Second Semester	Second Exam	King Saud University
(without calculators)	Time allowed: 1 h and 30 m	College of Science
Thursday 28-7-1437	240 Math	Math. Department

Q1: (a) Let V be any set which has two operations are defined: addition and scalar multiplication. State the 10 axioms that should be satisfied by all scalars and all objects in V that make V a vector space. (5 marks)

- (b) Let $V=M_{nn}$ and W is the set of all symmetric matrices of degree n. Prove that W is a subspace of V. (3 marks)
- Q2: (a) Use the Wronskian to show that 1+x, 1-x, x^2 are linearly independent. (3 marks)
- (b) show that the vectors (1,2,1), (2,1,2), (1,1,0) form a basis for \mathbb{R}^3 . (3 marks)
- Q3: (a) Let B= $\{(1,2),(2,5)\}$ and B'= $\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^2 . Find the transition matrix from B' to B. (3 marks).
- (b) Find a basis for the column space of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 4 & 6 \\ 3 & 6 & 10 & 5 \end{bmatrix}$$

and **deduce** dim(null(A^T)) without solving any linear system. (3 marks)

Q4: Show that $A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 4 & 5 \\ 0 & 0 & -1 \end{bmatrix}$ is diagonalizable and find a matrix P that diagonalizes A. (5 marks)