≠ 0. 
This shows, � (�2) has a 0 of order 2�. 
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Problem 8. 
Find the Laurent series for each of the following. 

(a) 1∕e(1−�) for 1 < |�|. 
Solution: � (�) = 1∕e(1−�) = e�−1 is analytic on the entire plane. So,( ) 

−1e� −1 �2 �3 
� (�) = e = e 1 + � + + +… 

2! 3! 
is the Taylor series for all �. Hence it is the Laurent series on |�| > 1. 

Problem 9. 
1 2� Let ℎ(�) = − 1 + in the disk |�| < 2�. 

sin(�) � �2 − �2 

(a) Show that all the apparent singularities are removable. 

(b) Find the first 4 terms of the Taylor series around � = 0. 

Answers.(a) The apparent singularities of ℎ are at 0, ±�. There might be a slicker way to do this 
part, but here’s one that’s not too painful. 

� − sin(�) 2� At � = 0: ℎ(�) = + . The second term is analytic, so doesn’t contribute to the 
� sin(�) �2 − �2 

singularity at 0. Writing out the first term in terms of Taylor series we have 

� − sin(�) �3∕3! − �5∕5! + … 
= 

� sin(�) �2 − �4∕3! + … 

The numerator has a zero of order 3 and the denominator one of order 2, so the entire term has a 0 
of order 1, i.e. the singularity is removable. 

We can play the same game at � = �. To make things easier we use partial fractions 

1 − 1 1 1 (� − �) + sin(�) − 1 1 ℎ(�) = + + = + . 
sin(�) � � − � � + � (� − �) sin(�) � � + � 

The second and third terms are analytic at � = �, so don’t contribute to the singularity. The first 
term can be written as ( ) 
(� − �) + sin(�) (� − �) + −(� − �) + (� − �)3∕3! − (� − �)5∕5! + … (� − �)3∕3! 

= ( ) = 
(� − �) sin(�) (� − �) −(� − �) + (� − �)3∕3! − (� − �)5∕5! + … (� − �)2(−1 + (� − �)2∕2 + …) 

As before, the numerator has a zero of order 3 and the denominator one of order 2, so the singularity
is removable. 

The singularity at � = −� is handled identically to � = �. 

(b) For this part let’s work on each term in the original expression of ℎ. 
1 1 1 = 

sin(�) � 1 − (�2∕3! − �4∕5! + …) ( ) 
= 

1 1 + (�2∕3! − �4∕5! + …) + (�2∕3! − �4∕5! +…)2 +… 
� ( ) 

= 1 1 + �2∕3! + �4(−1∕5! + 1∕(3!)2) + … 
� ( ) 
1 7�4 

= 1 + 
�2 + +… 

� 6 360 
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2� 2� = −2� = − (1 + �2∕�2 + �4∕�4 +…) 
�2 − �2 �2(1 − �2∕�2) �2 

Combining all the parts we get 

1 � 7�3 
− 2� − 2�3 

ℎ(�) = + + +…− 1 +… 
� 6 360 � �2 �4 (1 ) ( 7 ) 

= 0 + � − 2 + �3 − 2 +… 
6 �2 360 �4 

Problem 10. 
Find the residue at ∞ of each of the following. 

(a) � (�) = e� 

� − 1 (b) � (�) = . 
� + 1 

Answers.(a) Easy method: � (�) is entire so ∫� 
� (�) �� = 0 for all closed � . Since the residue 

at infinity is minus the integral over a closed curve containing all the singularities we must have 
Res(� , ∞) = 0. 

1 Method 2. Let �(�) = 
�2 e1∕�. The Laurent series for � is ( ) 1 �(�) = 1 + 

1 +… . 
�2 � 

So Res(�, ∞) = −Res(�, 0) = 0. 
1 1 1∕� − 1 

(b) Since Let �(�) = � (∕1∕�) = . Writing 1∕(� + 1) as a geometric series we get 
�2 �2 1∕� + 1 

1 1 1 �(�) = (1 − �)(1 − � + �2 − �3 +…) = (1 − 2� + 2�2 −…) = − 
2 + 2 − … 

�2 �2 �2 � 

Therefore Res(�, ∞) = −Res(�, 0) = 2. 

Problem 11. 
Use the following steps to sketch the stream lines for the flow with complex potential Φ(�) = � + 
log(� − �) + log(� + �) 

(i) Identify the components, i.e. sources, sinks, etc of the flow. 

(ii) Find the stagnation points. 

(iii) Sketch the flow near each of the sources. 

(iv) Sketch the flow far from the sources. 

(v) Tie the picture together. 

Solution: (i) The log terms with positive coefficients represent sources. The term � represents a 
steady stream. So this is two sources in a steady stream. 
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(ii) Stagnation poihts are places where Φ′(�) = 0. Computing: 

2� (� + 1)2 
Φ′(�) = 1 + = . 

�2 + 1 �2 + 1 

So there is a single stagnation point at � = −1. 

(iii-v) Near the sources the flow looks like a source. Far away it looks like uniform flow to the right.
By symmetry (or direct calculation) there are streamlines on the �-axis. We get the following picture. 
(I used Octave to draw draw the underlying vector field.) 

Problem 12. 
Compute the following definite integrals 

� √ 1 (a) ∫ 
��. (Solution: � 2) 

−� 1 + sin2(�) 
� − 1∕� �2 − 1 Solution: On the unit circle � = e��, sin(�) = = . So the integral becomes 

2� 21 

1 �� −4� �� ∫|�|=1 1 + ((�2 − 1)∕2��)2 �� 
= ∫|�|=1 �(�4 − 6�2 + 1) 

Let � (�) = 
−4� . So the integral is 

�(�4 − 6�2 + 1) 

� (�) �� = 2�� 
∑ 

residues of � inside the unit disk. ∫|�|=1 √ √ 
The poles of � are at �2 = 3 ± 8. Of these, only �2 = 3 − 8 is inside the unit circle. So there √ √ √ √ 
are two poles inside the unit circle at �1 = 3 − 8 and �2 = − 3 − 8. These are simple poles 
and we can compute the residue using L’Hospital’s rule. 

(� − �1)(−4�) −4�1 −1 1 Res(�, �1) = lim = = = √ . 
�→�1 �(�4 − 6�2 + 1) �(4�31 

− 12�1) �(�21 
− 3) � 8 
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The residue at �2 has the same value. So, √ 4� � (�) �� = 2��(Res(�, �1) + Res(� , �2)) = √ = � 2. ∫|�|=1 8 

∞ � (b) ∫ 
��. (Solution: −�∕27) 

−∞ (�2 + 4� + 13)2 

Solution: Call the integral in question � . Let � (�) = �∕(�2 +4� + 13)2. This decays faster than 1∕�2 

so we can use path 

Re(z)

Im(z)

R−R

CR

C1

−2 + 3i

We know lim � (�) �� = 0, so, letting � go to infinity in ∫�1+�� 

� (�) �� we get 
�→∞ ∫�� 

� = 2�� 
∑ 

residues of � in the upper half-plane. 

The poles of � are at −2 ± 3�. Only �1 = −2 + 3� is in the upper half-plane. All we have to do is
� compute the residue. Let �(�) = (� − �1)2� (�) = (�−(−2−3�))2 . Since � is analytic at �1 we have 

Res(� , �1) = � ′(�1) = some algebra = �∕54. 

So � == −�∕27. 
∞ � sin(�) (c) p.v. ∫ 

��. 
−∞ 1 + �2 

Solution: Call the integral in question � . Replace sin(�) by e�� and let 
∞ �e�� 

�̃ = p.v. ∫ 
��, so, � = Im(�̃) 

−∞ 1 + �2 

�e�� 
Let � (�) = and use the contour �1 + ��. 

1 + �2 

Re(z)

Im(z)

C1

CR

−R R

2Ri

i

The only pole of � in the upper half-plane is at � = �. It is easy to compute Res(�, �) = �e−12� = 
e−1∕2. So, 

� (�) �� = 2�� Res(�, �) = ��e−1 . ∫�1+�� 
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Since |�∕(1 + �2)| < �∕|�| for Large � and the coefficient of �� in the exponent of � is positive, we 
know 

lim � (�) �� = 0. 
�→∞ 

̃ Also, lim�→∞ ∫ � � (�) �� = p.v. ∫ ∞ �. −∞ � (�) �� = −� 

In conclusion we have 
−1 �̃ = 2�� Res(�, �) = ��e . 

−1 So � = Im(�̃) = �e . 
∞ cos(�) (d) p.v. ∫ 

��. 
� + � −∞ 

e�� + e−�� e�� e−�� 
Solution: Write cos(�) = . So, Let �1(�) = and �2(�) = . 

�+� �+� 2 

∞ ∞ ∞ ���(�) 1 1 p.v. ∫ 
�� = p.v. ∫ 

�1(�) �� + p.v. ∫ 
�2(�) ��. � + � 2 2 −∞ −∞ −∞ 

We compute these integrals using two different contours 

Re(z)

Im(z)

C1

CR1

−R1 R1

2R1i

Re(z)

Im(z)

C2

−CR2

−R2 R2

−2R2i

−i

The reasoning is the same as in part (b). Both �1 and �2 have a single pole at � − �. So, using the 
contour �1 + ��1 

we find 

∞ 1 p.v. ∫ 
�1(�) �� = 2�� Res 1�1 in the upper half plane. = 0. 

2 2 −∞ 

Likewise, using the contour �1 − ��2 
we find 

∞ 1 −1 p.v. ∫ 
�2(�) �� = 2�� Res 1�2 in the lower half plane. = −2�� Res(�2∕2, −�) = −��e . 

2 2 −∞ 

(The minus sign is because �1 − ��2 
is oriented in the clockwise direction.) 

Answer to problem: the integral is −��e−1. 
∞ �e2�� 

(e) � = p.v. ∫ 
��. 

−∞ �2 − 1 

�e2�� 
Solution: Since our integrand � (�) = has poles on the real axis we will need to use an 

�2 − 1 
indented contour. 
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Re(z)

Im(z)

−1 1C1 C3 C5

CR

−C2 −C4

−R −1−r1 −1+r1 1−r2 1+r2 R

2Ri

As usual, we chose the contour so that the integral over �� goes to 0 as � goes to infinity. Since � 
has no poles inside the contour we have 

� (�) �� = 0. ∫�1−�2+�3−�4+�5+�� 

The poles of � at ±1 are simple. So, letting � → ∞ and �1, �2 → 0 we get 

� = ��(Res(� , −1) + Res(�, 1)). 

The residues are straightforward to compute. 

Res(�, −1) = e−2�∕2, Res(�, 1) = e2�∕2. 

So, � = ��(e2� + e−2�)∕2 = �� cos(2) . 
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18.04 Practice problems for final exam, Spring 2018 

On the final exam you will be given a copy of the Laplace table posted with these problems. 

Problem 1. 
Which of the following are meromporphic in the whole plane. 

(a) �5 

(b) �5∕2 

(c) e1∕� 

(d) 1∕ sin(�). 

Problem 2. 
(� − 2)2�3 � ′(�) (a) Let � (�) = . Compute ∫|�|=3 

�� 
(� + 5)3(� + 1)3(� − 1)4 � (�) 

(b) Find the number of roots of �(�) = 6�4 + �3 − 2�2 + � − 1 = 0 in the unit disk. 

(c) Suppose � (�) is analytic on and inside the unit circle. Suppose also that |� (�)| < 1 for |�| = 1. 
Show that � (�) has exactly one fixed point � (�0) = �0 inside the unit circle. 

(d) True or false: Suppose � (�) is analytic on and inside a simple closed curve � . If � has � zeros 
inside � then � ′(�) has � − 1 zeros inside � . 

Problem 3. 
Let � = {�| 0 ≤ Re(�) ≤ �∕2, Im(�) ≥ 0. 

Let � = the first quadrant/ 

Show that � (�) = sin(�) maps � conformally onto � 

1 
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18.04 Practice problems for final exam, Spring 2018 Solutions 

On the final exam you will be given a copy of the Laplace table posted with these problems. 

Problem 1. 
Which of the following are meromporphic in the whole plane. 

(a) �5 

(b) �5∕2 

(c) e1∕� 

(d) 1∕ sin(�). 

answers: Meromorphic means analytic except for poles of finite order. 

(a) Yes, this is entire. 

(b) No, this requires a branch cut in the plane to define a region where it’s analytic. 

(c) No, the singularity at � = 0 is an essential singularity, not a finite pole. 

(d) Yes, sin(�) has simple zeros at �� for all integers �. So 1∕ sin(�) has simple poles at these points. 

Problem 2. 
(� − 2)2�3 � ′(�) (a) Let � (�) = 

(� + 5)3(� + 1)3(� − 1)4 
. Compute ∫|�|=3 

�� 
� (�) 

(b) Find the number of roots of �(�) = 6�4 + �3 − 2�2 + � − 1 = 0 in the unit disk. 

(c) Suppose � (�) is analytic on and inside the unit circle. Suppose also that |� (�)| < 1 for |�| = 1. 
Show that � (�) has exactly one fixed point � (�0) = �0 inside the unit circle. 

(d) True or false: Suppose � (�) is analytic on and inside a simple closed curve � . If � has � zeros 
inside � then � ′(�) has � − 1 zeros inside � . 

′ � answers: (a) By the argument principle the ∫� 
�� = 2��(�� ,� − ��,� . In this case, the zeros of 

� 
� inside � are 2, 0 of order 2 and 3 respectively. The poles inside � are −1 and 1 of order 3 and 4 
respectively. So, the integral equals 

2��(2 + 3 − 3 − 4) = −4��. 

(b) On the unit circle |�3 − 2�2 + � − 1| < 5 and |6�4| = 6. Therefore by Rouche’s theorem the 
number of zeros of �(�) inside the unit circle is equal to the number of zeros of 6�4, i.e. 4. 

(c) Let �(�) = � (�) − �. We want to show � has exactly one root inside the unit circle. We know |� (�)| < | − �| = 1 on the unit circle. So by Rouche’s theorem �(�) and −� have the same number 
of zeros in the unit disk. That is, they both have exactly one such zero. QED. 

(d) False. Consider � (�) = e� − 1. This has 3 zeros inside the circle |�| = 3� (0, ±2�). But 
� ′(�) = e� has no zeros. 

Problem 3. 
Let � = {�| 0 ≤ Re(�) ≤ �∕2, Im(�) ≥ 0. 

1 
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Let � = the first quadrant/ 

Show that � (�) = sin(�) maps � conformally onto � 

answers: (a) You should supply a picture of the regions � and � and develop a picture tracking the 
argument we give. We see where � maps the boundary of �. The boundary of � has 3 pieces: 

Piece 1: � = ��, with � ≥ 0. On this piece 

e−� − e� (e� − e−�) sin(�) = = � 
2� 2 

So, the image of piece 1 is the positive imaginary axis. 

Piece 2: � = �, with 0 ≤ � ≤ �∕2. On this piece sin(�) = sin(�), so the image runs from 0 to 1 
along the real axis. 

Piece 3: � = �∕2 + ��, with � ≥ 0. On this piece 

e−�+��∕2 − e�−��∕2 (�e−� + �e−�) e−� + e� 
sin(�) = = = = cosh(�). 

2� 2� 2 

So, the image of piece 3 is the real axis greater than 1. 

We have shown that � (�) maps the boundary of � to the boundary of �. 

To see that � is mapped to � it’s enough to verify that one point inside � is mapped to a point inside 
�. There are lots of ways to do this. Here’s one. We know 

e−�+�� − e�−�� 
sin(� + ��) = . 

2� 

Pick � = �∕4 and � so large that e−� is very tiny. Then √ √ √ √ 
2∕2 − � 2∕2 2 + � 2 −��2� = −e� = e� sin(� + ��) ≈ −e�e 

2� 4 

This last value is clearly in the first quadrant, i.e inside �. 
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