المملكة العربية السعودية وزارة التعليم جامعة الملك سعود كلية العلوم قسم الرياضيات

MIDTERM 2 EXAM

SEMESTER	SECOND TERM	YEAR	2017/2016
	COURSE	ACTU 466	
DATE	19/04/2017	DURATION	1H 30 MNS

رقم الشعبة:	إســم الطالب(ة):
توقيع الطالب(ة):	الرقم الجامعي للطالب(ة):

INSTRUCTIONS

- 1) Please check that your exam contains <u>08 pages</u> total (including the first page!!), and **05 questions**.
- 2) **Answer all questions.**
- 3) No books, No notes and no phones are allowed.
- 4) A standard no programmable calculator is allowed.
- 5) Table for most used distributions is included.
- 6) Z-table is included.
- 7) Modifications for distributions table is included.

Question	1	2	3	4	5
Total score	4	10	3	3	5
Score					

1) (2+1+1=4 marks) Suppose a random variable *X* has a Pareto distribution with parameters $\alpha = 2$ and θ :

$$F_X(x) = 1 - \frac{\theta^2}{(x+\theta)^2}$$
 for $x \ge 0$.

- a) Show that $E(X \wedge t) = \theta \left(1 \frac{\theta}{t + \theta}\right)$ for any positive real number *t*.
- b) Deduce E(X).
- c) Find the distribution of *cX* for a positive constant *c*.

- 2) (2+2+2+2+2=10 marks) An insurance policy is subject to an ordinary deductible of *d*. The cdf of the loss amount *X* is given in **Exercise 1**.
- a) Compute the cdf and pdf for Y^L .
- b) Compute the cdf and pdf for Y^P .
- d) Compute the mean of Y^L and Y^P .
- e) Compute the loss elimination ratio.
- f) Deduce the loss elimination ratio after a uniform inflation of 100r %.

3) (3 marks) Consider two insurance contracts. One has a policy limit of u. The second has a coinsurance α . Losses in both contracts follow the same distribution in **Exercise 1** with parameter θ .

Find the relationship between u, α and θ so that the expected loss per cost is the same for the two contracts.

- 4) (1+2=3 marks) Individual losses have a Pareto distribution with parameter θ (as in Exercise
 1). The number of losses when there is no deductible has a negative binomial distribution with parameters r and p.
- a) Determine the expected number of cost-per payments when a deductible d is applied.
- b) Determine the expected total cost-per payment.

5) (1+2+2=5 marks) The number of losses follows a geometric distribution with parameter *p*.

a) Solve the equation $\frac{1-p}{p} = t$ where t is known.

Using the data $X_1, X_2, ..., X_n$ of the number of losses for the last *n* years, compute the estimate for the parameter *p*, by applying:

- b) Method of moments,
- c) Maximum likelihood method.

		CDF	PDF
Ordinary deductible Y ^L =(x-d) ₊	Y ^L	$\begin{cases} 0 & ; y < 0 \\ F_X(y+d) ; y \ge 0 \end{cases}$	$\begin{cases} 0 & ; y < 0 \\ F_X(d) & ; y = 0 \\ f_X(y+d); y \ge 0 \end{cases}$
$\mathbf{Y}^{\mathfrak{p}} = (\mathbf{Y}^{L}\mathbf{I}\mathbf{X}\!\!>\!\!\mathbf{d})$	Y ^p	$\begin{cases} 0 & ; y < 0 \\ \frac{F_X(y+d) - F_X(d)}{1 - F_X(d)} & ; y \geq 0 \end{cases}$	$\begin{cases} 0 & ; y < 0 \\ \frac{f_X(y+d)}{1-F_X(d)} & ; y \geq 0 \end{cases}$
Franchise deductible $Y^{L} = \begin{cases} 0 \ ; X \leq d \\ X \ ; X \geq d \end{cases}$ $Y^{P} = (Y^{L}IX > d)$	Y ^L	$\begin{cases} 0 & ; y < 0 \\ F_X(d) & ; 0 \leq y < d \\ F_X(y) & ; y \geq d \end{cases}$	$\begin{cases} 0 & ; y < 0 \\ F_X(d) & ; y = 0 \\ 0 & ; 0 < y < d \\ f_X(y) & ; y \geq d \end{cases}$
	Y ^p	$\begin{cases} 0 ; y < d \\ \frac{F_X(y) - F_X(d)}{1 - F_X(d)} ; y \geq d \end{cases}$	$\begin{cases} 0 \qquad ; y < d \\ \frac{f_X(y)}{1 - F_X(d)} \; ; y \geq d \end{cases}$
Policy limit Y=X∧u		$\begin{cases} F_{X}(y) & ; 0 \leq y < u \\ 1 & ; y \geq u \end{cases}$	$ \begin{cases} f_X(y) & ; 0 \leq y < u \\ 1 - F_X(u) & ; y = u \\ 0 & ; y > u \\ 0 & ; y < 0 \end{cases} $
$\begin{array}{l} \text{coinsurance} \\ \mathbf{Y} = \alpha X \end{array}$		$=F_{X}\left(rac{y}{lpha} ight)$	$=\frac{1}{\alpha}f_{X}\left(\frac{y}{\alpha}\right)$
Inflation effect with coefficient r Y = (1 + r)X		$=F_X\left(\frac{y}{1+r}\right)$	$=\frac{1}{1+r}f_{X}\left(\frac{y}{1+r}\right)$
Combination $f^{d} = \alpha((1+r)X \wedge u - (1+r)X \wedge d)$ $\begin{cases} 0 ; x < \frac{d}{1+r} \\ \alpha((1+r)x - d); \frac{d}{1+r} \le x < \frac{u}{1+r} \\ \alpha(u - d) ; x \ge \frac{u}{u} \end{cases}$	Y ^z	$\begin{cases} 0 ; y < 0 \\ F_{X}\left(\frac{y/\alpha + d}{1 + r}\right) ; 0 \le y < \alpha(u - d) \\ 1 ; y \ge \alpha(u - d) \end{cases}$	$\begin{cases} \frac{1}{\alpha(1+r)} f_{X}\left(\frac{y/\alpha+d}{1+r}\right); 0 \le y < \alpha(u-d) \\ 1 - F_{X}\left(\frac{u}{1+r}\right) ; y = \alpha(u-d) \\ F_{X}\left(\frac{d}{1+r}\right) ; y = 0 \\ 0 ; y < 0 y > \alpha(u-d) \end{cases}$
$\left(\begin{array}{c}a(u-a)\\1+r\end{array}\right)$	¥	$ \begin{cases} 0 & ; y < 0 \\ \\ F_X \left(\frac{\frac{y}{\alpha} + d}{1 + r} \right) - F_X \left(\frac{d}{1 + r} \right) \\ \hline 1 - F_X \left(\frac{d}{1 + r} \right) & ; 0 \le y < \alpha (u - d) \end{cases} $	$\begin{cases} 0 ; y < 0 \\ \frac{1}{\alpha(1+r)} f_X \left(\frac{y + d}{1+r} \right) \\ 1 - F_X \left(\frac{d}{1+r} \right) \\ 0 ; y \geq \alpha(u-d) \end{cases} ; 0 \leq y < \alpha(u-d)$

Distribution	Density & support	Moments & cumulants	Mgf
Binomial (n,p) $(0$	$\binom{n}{x} p^{x} (1-p)^{n-x}$ $x = 0, 1, \dots, n$	E = np, Var = np(1-p), $\gamma = \frac{np(1-p)(1-2p)}{\sigma^3}$	$(1-p+pe^t)^n$
Bernoulli(p)	\equiv Binomial(1, <i>p</i>)		
Poisson(λ) ($\lambda > 0$)	$\mathrm{e}^{-\lambda}\frac{\lambda^x}{x!}, x=0,1,\ldots$	$E = \text{Var} = \lambda,$ $\gamma = 1/\sqrt{\lambda},$ $\kappa_j = \lambda, \ j = 1, 2, \dots$	$\exp[\lambda(e^t-1)]$
Negative binomial(r, p) ($r > 0, 0)$	$\binom{r+x-1}{x}p^r(1-p)^x$ $x = 0, 1, 2, \dots$	E = r(1 - p)/p Var = E/p, $\gamma = \frac{(2-p)}{p\sigma}$	$\left(\frac{p}{1-(1-p)\mathrm{e}^t}\right)^r$
Geometric(p)	\equiv Negative binomial(1,p)		
Uniform (a,b) (a < b)	$\frac{1}{b-a}; a < x < b$	E = (a+b)/2, Var = $(b-a)^2/12,$ $\gamma = 0$	$\frac{\mathrm{e}^{bt} - \mathrm{e}^{at}}{(b-a)t}$
$\begin{array}{l} \mathrm{N}(\mu,\sigma^2) \\ (\sigma>0) \end{array}$	$\frac{1}{\sigma\sqrt{2\pi}}\exp\frac{-(x-\mu)^2}{2\sigma^2}$	$E = \mu, \text{ Var} = \sigma^2, \gamma = 0$ $(\kappa_j = 0, j \ge 3)$	$\exp(\mu t + \frac{1}{2}\sigma^2 t^2)$
$ \begin{array}{l} \text{Gamma}(\alpha,\beta) \\ (\alpha,\beta>0) \end{array} $	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}\mathrm{e}^{-\beta x}, x > 0$	$E = \alpha/\beta$, $Var = \alpha/\beta^2$, $\gamma = 2/\sqrt{\alpha}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}(t < \beta)$
Exponential(β)	$\equiv \text{gamma}(1,\beta)$		
$\chi^2(k)\;(k\in\mathbb{N})$	\equiv gamma($k/2, 1/2$)		
Inverse Gaussian(α, β) ($\alpha > 0, \beta > 0$)	$\frac{\alpha x^{-3/2}}{\sqrt{2\pi\beta}} \exp\left(\frac{-(\alpha - \beta x)^2}{2\beta x}\right)$ $F(x) = \Phi\left(\frac{-\alpha}{\sqrt{\beta x}} + \sqrt{\beta x}\right)$,	$e^{\alpha(1-\sqrt{1-2r/\beta})}$ $(t \le \beta/2)$ $, x > 0$

Table A	The most frequentl	v used discrete and	continuous distributions
1001011	The most nequenti	y used discrete and	continuous distributions