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PREFACE TO THE
THIRD EDITION

The purpose of the third edition of this book is to give a sound and self-con-
tained (in the sense that the necessary probability theory is included) introduction
to classical or mainstream statistical theory. It is not a statistical-methods-
cookbook, nor a compendium of statistical theories, nor is it a mathematics
book. Thé book is intended to be a textbook, aimed for use in the traditional
full-year upper-division undergraduate course in probability and statistics,
or for use as a text in a course designed for first-year graduate students. The
latter course is often a ‘‘service course,” offered to a variety of disciplines.

No previous course in probability or statistics is needed in order to study
the book. The mathematical preparation required is the conventional full-year
calculus course which includes series expansion, multiple integration, and par-
tial differentiation. Linear algebra is not required. An attempt has been
made to talk to the reader. Also, we have retained the approach of presenting
the theory with some connection to practical problems. The book is not mathe-
matically rigorous. Proofs, and even exact statements of results, are often not
given. Instead, we have tried to impart a “feel” for the theory.

The book is designed to be used in either the quarter system or the semester
system. In a quarter system, Chaps. I through V could be covered in the first

2



Xiv PREFACE TO THE THIRD EDITION

quarter, Chaps. VI through part of VIII the second quarter, and the rest of the
book the third quarter. In a semester system, Chaps. I through VI could be
covered the first semester and the remaining chapters the second semester.
Chapter VI is a ““ bridging > chapter; it can be considered to be a part of * proba-
bility >’ or a part of ““statistics.”” Several sections or subsections can be omitted
without disrupting the continuity of presentation. For example, any of the
following could be omitted: Subsec. 4.5 of Chap. I1; Subsecs., 2.6, 3.5, 4.2, and
4.3 of Chap. III; Subsec. 5.3 of Chap. VI; Subsecs. 2.3, 3.4, 4.3 and Secs. 6
through 9 of Chap. VII; Secs. 5 and 6 of Chap. VIII; Secs. 6 and 7 of Chap. 1X;
and all or part of Chaps. X and XI. Subsection 5.3 of Chap VI on extreme-value
theory is somewhat more difficult than the rest of that chapter. In Chap. VII,
Subsec. 7.1 on Bayes estimation can be taught without Subsec. 3.4 on loss and
risk functions but Subsec. 7.2 cannot. Parts of Sec. 8 of Chap. VII utilize matrix
notation. The many problems are intended to be essential for learning the
material in the book. Some of the more difficult problems have been starred.

ALEXANDER M. MOOD
FRANKLIN A. GRAYBILL
DUANE C. BOES



EXCERPTS FROM THE FIRST
AND SECOND EDITION PREFACES

This book developed from a set of notes which I prepared in 1945. At that time
there was no modern text available specifically designed for beginning students
of mathematical statistics. Since then the situation has been relieved consider-
ably, and had I known in advance what books were in the making it is likely
that I should not have embarked on this volume. However, it seemed suffi-
ciently different from other presentations to give prospective teachers and stu-
dents a useful alternative choice.

The aforementioned notes were used as text material for three years at Iowa
State College in a course offered to senior and first-year graduate students.
The only prerequisite for the course was one year of calculus, and this require-
ment indicates the level of the book. (The calculus class at Iowa State met four
hours per week and included good coverage of Taylor series, partial differentia-
tion, and multiple integration.) No previous knowledge of statistics is assumed.

This is a statistics book, not a mathematics book, as any mathematician
will readily see. Little mathematical rigor is to be found in the derivations
simply because it would be boring and largely a waste of time at this level. Of
course rigorous thinking is quite essential to good statistics, and T have been at
some pains to make a show of rigor and to instill an appreciation for rigor by
pointing out various pitfalls of loose arguments.



XVvi EXCERPTS FROM THE FIRST AND SECOND EDITION PREFACES

While this text is primarily concerned with the theory of statistics, full
cognizance has been taken of those students who fear that a moment may be
wasted in mathematical frivolity. All new subjects are supplied with a little
scenery from practical affairs, and, more important, a serious effort has been
made in the problems to illustrate the variety of ways in which the theory may
be applied.

The problems are an essential part of the book. They range from simple
numerical examples to theorems needed in subsequent chapters. They include
important subjects which could easily take precedence over material in the text;
the relegation of subjects to problems was based rather on the feasibility of such
a procedure than on the priority of the subject. For example, the matter of
correlation is dealt with almost entirely in the problems. It seemed to me in-
efficient to cover multivariate situations twice in detail, i.e., with the regression
model and with the correlation model. The emphasis in the text proper is on
the more general regression model.

The author of a textbook is indebted to practically everyone who has
touched the field, and I here bow to all statisticians. However, in giving credit
to contributors one must draw the line somewhere, and I have simplified matters
by drawing it very high; only the most eminent contributors are mentioned in
the book.

I am indebted to Catherine Thompson and Maxine Merrington, and to
E. S. Pearson, editor of Biometrika, for permission to include Tables III and V,
which are abridged versions of tables published in Biometrika. 1 am also in-
debted to Professors R. A. Fisher and Frank Yates, and to Messrs. Oliver and
Boyd, Ltd., Edinburgh, for permission to reprint Table IV from their book
*“Statistical Tables for Use in Biological, Agricultural and Medical Research.”

Since the first edition of this book was published in 1950 many new statis-
tical techniques have been made available and many techniques that were only in
the domain of the mathematical statistician are now useful and demanded by
the applied statistician. To include some of this material we have had to elim-
inate other material, else the book would have come to resemble a compendium.
The general approach of presenting the theory with some connection to prac-
tical problems apparently contributed significantly to the success of the first
edition and we have tried to maintain that feature in the present edition.
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PROBABILITY

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to define probability and discuss some of its prop-
erties. Section 2 is a brief essay on some of the different meanings that have
been attached to probability and may be omitted by those who are interested
only in mathematical (axiomatic) probability, which is defined in Sec. 3 and
used throughout the remainder of the text. Section 3 is subdivided into six
subsections. The first, Subsec. 3.1, discusses the concept of probability models.
It provides a real-world setting for the eventual mathematical definition of
probability. A review of some of the set theoretical concepts that are relevant
to probability is given in Subsec. 3.2. Sample space and event space are
defined in Subsec. 3.3. Subsection 3.4 commences with a recall of the definition
of a function. Such a definition is useful since many of the words to be defined
in this and coming chapters (¢.g., probability, random variable, distribution,
etc.) are defined as particular functions. The indicator function, to be used
extensively in later chapters, is defined here. The probability axioms are pre-
sented, and the probability function is defined. Several properties of this prob-
ability function are stated. The culmination of this subsection is the definition
of a probability space. Subsection 3.5 is devoted to examples of probabilities
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defined on finite sample spaces. The related concepts of independence of |,
events and conditional probability are discussed in the sixth and final subsection.
Bayes’ theorem, the multiplication rule, and the theorem of total probabilities
are proved or derived, and examples of each are given.

Of the three main sections included in this chapter, only Sec. 3, which is
by far the longest, is vital. The definitions of probability, probability space,
conditional probability, and independence, along with familiarity with the
properties of probability, conditional and unconditional and related formulas,
are the essence of this chapter. This chapter is a background chapter; it intro-
duces the language of probability to be used in developing distribution theory,
which is the backbone of the theory of statistics.

2 KINDS OF PROBABILITY

2.1 Introduction

One of the fundamental tools of statistics is probability, which had its formal .
beginnings with games of chance in the seventeenth century. ,

Games of chance, as the name implies, include such actions as spinning a
roulette wheel, throwing dice, tossing a coin, drawing a card, etc., in which the
outcome of a trial is uncertain. However, it is recognized that even though the
outcome of any particular trial may be uncertain, there is a predictable lon.g-
term outcome. It is known, for example, that in many throws of an ideal
(balanced, symmetrical) coin about one-half of the trials will result in heads.
It is this long-term, predictable regularity that enables gaming houses to engage
in the business.

A similar type of uncertainty and long-term regularity often occurs in
experimental science. For example, in the science of genetics it is uncertain
whether an offspring will be male or female, but in the long run it is known
approximately what percent of offspring will be male and what percent will be
female. A life insurance company cannot predict which persons in the United
States will die at age 50, but it can predict quite satisfactorily how many people
in the United States will die at that age, -

First we shall discuss the classical, or a priori, theory of probability; then
we shall discuss the frequency theory. Development of the axiomatic approach
will be deferred until Sec. 3.
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2.2 Classical or A Priori Probability

As we stated in the previous subsection, the theory of probability in its early
stages was closely associated with games of chance. This association prompted
the classical definition. For example, suppose that we want the probability of
the eventithat an ideal coin will turn up heads. We argue in this manner: Since
there are Bnly two ways that the coin can fall, heads or tails, and since the coin
is well balanced, one would expect that the coin is just as likely to fall heads as
tails; hence, the probability of the event of a head will be given the value .
This kind of reasoning prompted the following classical definition of prob-
ability.

Definition 1  Classical probability If a random experiment can result
in n mutually exclusive and equally likely outcomes and if n, of these
outcomes have an attribute A, then the probability of A is the fraction

n,/n. Il

We shall apply this definition to a few examples in order to illustrate its meaning.
If an ordinary die (one of a pair of dice) is tossed—thereare six possible out-
comes—any one of the six numbered faces may turn up. These six outcomes
are mutually exclusive since two or more faces cannot turn up simultaneously.
--And if the die is fair, or true, the six outcomes are equally likely, i.e., it is expected
that each face will appear with about equal relative frequency in the long run.
Mow suppose that we want the probability that the result of a toss be an even
number. Three of the six possible outcomes have this attribute. The prob-
~ ability that an even number will appear when a die is tossed is therefore 2, or §.
Similarly, the probability that a 5 will appear when a die is tossed is 3. The
probability that the result of a toss will be greater than 2 is %.

To consider another example, suppose that a card is drawn at random from
an ordinary deck of playing cards. The probability of drawing a spade is
readily seen to be 13, or . The probability of drawing a number between 5
and 10, inclusive, is 2%, or &.

The application of the definition is straightforward enough in these simple
cases, but it is not always so obvious. Careful attention must be paid to the
qualifications “ mutually exclusive,” “equally likely,” and “random.” Suppose
that one wishes to compute the probability of getting two heads if a coin is
tossed twice. He might reason that there are three possible outcomes for the
two tosses: two heads, two tails, or one head and one tail. One of these three
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outcomes has the desired attribute, i.e., two heads; therefore the probability is
1. This reasoning is faulty because the three given outcomes are not equally
likely. The third outcome, one head and one tail, can occur in two ways
since the head may appear on the first toss and the tail on the second or the
head may appear on the second toss and the tail on the first. Thus there are
four equally likely outcomes: HH, HT, TH, and TT. The first of these has
the desired attribute, while the others do not. The correct probability is there-
fore 3. The result would be the same if two ideal coins were tossed simul-
taneously.

Again, suppose that one wished to compute the probability that a card
drawn from an ordinary well-shuffled deck will be an ace or a spade. In enu-
merating the favorable outcomes, one might count 4 aces and 13 spades and
reason that there are 17 outcomes with the desired attribute. This is clearly
incorrect because these 17 outcomes are not mutually exclusive since the ace of
spades is both an ace and a spade. There are 16 outcomes that are favorable to
an ace or a spade, and so the correct probability is 13, or %5

We note that by the classical definition the probablllty of event A is a
number between 0 and 1 inclusive. The ratio n,/n must be less than or equal to
1 since the total number of possible outcomes cannot be smaller than the
number of outcomes with a specified attribute. If an event is certain to happen,
its probability is I; if it is certain not to happen, its probability is 0. Thus, the
probability of obtaining an 8 in tossing a die is 0. The probability that the
number showing when a die is tossed is less than 10 is equal to 1.

The probabilities determined by the classical definition are called a priori
probabilities. When one states that the probability of obtaining a head in
tossing a coin is 4, he has arrived at this result purely by deductive reasoning.
The result does not require that any coin be tossed or even be at hand. We say
that if the coin is true, the probability of a head 1s 1, but this is little more than
saying the same thing in two different ways. Nothing is said about how one
can determine whether or not a particular coin is true.

The fact that we shall deal with ideal objects in developing a theory of
probability will not trouble us because that is a common requirement of mathe-
matical systems. Geometry, for example, deals with conceptually perfect
circles, lines with zero width, and so forth, but it is a useful branch of knowl-
edge, which can be applied to diverse practical problems.

There are some rather troublesome limitations in the classical, or a pr10r1
approach. It is obvious, for example, that the definition of probability must
be modified somehow when the total number of possible outcomes is infinite.
One might seek, for example, the probability that an integer drawn at random
from the positive integers be even. The intuitive answer to this question is 1
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If one were pressed to justify this result on the basis of the definition, he might
reason as follows: Suppose that we limit ourselves to the first 20 integers; 10
of these are even so that the ratio of favorable outcomes to the total number is
45, or . Again, if the first 200 integers are considered, 100 of these are even,
and the ratio is also 4. In general, the first 2V integers contain N even integers;
if we form the ratio N/2N and let N become infinite so as to encompass the whole
set of positive integers, the ratio remains 4. The above argument is plausible,
and the answer is plausible, but it is no simple matter to make the argument
stand up. It depends, for example, on the natural ordering of the positive
integers, and a different ordering could produce a different result. Thus, one
could just as well order the integers in this way: 1, 3, 2; 5, 7, 4; 9, 11, 6; ...,
taking the first pair of odd integers then the first even integer, the second pair
of odd integers then the second even integer, and so forth. With this ordering,
one could argue that the probability of drawing an even integer is 1. The
integers can also be ordered so that the ratio will oscillate and never approach
any definite value as NV increases.

There is another difficulty with the classical approach to the theory of
probability which is deeper even than that arising in the case of an infinite
number of outcomes. Suppose that we toss a coin known to be biased in
favor of heads (it is bent so that a head is more likely to appear than a tail).
The two possible outcomes of tossing the coin are not equally likely. What is
the probability of a head? The classical definition leaves us completely helpless
here.

Still another difficulty with the classical approach is encountered when we
try to answer questions such as the following: What is the probability that a
child born in Chicago will be a boy? Or what is the probability that a male
will die before age 507 Or what is the probability that a cookie bought at a
certain bakery will have less than three peanuts in it? All these are legitimate
questions which we wantto bring into the realm of probability theory. However,
notions of “‘symmetry,” “equally likely,” etc., cannot be utilized as they could
be in games of chance. Thus we shall have to alter or extend our definition to
bring problems similar to the above into the framework of the theory. This
more widely applicable probability is called a posteriori probability, or frequency,
and will be discussed in the next subsection.

2.3 A Posteriori or Frequency Probability

A coin which seemed to be well balanced and symmetrical was tossed 100 times,
and the outcomes recorded in Table 1. The important thing to notice is that the
relative frequency of heads is close to 3. This is not unexpected since the coin
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was symmetrical, and it was anticipated that in the long run heads would occur
about one-half of the time. For another example, a single die was thrown 300
times, and the outcomes recorded in Table 2. Notice how close the relative
frequency of a face with a | showing is to %; similarly for a 2, 3, 4, 5, and 6.
These results are not unexpected since the die which was used was quite sym-
metrical and balanced; it was expected that each face would occur with about
equal frequency in the long run. This suggests that we might be willing to use
this relative frequency in Table 1 as an approximation for the probability that
the particular coin used will come up heads or we might be willing to use the
relative frequencies in Table 2 as approximations for the probabilities that
various numbers on this die will appear. Note that although the relative fre-
quencies of the different outcomes are predictable, the actual outcome of an
individual throw is unpredictable.

In fact, it seems reasonable to assume for the coin experiment that there
exists a number, label it p, which is the probability of a head. Now if the coin
appears well balanced, symmetrical, and true, we might use Definition 1 and
state that p is approximately equal to 4. 1t is only an approximation to set p
equal to 1 since for this particular coin we cannot be certain that the two cases,
heads and tails, are exaétly equally likely. But by examining the balance and
symmetry of the coin it may seem quite reasonable to assume that they are.
Alternatively, the coin could be tossed a large number of times, the results
recorded as in Table 1, and the relative frequency of a head used as an approxima-
tion for p. In the experiment with a die, the probability p, of a 2 showing
could be approximated by using Definition 1 or by using the relative frequency
in Table 2. The important thing is that we postulate that there is a number p
which is defined as the probability of a head with the coin or a number p,
which is the probability of a 2 showing in the throw of the die. Whether we use
Definition 1 or the relative frequency for the probability seems unimportant in
the examples cited.

Table 1 RESULTS OF TOSSING A COIN 100 TIMES

Long-run expected

Observed Observed relative relative frequency

Outcome Frequency frequency of a balanced coin
H 56 .56 .50
T 44 44 .50

Total 100 1.00 1.00
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Suppose, as described above, that the coin is unbalanced so that we are
quite certain from an examination that the two cases, heads and tails, are not
equally likely to happen. In these cases a number p can still be postulated
as the probability that a head shows, but the classical definition will not help us
to find the value of p. We must use the frequency approach or possibly some
physical analysis of the unbalanced coin.

In many scientific investigations, observations are taken which have an ele-
ment of uncertainty or unpredictability in them. As a very simple example, sup-
pose that we want to predict whether the next baby born in a certain locality will
be a male or a female. This is individually an uncertain event, but the results of
groups of births can be dealt with satisfactorily. We find that a certain long-
run regularity exists which is similar to the long-run regularity of the frequency
ratio of a head when a coin is thrown. If, for example, we find upon examination
of records that about 51 percent of the births are male, it might be reasonable to
postulate that the probability of a male birth in this locality is equal to a number
p and take .51 as its approximation.

To make this idea more concrete, we shall assume that a series of observa-
tions (or experiments) can be made under quite uniform conditions. That is,
an observation of a random experiment is made; then the experiment is repeated
under similar conditions, and another observation taken. This is repeated
many times, and while the conditions are similar each time, there is an uncon-
trollable variation which is haphazard or random so that the observations are
individually unpredictable. In many of these cases the observations fall into
certain classes wherein the relative frequencies are quite stable. This suggests
that we postulate a number p, called the probability of the event, and approximate
p by the relative frequency with which the repeated observations satisfy the

Table 2 RESULTS OF TOSSING A DIE 300 TIMES

Long-run expected

Observed Observed relative frequency
Outcome Frequency relative frequency of a balanced die
N i 51 170 1667
2 54 .180 1667
3 48 .160 1667
4 51 170 .1667
5 49 .163 1667
6 47 157 .1667

Total 300 1.000 1.000
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event. For instance, suppose that the experiment consists of sampling the
population of a large city to see how many voters favor a certain proposal.
The outcomes are “favor™ or *“do not favor,” and each voter’s response is un-
predictable, but it is reasonable to postulate a number p as the probability that
a given response will be “favor.” The relative frequency of ““ favor ” responses
can be used as an approximate value for p.

As another example, suppose that the experiment consists of sampling
transistors from a large collection of transistors. We shall postulate that the
probability of a given transistor being defective is p. We can approximate p by
selecting several transistors at random from the collection and computing the
relative frequency of the number defective.

The important thing is that we can conceive of a series of observations or
experiments under rather uniform conditions. Then a number p can be postu-
lated as the probability of the event A happening, and p can be approximated by
the relative frequency of the event A in a series of experiments.

3 PROBABILITY—AXIOMATIC

3.1 Probability Models

One of the aims of science is to predict and describe events in the world in which
we live. One way in which this is done is to construct mathematical models
which adequately describe the real world. For example, the equation s = 1g¢?
expresses a certain relationship between the symbols s, g, and ¢. Tt is a mathe-
matical model. To use the equation s = Lgt? to predict s, the distance a body
falls, as a function of time ¢, the gravitational constant g must be known. The
latter is a physical constant which must be measured by experimentation if the
equation s = gt? is to be useful. The reason for mentioning this equation is
that we do a similar thing in probability theory; we construct a probability
model which can be used to describe events in the real world. For example, it
might be desirable to find an equation which could be used to predict the sex of
each birth in a certain locality. Such an equation would be very complex, and
none has been found. However, a probability model can be constructed which,
while not very helpful in dealing with an individual birth, is quite useful in
dealing with groups of births. Therefore, we can postulate a number p which
represents the probability that a birth will be a male. From this fundamental
probability we can answer questions such as: What is the probability that in
ten births at least three will be males? Or what is the probability that there will
be three consecutive male births in the next five? To answer questions such as
these and many similar ones, we shall develop an idealized probability model.
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The two general types of probability (a priori and a posteriori) defined
above have one important thing in common: They both require a conceptual
experiment in which the various outcomes can occur under somewhat uniform
conditions. For example, repeated tossing of a coin for the a priori case, and
repeated birth for the a posteriori case. However, we might like to bring into
the realm of probability theory situations which cannot conceivably fit into the
framework of repeated outcomes under somewhat similar conditions. For
example, we might like to answer questions such as: What is the probability my
wife loves me? Or what is the probability that World War I1I will start before
January 1, 1985? These types of problems are certainly a legitimate part of
general probability theory and are included in what is referred to as subjective
probability. We shall not discuss subjective probability to any great extent in
this book, but we remark that the axioms of probability from which we develop
probability theory are rich enough to include a priori probability, a posteriori
probability, and subjective probability.

To start, we require that every possible outcome of the experiment under
study can be enumerated. For example, in the coin-tossing experiment there are
two possible outcomes: heads and tails. We shall associate probabilities only
with these outcomes or with collections of these outcomes. We add, however,
that even if a particular outcome is impossible, it can be included (its probability
is 0). The main thing to remember is that every outcome which can occur
must be included.

Each conceivable outcome of the conceptual experiment under study will be
defined as a sample point, and the totality of conceivable outcomes (or sample
points) will be defined as the sample space.

Our object, of course, is to assess the probability of certain outcomes or
collections of outcomes of the experiment. Discussion of such probabilities
is conveniently couched in the language of set theory, an outline of which
appears in the next subsection. We shall return to formal definitions and
examples of sample space, event, and probability.

3.2 An Aside—Set Theory

We begin with a collection of objects. Each object in our collection will be
called a point or element. We assume that our collection of objects is large
enough to include all the points under consideration in a given discussion.
The totality of all these points is called the space, universe, or universal set.
We will call it the space (anticipating that it will become the sample space when
we speak of probability) and denote it by Q. Let w denote an element or point
in Q. Although a set can be defined as any collection of objects, we shall
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assume, unless otherwise stated, that all the sets mentioned in a given discussion
consist of points in the space Q.

EXAMPLE | Q = R,, where R, is the collection of points w in the plane and
w = (x, ) is any pair of real numbers x and y. /1]

EXAMPLE 2 Q = {all United States citizens}. /]

We shall usually use capital Latin letters from the beginning of the
alphabet, with or without subscripts, to denote sets. If w is a point or element
belonging to the set 4, we shall write w € 4; if @ is not an element of A, we
shall write @ ¢ A.

Definition 2 Subset If every element of a set A is also an element of a
set B, then A is defined to be a subset of B, and we shall write A < B or
B o A; read “A is contained in B” or *“ B contains A.” /1]]

Definition 3 Equivélent sets Two sets A and B are defined to be equiva-
lent, or equal, if A< B and Bc A. This will be indicated by writing

A =B. 1/

Definition 4 Empty set If a set A contains no points, it will be called
the null set, or empty set, and denoted by ¢. 1]

Definition 5 Complement The complement of a set A with respect to
the space Q, denoted by A4, A°, or Q — A, is the set of all points that are in
Q but not in A. /1]

Definition 6 Union Let 4 and B be any two subsets of Q; then the
set that consists of all points that are in 4 or B or both is defined to be
the union of A and B and written 4 U B. /1]

Definition 7 Intersection Let 4 and B be any two subsets of Q; then
the set that consists of all points that are in both 4 and B is defined to be
the intersection of A and B and is written A N B or AB. /1]

Definition 8 Set difference Let 4 and B be any two subsets of Q. The
set of all points in 4 that are not in B will be denoted by 4 — B and is
defined as set difference. /1]
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EXAMPLE 3 Let Q={(x, ): 0<x <1 and 0 <y <1}, which is read the
collection of all points (x, y) for which0 <x<land0<y <1 Define
the following sets:

A ={(x,):0<x<1;0<y<1},
A, ={(x,):0<x<};0<y<1},
A; ={(x,y):0<x<y<1},

Ay ={(x»):0<x<};0<y<i}

(We shall adhere to the practice initiated here of using braces to embrace
the points of a set.)
The set relations below follow.

Ay < Ay Ay < Ay; Ay N Ay =AA; = Ay
Ay, UAs=A, UA;; A ={xy:0<x<l;i<y<l1};
A — Ay ={xy):1<x=<1;0<y< 4 /111

EXAMPLE 4 Let Q, 4,, A,, and A, be as indicated in the diagrams in Fig. |
which are called Venn diagrams. /1]

The set operations of complement, union, and intersection have been
defined in Definitions 5 to 7, respectively. These set operations satisfy quite a
number of laws, some of which follow, stated as theorems. Proofs are omitted.

Theorem 1 Commutativelaws AU B=BuAdand AnB=Bn A.

/1

Theorem 2 Associative laws A U (Bu C)=(4uB)uC, and
ANBNnCO)=AnBnC. I

Theorem 3 Distributive laws 4 N (BuU C)=(4 n B) u (4 n C), and
AuBNnC)=(AUuB nAdvC). /1]

Theorem 4 (4°)€ = (—A—S = A; in words, the complement of A4 comple-
ment equals 4. /1]

Theorem 5 AQ=A4;4A0 Q=Q; A¢p =¢;and 4 U ¢ = A. /1]

Theorem 6 AA=¢;, AUVA=Q;ANnA=A;and A U A=A 111/
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Theorem 7 (4 U B)= 4 B,and (4 n B) = A U B. These are known
as De Morgan’s laws. /1]

Theorem8 A4 — B — AB. /]

Several of the above laws are illustrated in the Venn diagrams in Fig. 1.
Although we will feel free to use any of the above laws, it might be instructive
to give a proof of one of them just to illustrate the technique. For example,

let us show that (4 U B) = A n B. By definition, two sets are equal if each is
contained in the other. We first show that (4 U B) = A n B by proving that if
weAu B thenwedn B. Nowwe (4 U B)impliesw ¢ 4 U B, whichimplies
that o ¢ A and w ¢ B, which in turn implies that w € 4 and w € B; that is,
weAn B. Wenextshowthat A " Bc (4 U B). Letwe A n B,which means
w belongs to both 4 and B. Then w ¢ A U B for if it did, @ must belong to at
least one of A or B, contradicting that w belongs to both 4 and B; however,

w ¢ AV B means w € (4 U B), completing the proof.

We defined union and intersection of two sets; these definitions extend
immediately to more than two sets, in fact to an arbitrary number of sets. It
is customary to distinguish between the sets in a collection of subsets of Q by
assigning names to them in the form of subscripts. Let A (Greek letter capital
lambda) denote a catalog of names, or indices. A is also called an index set.
For example, if we are concerned with only two sets, then our index set A
includes only two indices, say | and 2; so A ={l, 2}.

Definition 9 Union and intersection of sets Let A be an index set and
{A;: e A} ={A4,}, a collection of subsets of Q indexed by A. The set
of points that consists of all points that belong to A4, for at least one 4 is

called theunion of thesets {4,} and is denoted by ) 4,. The set of points
LeA

that consists of all points that belong to 4, for every 1 is called the inter-
section of the sets {4,} and is denoted by () 4,. If Ais empty, then define

AEA

|JA4,=¢and ) 4,=0Q. /11

AEA AEA

EXAMPLE 5 If A={l, 2, ..., N}, ie., A is the index set consisting of the

first N integers, then | ) 4 is also written as
LeA

N
"szlA,,=A1quu---uAN. I/
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One of the most fundamental theorems relating unions, intersections, and
complements for an arbitrary collection of sets is due to De Morgan.

Theorem 9 De Morgan’s theorem Let A be an index set and {4,} a
collection of subsets of Q indexed by A. Then,

® U=
@ A= U4 I

We will not give a proof of this theorem. Note, however, that the special
case when the index set A consists of only two names or indices is Theorem 7
above, and a proof of part of Theorem 7 was given in the paragraph after
Theorem 8.

Definition 10 Disjoint or mutually exclusive Subsets 4 and B of Q are
defined to be mutually exclusive or disjoint if A B=¢. Subsets
Ay, A, ...are defined to be mutually exclusive if A; A; = ¢ for every i # j.

1

Theorem 10 If 4 and B are subsets of Q, then (i) 4 = AB U AB, and
(i) ABn AB = ¢.

PROOF () A=ANnQ=An(BuB)=ABuU AB. (ii) ABn AB
= AABB = A¢ = ¢. 1l

Theorem 11 If A « B, then AB= A, and A U B = B.

PROOF Left as an exercise. /1]

3.3 Definitions of Sample Space and Event

In Subsec. 3.1 we described what might be meant by a probability model.
There we said that we had in mind some conceptual experiment whose possible
outcomes we would like to study by assessing the probability of certain outcomes
or collection of outcomes. In this subsection, we will give two important

definitions, along with some examples, that will be used in assessing these
probabilities.

Definition 11 Sample space The sample space, denoted by Q, is the
collection or totality of all possible outcomes of a conceptual experiment.

i
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One might try to understand the definition by looking at the individual
words. Use of the word “space can be justified since the sample space is the
total collection of objects or elements which are the outcomes of the experiment.
This is in keeping with our use of the word *“space” in set theory as the collec-
tion of all objects of interest in a given discussion. The word *“sample” is
harder to justify; our experiment is random, meaning that its outcome is un-
certain so that a given outcome is just one sample of many possible outcomes.

Some other symbols that are used in other texts to denote a sample space,
in addition to Q, are S, Z, R, E, X, and A.

Definition 12 Event and event space An event is a subset of the sample
space. The class of all events associated with a given experiment is
defined to be the event space. ' /]

The above does not precisely define what an event is. An event will
always be a subset of the sample space, but for sufficiently large sample spaces
not all subsets will be events. Thus the class of all subsets of the sample space
will not necessarily correspond to the event space. However, we shall see that
the class of all events can always be selected to be large enough so as to include
all those subsets (events) whose probability we may want to talk about. If the
sample space consists of only a finite number of points, then the corresponding
event space will be the class of all subsets of the sample space.

Our primary interest will not be in events per se but will be in the prob-
ability that an event does or does not occur or happen. An event A is said to
occur if the experiment at hand results in an outcome (a point in our sample
space) that belongs to A. Since a point, say w, in the sample space is a subset
(that subset consisting of the point w) of the sample space Q, it is a candidate to
be an event. Thus w can be viewed as a point in Q or as a subset of Q. To
distinguish, let us write {w}, rather than just w, whenever w is to be viewed as a
subset of Q. Such a one-point subset will always be an event and will be called
an elementary event. Also ¢ and Q are both subsets of Q, and both will always
be events. Q is sometimes called the sure event.

We shall attempt to use only capital Latin letters (usually from the begin-
ning of the alphabet), with or without affixes, to denote events, with the excep-
tion that ¢ will be used to denote the empty set and Q the sure event. The event
space will always be denoted by a script Latin letter, and usually o¢. % and £,
as well as other symbols, are used in some texts to denote the class of all events.

The sample space is basic and generally easy to define for a given experi-
ment. Yet, as we shall see, it is the event space that is really essential in de-
fining probability. Some examples follows.
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EXAMPLE 6 The experiment is the tossing of a single die (a regular six-sided
polyhedron or cube marked on each face with one to six spots) and noting
which face is up. Now the die can land with any one of the six faces up;
so there are six possible outcomes of the experiment;

o=¢[], &, [, E], H, B

Let A = {even number of spots up}. A is an event; it is a subset of Q.
A={[],[E)[E]. Let A, ={ispotsup};i=1,2,...,6. EachA,isan
elementary event. For this experiment the sample space is finite; hence
the event space is all subsets of Q. There are 2° = 64 events, of which only
6 are elementary, in & (including both ¢ and Q). See Example 19 of
Subsec. 3.5, where a technique for counting the number of events in a finite
sample space is presented. /1]

EXAMPLE 7 Toss a penny, nickel, and dime simultaneously, and note which
side is up on each. There are eight possible outcomes of this experiment.
Q={H,H H,HHTD HT H, T, H H, H T, T, (T H T,
(T, T, H), (T, T, T)}. We are using the first position of (-, -, -), called a
3-tuple, to record the outcome of the penny, the second position to record
the outcome of the nickel, and the third position to record the outcome of
the dime. Let A; = {exactly i heads}; i=0, 1,2, 3. For eachi, A;is an
event. Note that A4, and A; are each elementary events. Again all
subsets of Q are events; there are 28 = 256 of them. 11/

EXAMPLE 8 The experiment is to record the number of traffic deaths in the
state of Colorado next year. Any nonnegative integer is a conceivable
outcome of this experiment; so Q ={0, 1, 2, ...}. 4 = {fewer than 500
deaths} = {0, I, ..., 499} is an event. A; = {exactly / deaths}, i=0, 1,
..., 1s an elementary event. There is an infinite number of points in the
sample space, and each point is itself an (elementary) event; so there is an
infinite number of events. Each subset of Q is an event. /1]

EXAMPLE 9 Select a light bulb, and record the time in hours that it burns
before burning out. Any nonnegative number is a conceivable outcome
of this experiment; so Q ={x:x>0}. For this sample space not all
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subsets of Q are events; however, any subset that can be exhibited will be
an event. For example, let

A = {bulb burns for at least k hours but burns out before m
hours}

={x:k<x<m};

then A4 is an event for any 0 < k < m. /111

EXAMPLE 10 Consider a random eXperiment which consists of counting
the number of times that it rains and recording in inches the total rainfall
next July in Fort Collins, Colorado. The sample space could then be
represented by

Q={Gx):i=0,1,2,... and 0<x},

where in the 2-tuple (-, -) the first position indicates the number of times
that it rains and the second position indicates the total rainfall. For
example, w = (7, 2.251) is a point in Q corresponding to there being seven
different times that it rained with a total rainfall of 2.251 inches. A4 =
{(i, x): i=5, ..., 10 and x > 3} is an example of an event. /1]

EXAMPLE 11 In an agricultural experiment, the yield of five varieties of
wheat is examined. The five varieties are all grown under rather uniform
conditions. The outcome is a collection of five numbers (¥, ¥, ,¥3 V4 Vs)s
where y; represents the yield of the ith variety in bushels per acre. Each
y; can conceivably be any real number greater than or equal to 0. In this
example let the event 4 be defined by the conditions that y,, y;, y,, and
ys are each 10 or more bushels per acre larger than p,, the standard
variety. In our notation we write

A={1y2,V3: V4,50 Yizy1 +10,j=2,34,5;0< y,}. 11/

Our definition of sample space is precise and satisfactory, whereas our
definitions of event and event space are not entirely satisfactory. We said that
if the sample space was ““ sufficiently large ”” (as in Examples 9 to 11 above), not all
subsets of the sample space would be events; however, we did not say exactly
which subsets would be events and which would not. Rather than developing
the necessary mathematics to precisely define which subsets of Q constitute our
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event space &, let us state some properties of o/ that it seems reasonable to
require:

1) Qeo.
(i) IfAe o/, then A€ .
(i) If A, and 4, € &, then 4, U A, € A.

We said earlier that we were interested in events mainly because we would
be interested in the probability that an event happens. Surely, then, we would
want o to include Q, the sure event. Also, if A is an event, meaning we can
talk about the probability that 4 occurs, then 4 should also be an event so that
we can talk about the probability that 4 does not occur. Similarly, if A, and
A, are events, so should 4; U A4, be an event.

Any collection of events with properties (i) to (iii) is called a Boolean
algebra, or just algebra, of events. We might note that the collection of all
subsets of Q necessarily satisfies the above properties. Several results follow
from the above assumed properties of 7.

Theorem 12 ¢ e .

PROOF By property (i) Q € &; by (ii) Qe o; but O = ¢;s0 p e .
/11

Theorem 13 If A, and A, e &/, then 4, " 4, € .

PROOF A, and A, € o/; hence A, U 4,, and (4, U 4,) e &, but
(A, UA,)=A4, n A, = A, n A, by De Morgan’s law. /1]

Theorem 14 If 4, A,, ..., A,e o/, then | ) 4;and ()4, o.
i=1 i=1 -
PROOF Follows by induction. /]

We will always assume that our collection of events &/ is an algebra—
which partially justifies our use of o/ as our notation for it. In practice, one
might take that collection of events of interest in a given consideration and
enlarge the collection, if necessary, to include (i) the sure event, (ii) all comple-
ments of events already included, and (iii) all finite unions and intersections of
events already included, and this will be an algebra /. Thus far, we have not
explained why &/ cannot always be taken to be the collection of all subsets of Q.
Such explanation will be given when we define probability in the next subsection.



3 PROBABILITY—AXIOMATIC 19

3.4 Definition of Probability

In this section we give the axiomatic definition of probability. Although this
formal definition of probability will not in itself allow us to achieve our goal of
assigning actual probabilities to events consisting of certain outcomes of random
experiments, it is another in a series of definitions that will ultimately lead to
that goal. Since probability, as well as forthcoming concepts, is defined as a
particular function, we begin this subsection with a review of the notion of a
function.

The definition of a function The following terminology is frequently used
to describe a function: A function, say f(-), is a rule (law, formula, recipe) that
associates each point in one set of points with one and only one point in another
set of points. The first collection of points, say A, is called the domain, and the
second collection, say B, the counterdomain.

Definition 13 Function A function, say f(-), with domain 4 and coun-
terdomain B, is a collection of ordered pairs, say (a, b), satisfying (i) ae A
and b € B; (ii) each a € A occurs as the first element of some ordered pair
in the collection (each b € B is not necessarily the second element of some
ordered pair); and (iii) no two (distinct) ordered pairs in the collection
have the same first element. /1]

If (a, by e f(-), we write b = f(a) (read “b equals f of @) and call f(a)
the value of f(+) at a. For any a€ A, f(a) is an element of B; whereas f(-) is
a set of ordered pairs. The set of all values of f(-) is called the range of £(-);

e., the range of f() = {b e B: b = f(a) for some a € A} and is always a subset
of the counterdomain B but is not necessarily equal to it. f(a) is also called the
image of a under f(-), and a is called the preimage of f(a).

EXAMPLE 12 Let fi(+) and f5(*) be the two functions, having the real line
for their domain and counterdomain, defined by

) ={»):y=x+x+1, —0 <x < 0}
and
HC)={(xp):y=x% —00 <x < o}

The range of f;(*) is the counterdomain, the whole real line, but the range
of £5(°) is all nonnegative real numbers, not the same as the counter-
domain. /1]
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Of particular interest to us will be a class of functions that are called
indicator functions.

- Definition 14 Indicator function Let Q be any space with points w
and 4 any subset of Q. The indicator function of A, denoted by I,(-),

is the function with domain Q and counterdomain equal to the set consist-
ing of the two real numbers 0 and 1 defined by

1 if wed
0 if o¢A.

1,(*) clearly “indicates” the set A. /1]

@) =

Properties of Indicator Functions Let Q be any space and & any collection
of subsets of Q:
(i) I(w)=1— Iz(w) for every A € .
() I 4,a(w)=I,4(0) I (@) I (w)for'd,..., A, €.
(iii) IA;UAzU uA,,(w) = max [IA;((D)’ IAz(w)’ MR IA,,(O))] for A17 vevs
A, e A
(iv) Ii(w) = I (o) for every Ae .

Proofs of the above properties are left as an exercise.
The indicator function will be used to ““indicate >’ subsets of the real line:

e.g.,

1 if 0<x<1
Igo, 193(X) = I 1o, 1) (%) = :0 otherwise

and if I'™ denotes the set of positive integers,

L (x) = ] if x is some positive integer
r 0  otherwise.

Frequent use of indicator functions will be made throughout the remainder
of this book. Often the utility of the indicator function is just notational
efficiency as the following example shows.

EXAMPLE 13 Let the function £(-) be defined by

for x<0
for O<x<li
for l<x<2

0

X
f(JC)—- 2 —x

0 for 2<x.
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By using the indicator function, f(x) can be written as
f(x) = xl, 11(%) + (2 — X))y, 21(%),
or also by using the absolute value symbol as

F@ =01 =1 —=xDLo, 2(x)- /1]

Another type of function that we will have occasion to discuss is the set
function defined as any functon which has as its domain a collection of sets
and as its counterdomain the real line including, possibly, infinity. Examples
of set functions follow.

EXAMPLE 14 Let Q be the sample space corresponding to the experiment of
tossing two dice, and let &/ be the collection of all subsets of Q. For
any A € o/ define N(A) = number of outcomes, or points in Q, that are
in A. Then N(¢) =0, N(Q) = 36, and N(A) =6 if 4 is the event con-
taining those outcomes having a total of seven spots up. 1]

The size-of-set function alluded to in the above example can be defined, in
general, for any set A as the number of points in A, where A i1s a member of an
arbitrary collection of sets o

EXAMPLE 15 Let Q be the plane or two-dimensional euclidean space and
&/ any collection. of subsets of Q for which area is meaningful. Then
for any A € o/ define Q(A) = area of A. For example, if 4 = {(x, ): 0
<x<1,0<y<1} then Q(4) =1; if A ={(x, y): x* + y2 <r?}, then
O(A) = nr?; and if A = {(0, 0), (1, 1)} then 0(4) = 0. i

The probability function to be defined will be a particular set function.

Probability function Let Q denote the sample space and & denote a collec-
tion of events assumed to be an algebra of events (see Subsec. 3.3) that we shall
consider for some random eXperiment.
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o Definition 15 Probability function A probability function P[-]is a set
function with domain & (an algebra of events)* and counterdomain the
interval [0, 1] which satisfies the following axioms:

(i) P[A]=0for every A€ .
(i) P[Q]=1.

(iii) If A, A,, ... is a sequence of mutually exclusive events in &
(thatis, A, " A; = ¢fori #j;i,j=1,2,..)andif A4, UA, U--+ =

zg A; € &/, then P[iglAi] = iP[Ai], 1]/

i=1

These axioms are certainly motivated by the definitions of classical and
frequency probability. This definition of probability is a mathematical defini-
tion; it tells us which set functions can be called probability functions; it does not
tell us what value the probability function P[-] assigns to a given event 4. We
will have to model our random experiment in some way in order to obtain values
for the probability of events.

P[A] is read * the probability of event 4>’ or * the probability that event 4
occurs,” which means the probability that any outcome in 4 occurs.

We have used brackets rather than parentheses in our notation for a
probability function, and we shall continue to do the same throughout the
remainder of this book.

*In defining a probability function, many authors assume that the domain of the set
function is a sigma-algebra rather than just an algebra. For an algebra .o/, we had the
property

ifAl and Aze.ﬂ, then Al UAzng.
A sigma-algebra differs from an algebra in that the above property is replaced by

a0
ifAd,A45,..., Ag,...€ &, then U 4,€ «.
n=1
It can be shown that a sigma-algebra is an algebra, but not necessarily conversely.

If the domain of the probability function is taken to be a sigma-algebra then axiom
(iii) can be simplified to

[+'e] an
if Ay, A2,...is a sequence of mutually exclusive events in o7, PLEJIAz] =i§P[Ai]-

A fundamental theorem of probability theory, called the extension theorem, states that
if a probability function is defined on an algebra (as we have done) then it can be
extended to a sigma-algebra. Since the probability function can be extended from an
algebra to a sigma-algebra, it is reasonable to begin by assuming that the probability
function is defined on a sigma-algebra.
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EXAMPLE 16 Consider the experiment of tossing two coins, say a penny and
a nickel. Let Q = {(H, H), (H, T), (T, H), (T, T)} where the first com-
ponent of (-, *) represents the outcome for the penny. Let us model this
random experiment by assuming that the four points in Q are equally
likely; that is, assume P[{(H, H)}]=P[{sH, T)}]1=PI{(T, H)}]=
P[{(T, T)}]. The following question arises: Is the P[-] function that is
implicitly defined by the above really a probability function; that is, does
it satisfy the three axioms? It can be shown that it does, and so it is
a probability function.

In our definitions of event and &/, a collection of events, we stated that &/
cannot always be taken to be the collection of all subsets of Q. The reason for
this is that for “ sufficiently large” Q the collection of all subsets of Q is so large
that it is impossible to define a probability function consistent with the above
axioms.

We are able to deduce a number of properties of our function P[-] from
its definition and three axioms. We list these as theorems.

It is in the statements and proofs of these properties that we will see the
convenience provided by assuming &/ is an algebra of events. & is the domain
of P[-]; hence only members of o can be placed in the dot position of the
notation P[-]. Since & is an algebra, if we assume that 4 and B € o/, we know
that 4, 4 U B, AB, AB, etc., are also members of &/, and so it makes sense to
talk about P[4], P[4 u B], P[AB], P[4B], etc.

Properties of P[] For each of the following theorems, assume that Q and
&/ (an algebra of events) are given and P[-] is a probability function having
domain &.

Theorem 15 Pl¢$]=0.
PROOF Take A; = ¢, A, = ¢, A3 = ¢, ...; then by axiom (iii)
pio1= 7| 04| = § puaa= 5 pra
i= i=1 i=1
which can hold only if P[¢] = 0. 111/
Theorem 16 If 4, ..., A, are mutually exclusive events in .7, then

PlA, U~ U A,] =Y P[4,
i=1
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n - 2]
PROOF Let A,y =@, A,i3=¢, ..., ; then |J 4,=) 4;e o,
i=1 i=1

and

P[04]=7|0 ff] = Y PAd= YPUL )

Theorem 17 [If A is an event in o/, then

P[A] =1 — P[A].

PROOF AUA=Q,and An 4= ¢;so
P[Q] = P[4 U A] = P[4] + P[A].
But P[Q2] = 1 by axiom (ii); the result follows. 1]

Theorem 18 If 4and Be o/, then P[A] = P[AB] + P[AB], and P[4 — B]
— P[AB] = P[A] — P[4B].

PROOF A= AB U AB, and ABn AB= ¢; so P[A]=P[AB] +
P[AB]. /1

Theorem 19 For every two events A and Be o/, P[4 u B] = P[A]
+ P[B] — P[AB]. More generally, for events A, A,, ..., A, €

P[A, VA, v - UA,]= .zilP[Aj]_ZZP[AiAj]

i<j
+Zi<jZ<kZ PlA;A;A]— - + (= D" P[44, ... AL
PROOF AU B=A4 U AB,and A n AB = ¢; so
P[A U B] = P[A] + P[AB]
= P[A] + P[B] — P[AB].
The more general statement is proved by mathematical induction. (See
Problem 16.) . /1]

Theorem 20 If 4 and Be o/ and 4 — B, then P[A] < P[B].

PROOF B=BAuBA,and BA = A;soB=AuBA4,and 4 " B4 =
¢; hence P[B] = P[A] + P[BA]. The conclusion follows by noting that
P[BA] = 0. ‘ /1]
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Theorem 21 Boole’s inequality If 4, 4,, ..., A,€ &, then
P[A; U Ay U+ U A] <P[A] +P[A,] + " + P[A4,].

PROOF P[A; U A,] = P[A4,] + P[4,] — P[414,] < P[4,] + Pl4,].
The proofis completed using mathematical induction. 1/

We conclude this subsection with one final definition.

Definition 16 Probability space A probability space is the triplet
(Q, o, P[-]), where Q is a sample space, & is a collection (assumed to be
an algebra) of events (each a subset of Q), and P[*]is a probability func-
tion with domain /. .

Probability space is a single term that gives us an expedient way to assume
the existence of all three components in its notation. The three components are
related; o is a collection of subsets of Q, and P[] is a function that has & as its
domain. The probability space’s main use is in providing a convenient method
of stating background assumptions for future definitions, theorems, etc. It also
ties together the main definitions that we have covered so far, namely, definitions
of sample space, event space, and probability.

3.5 Finite Sample Spaces

In previous subsections we formally defined sample space, event, and probability,
culminating in the definition of probability space. We remarked there that these
formal definitions did not in themselves enable us to compute the value of the
probability-for an event 4, which is our goal. We said that we had to appro-
priately model the experiment. In this section we show how this can be done
for finite sample spaces, that is, sample spaces with only a finite number of
elements or points in them.

In certain kinds of problems, of which games of chance are notable
examples, the sample space contains a finite number of points, say N = N(Q).
[Recall that N(A) is the size of A4, that is, the number of sample points in 4.]
Some of these problems can be modeled by assuming that points in the sample
space are equally likely. Such problems are the subject to be discussed next.

Finite sample space with equally likely points For certain random
experiments there is a finite number of outcomes, say N, and it is often realistic
to assume that the probability of each outcome is 1 /N. The classical definition
of probability is generally adequate for these problems, but we shall show how



26 PROBABILITY i

the axiomatic definition is applicable as well. Let v, w,, ..., wy be the N
sample points in a finite space Q. Suppose that the set function P[-] with
domain the collection of all subsets of Q satisfies the following conditions:

() Pl{w}] = Pl{w,}] = -+ = P{oa}]

(ii) If A is any subset of Q which contains N(A4) sample points [has size
N(A)], then P[4] = N(A)/N.

Then it is readily checked that the set function P[-] satisfies the three axioms
and hence is a probability function.

Definition 17 Equally likely probability function The probability func-
tion P[] satisfying conditions (1) and (ii) above is defined to be an equally
likely probability function. 11/

Given that a random experiment can be realistically modeled by assuming
equally likely sample points, the only problem left in determining the value of
the probability of event A is to find N(Q) = N and N(A4). Strictly speaking this
is just a problem of counting—count the number of points in A and the number
of points in Q.

EXAMPLE 17 Consider the experiment of tossing two dice (or of tossing one
die twice). LetQ = {(§;,i,):i,=1,2,...,6;i,=1,2,...,6}. Herei; =
number of spots up on the first die, and i, = number of spots up on the sec-
ond die. There are 6-6 = 36 sample points. [t seems reasonable to attach
the probability of 5% to each sample point. Q can be displayed as a lattice
as in Fig. 2. Let A, = event that the total is 7; then 4, = {(1, 6), (2, 5),
(3,4), (4, 3), (5, 2), (6, 1)}; 50 N(4;) = 6, and P[4;] = N(4;)/N(Q) = & =
1. Similarly P[A;] can be calculated for 4; = total of j; j=2,...,12. In
this example the number of points in any event A can be easily counted,
and so P[A] can be evaluated for any event A. /1]

If N(4) and N(Q) are large for a given random experiment with a finite
number of equally likely outcomes, the counting itself can become a difficult
problem. Such counting can often befacilitated by use of certain combinatorial
formulas, some of which will be developed now.

Assume now that the experiment is of such a nature that each outcome
can be represented by an n-tuple. The above example is such an experiment;
each outcome was represented by a 2-tuple. As another example, if the ex-
periment is one of drawing a sample of size n, then n-tuples are particularly
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useful in recording the results. The terminology that is often used to describe
a basic random experiment known generally by sampling is that of balls and urns.
It is assumed that we have an urn containing, say, M balls, which are numbered
1 to M. The experiment is to select or draw balls from the urn one at a time
until » balls have been drawn. We say we have drawn a sample of size n. The
drawing is done in such a way that at the time of a particular draw each of the
balls in the urn at that time has an equal chance of selection. We say that a
ball has been selected at random. Two basic ways of drawing a sample are
with replacement and without replacement, meaning just what the words say. TA
sample is said to be drawn with replacement, if after each draw the ball drawn
is itself returned to the urn, and the sample is said to be drawn without replace-
ment if the ball drawn is not returned to the urn.  Of course, in sampling without
replacement the size of the sample » must be less than or equal to M, the original
number of balls in the urn, whereas in sampling with replacement the size of
sample may be any positive integer. Inreporting the results of drawing a sample
of size n, an n-tuple can be used; denote the n-tuple by (zy, ..., z,), where z;
represents the number of the ball drawn on the ith draw.

In general, we are interested in the size of an event that is composed of
points that are n-tuples satisfying certain conditions. The size of such a setcan be
computed as follows : First determine the number of objects, say N, that may be
used as the first component. NexXt determine the number of objects, say N,,
that may be used as the second component of an n-tuple given that the first com-
ponent is known. (We are assuming that N, does not depend on which
object has occurred as the first component.) And then determine the number of
objects, say N,, that may be used as the third component given that the first
and second components are known. (Again we are assuming N, does not
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depend on which objects have occurred as the first and second components.)
Continue in this manner until N, is determined. The size N(A) of the set A of
n-tuples then equals Ny - N, --* N,.

EXAMPLE 18 The total number of different ordered samples of »n balls that
can be obtained by drawing balls from an urn containing M distinguish-
able balls (distinguished by numbers 1 to M) is M" if the sampling is done
with replacement and is M(M — 1) - (M — n + 1) if the sampling is
done without replacement. An ordered sample can be represented by
ann-tuple,say (zy,..., z,), where z;is the number of the ball obtained onthe
jth draw and the total number of different ordered samples is the same as
the total number of n-tuples. In sampling with replacement, there are M
choices of numbers for the first component, M choices of numbers for the
second component, and finally M choices for the nth component. Thus
there are M" such n-tuples. In sampling without replacement, there are
M choices of numbers for the first component, M — 1 choices for the
second, M — 2 choices for the third, and finally M — n + 1 choices for
the nth component. In total, then, there are M(M — 1) (M —-2)---
(M —n+1) such n-tuples. M(M —1)--- (M —n+ 1) is abbreviated
(M), (see Appendix A). /1]

EXAMPLE 19 Let S be any set containing M elements. How many subsets
does S have? First let us determine the number of subsets of size » that
S has. Let x, denote this number, that is, the number of subsets of S of
size n. A subset of size n is a collection of n objects, the objects not
arranged in any particular order. For example the subset {s,, 55, 54} is
the same as the subset {s5, 5, 5;} since they contain the same three objects.
If we take a given subset of S which contains n elements, n! different
ordered samples can be obtained by sampling from the given subset
without replacement. 1If for each of the x, different subsets there are n!
different ordered samples of size n, then there are (n!)x, different ordered
samples of size n in sampling without replacement from the set S of M
elements. But we know from the previous example that this number is
(M),; hence (nV)x, = (M),, or

RO
n!

Xp (M) = number of subsets of size n that may be formed

n
from the elements of a set of size M. 1
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: v (M
The total number of subsets of S, where Sis a set of size M, is }, (n -

n=0
This includes the empty set (set with no elements in it) and the whole set,
both of which are subsets, Using the binomial theorem (see Appendix

A)
(a—|—b)M— % Ma"bM_'" with a=b=1
_n=0 n f ’
we see that
M
My (M ); @)
n=0\7"
thus a set of size M has 2™ subsets. /1]

EXAMPLE 20 Suppose an urn contains M balls numbered 1 to M, where the
first K balls are defective and the remaining M — K are nondefective.
The experiment is to draw »n balls from the urn. Define A4, to be the event
that the sample of n balls contains exXactly k defectives. There are two
ways to draw the sample: (i) with replacement and (ii) without replace-
ment. We are interested in P[A4,] under each method of sampling. Let
our sample space Q = {(z,, ..., z,): z; = number of the ball drawn on the
Jjth draw}. Now

N4y

M)

From Example 18 above, we know N(Q) = M"under (i) and N(Q) = (M),

under (ii). A, is that subset of Q for which exactly k of the z;’s are ball

numbers 1 to K inclusive. These k ball numbers must fall in some subset
of k positions from the total number of n available positions. There are

P[Ak] =

(Z) ways of selecting the k positions for the ball numbers 1 to K inclusive to

fall in. For each of the (Z) different positions, there are K¥(M — K)*™*

different n-tuples for case (i) and (K)(M — K),_, different n-tuples for
. n
case (ii). Thus A, has size (k)K"(M — K)** for case (i) and size

(Z) (KM — K),— for case (iD); so,

n

)i - Ky

(3)

P[A4,] = —
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in sampling with replacement, and

ALSTZE

(M),

a2 0

in sampling without replacement. This latter formula can be rewritten

as )
G

It might be instructive to derive Eq. (5) in another way. Suppose
that our sample space, denoted now by Q’, is made up of subsets of size
n,rather than n-tuples; thatis, Q' = {{z,,...,z,}: z;, ..., z,are the numbers

)

on the n balls drawn}. There are (1:14) subsets of size n of the M balls;

so N(Q') = (]:r) If it 1s assumed that each of these subsets of size n is

just as likely as any other subset of size n (one can think of selecting all n
balls at once rather than one at a time), then P[4;] = N(A4;)/N(Q'). Now
N(A;) is the size of the event consisting of those subsets of sizenwhichcon-
tain exactly k£ balls from the balls that are numbered 1 to K inclusive.
The k balls from the balls that are numbered 1 to K can be selected in

(Iz) ways, and the remaining n — k& balls from the balls that are numbered

K+1 to M can be selected in (n—k

(I/:) (An’ - lf) and finally

P[A;] = N(AR)/N(Q) =

) ways; hence N(A4;) =

B
)

We have derived the probability of exactly k defectives in sampling
without replacement by considering two different sample spaces; one
sample space consisted of n-tuples, the other consisted of subsets of size
n.

To aid in remembering the formula given in Eq. (5), note that
K+M—K=Mand k+n— k=n;i.e., the sum of the “upper” terms
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in the numerator equals the ““upper” term in the denominator, and the
sum of the “lower” terms in the numerator equals the “lower” term
in the denominator. it

EXAMPLE 21 The formula given in Eq. (5) is particularly useful to calculate
certain probabilities having to do with card games. For example, we
might ask the probability that a certain 13-card hand contains exactly
6 spades. There are M = 52 total cards, and one can model the card
shuffling and dealing process by assuming that the 13-card hand represents
a sample of size 13 drawn without replacement from the 52 cards. Let
A, denote the event of exactly 6 spades. There are a total of 13 spades
(defective balls in sampling terminology); so

- (163) (5123-—_163)
(15

by Eq. (5). /1

Many other formulas for probabilities of specified events defined on finite
sample spaces with equally likely sample points can be derived using methods of
combinatorial analysis, but we will not undertake such derivations here. The
interested reader is referred to Refs. 10 and 8.

Finite sample space without equally likely points We saw for finite sample
spaces with equally likely sample points that P[4] = N(4)/N(Q) for any event A.
For finite sample spaces without equally likely sample points, things are not
quite as simple, but we can completely define the values of P[A4] for each of the
2M® events A by specifying the value of P[] for each of the N = N(Q) elemen-
tary events. Let Q ={w, ..., wy}, and assume p; =P[{w}1for j=1,..., N.
Since

1 = P[Q] = P[jgl{w j}] = jiP[{w,-}],

N
> pi=1
j=1

For any event A, define P[A] =Xp;, where the summation is over those w;

belonging to A. It can be shown that P[-] so defined satisfies the three axioms
and hence is a probability function.
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EXAMPLE 22 Consider an eXperiment that has N outcomes, say w; w,, ...,
wy, Where it is known that outcome w;; is twice as likely as outcome
w;,wherej=1,..., N —1;thatis, p;+\ = 2p;, where p; = P[{w;}}. Find
P[A,], where A, = {w;, ®,, ..., w}. Since

N N
Ypi= 22X =1 4242840 427 = p 2" -1 =1,
Jj= J=

_ 1
pl _2N_1
and
p; =212 - 1);

hence

k ko 2k _
P{A,] = ij-’: 221—1/(2N_1)=2N_1' /1]

ji=1 i=1

¢ 3.6 Conditional Probability and Independence

In the application of probability theory to practical problems it is not infrequent
that the experimenter is confronted with the following situation: Such and such
has happened; now what is the probability that something else will happen?
For example, in an experiment of recording the life of a light bulb, one might
be interested in the probability that the bulb will last 100 hours given that it
has already lasted for 24 hours. Or in an experiment of sampling from a box
containing 100 resistors of which 5 are defective, what is the probability that
the third draw results in a defective given that the first two draws resulted in
defectives? Probability questions of this sort are considered in the framework
of conditional probability, the subject that we study next.

Conditional probability We begin by assuming that we have a probability
space, say (Q, &/, P[']); that is, we have at hand some random experiment for
which a sample space Q, collection of events &, and probability function
P[] have all been defined.

Given two events 4 and B, we want to define the conditional probability
of event A given that event B has occurred.

Definition 18 Conditional probability Let A and B be two events in &/
of the given probability space (Q, o, P[-]). The conditional probability
of event A given event B, denoted by P[4 | B], is defined by

P[AB]

P[A|B] = PE if P[B]>0, (6)

and is left undefined if P[B] = 0. ‘ i/
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Remark A formula that is evident from the definition is P[AB] =
P[A|B]P[B] = P[B| A]P[A] if both P[A] and P[B] are nonzero. This
formula relates P[4|B] to P[B|A] in terms of the unconditional prob-
abilities P[4] and P[B]. 11/

We might note that the above definition is compatible with the frequency
approach to probability, for if one observes a large number, say N, of occur-
rences of a random experiment for which events 4 and B are defined, then
P[A| B] represents the proportion of occurrences in which B occurred that A4 also
occurred, that is,

N
P[AIB]=f-,

B
where Ny denotes the number of occurrences of the event B in the N occur-
rences of the random experiment and N,z denotes the number of occurrences
of the event A » B in the N occurrences. Now P[AB] = N /N, and P[B] =
Npg/N; so
PIAB] _ Nyo/N _ Nyp
P[B] Ny/N Ny

= P[4]B],

consistent with our definition.

EXAMPLE 23 Let Q be any finite sample space, o the collection of all subsets
of Q, and P[-] the equally likely probability function. Write N = N(Q).
For events A and B,

P[AB] N(4AB)/N

P[B]  N(B)/N’

where, as usual, N(B) is the size of set B. So for any finite sample space

with equally likely sample points, the values of P[4 | B] are defined for any
two events A and B provided P[B] > 0. /1]

P[A|B] =

EXAMPLE 24 Consider the experiment of tossing two coins. Let Q =
{(H, H), (H, T), (T, H), (T, T)}, and assume that each point is equally
likely. Find (i) the probability of two heads given a head on the first
coin and (ii) the probability of two heads given at least one head. Let

A, = {head on first coin} and 4, = {head on second coin}; then the prob-
ability of two heads given a head on the first coin is

P[44, 4,] P[A,A,]

F o1
-_— _I_
P[44, A4,] = PIA,] ~ Pl4] ~1-2
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The probability of two heads given at least one head is

P[A[A, 0 (4,0 4)] _ PlA4,] 4 1

1
[A:4:]40 0 4,] P[A, U A,] P[4, UA,] 2 3

We obtained numerical answers to these two questions, but to do so we
had to model the experiment; we assumed that the four sample points
were equally likely.

When speaking of conditional probabilities we are conditioning on some
given event B; that is, we are assuming that the experiment has resulted in some
outcome in B. B, in effect, then becomes our “ new” sample space. One ques-
tion that might be raised is: For given event B for which P[B] >0, is P[-|B] a
probability function having o as its domain? In other words, does P[-|B]
satisfy the three axioms? Note that:

(i) P[A|B]=P[AB]/P[B] =0 for every A € «.
(i) P[Q|B]= P[QB]/P[B]=P[B]/P[B] = I.

(iii)) If 4,, 4,, ... is a sequence of mutually exclusive events in & and
C}l A; e &, then
- P[(O Ai)B] P[Q (AiB)] i P[A,B]
Pl Oais| - = T~ T~ 2 adn

Hence, P[-|B] for given B satisfying P[B] > 0 is a probability function, which
justifies our calling it a conditional probability. P[- | B] also enjoys the same
properties as the unconditional probability. The theorems listed below are
patterned after those in Subsec. 3.4.

Properties of P[. | B] Assume that the probability space (Q, &, P[-]) is given,
and let B € & satisfy P[B] > 0.

Theorem 22 P[¢|B]=0. /111
Theorem 23 1If 4, ..., A, are mutually exclusive events in &/, then
P[4, U -+ U A,|Bl= Y P[4;| Bl 11/
i=1

Theorem 24 If A is an event in o, then
P[A|B] =1— P[A|B]. i
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Theorem 25 If A, and 4, € o/, then
P[A,|B] = P[A4;4,|B] + P[A,A,|Bl. i

Theorem 26 For every two events 4; and 4, € &,

P[A; U A,|B] = P[A,|B] + P[A4,|B]l — P[A,A4,|B]. i

Theorem 27 If A, and A, € o and 4, < 4,, then
P[A,|B] < P[A,|B]. Il

Theorem 28 If A, A4,,..., A, € &, then
P[A; U A, U - U A4,]B] Sj;P[AiIB]o 1

Proofs of the above theorems follow from known properties of P[-] and
are left as exercises.

There are a number of other useful formulas involving conditional prob-
abilities that we will state as theorems. These will be followed by examples.

Theorem 29 Theorem of total probabilities For a given probability

space (Q, «, P[*]),if By, B,, ..., B, is a collection of mutually disjoint
n

events in & satisfying Q =|J B; and P[B;]>0-for j=1, ..., n, then
j=1

4
n

for-every A€ o, P[A] = ) P[A|B;]P[B;].
1

.

_’=

n
PROOF Note that 4 = | | AB; and the AB,’s are mutually disjoint;
i1

hence

P[A}=P [,-Q1ABj = j;1P[ABj] = ZZP[AIBJ]P[BJ-]. {1/

Corollary For a given probability space (Q, o, P[']) let Be o
satisfy 0 < P[B] < 1; then for every 4 € o

P[A] = P[A| BIP[B] + P[A| B]P[B}. i

Remark Theorem 29 remains true if n = co. I
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Theorem 29 (and its corollary) is particularly useful for those experiments
that have stages; that is, the experiment consists of performing first one thing
(first stage) and then another (second stage). Example 25 provides an example
of such an experiment; there, one first selects an urn and then selects a ball
from the selected urn. For such experiments, if B; is an event defined only in
terms of the first stage and A is an event defined in terms of the second stage,
then it may be easy to find P[B;]; also, it may be easy to find P[4|B;], and then
Theorem 29 evaluates P[A] in terms of P[B;] and P[4 B;]forj=1,...,n In
an experiment consisting of stages it is natural to condition on results of a first
stage.

Theorem 30 Bayes’ formula For a given probability space (Q, o, P[*]),
if B, B,, ..., B, is a collection of mutually disjoint events in & satisfying

n
Q=|} B;and P[B;] >0forj=1, ..., n, then for every 4 € & for which

i=1

P[A] >0
P[A|B,]P[B,]

P[B,|A] = — .
Zl P[A|B,]P[B;]

»

J ==
PROOCF

P[B,A] _ P[A|B,]P[B]

PAL § pLarseis)

P[B,|A] =

by using both the definition of conditional probability and the theorem of
total probabilities. 11}/

Corollary For a given probability space (Q, &/, P[*]) let A and Be &/
satisfy P[A] > 0 and 0 < P[B] < 1; then

~ P[A|BIP[B]
PBIAL= pATBIPIB] + PLA|BIBIBTT I
Remark Theorem 30 remains true if n = co. /1]

As was the case with the theorem of total probabilities, Bayes’ formula is
also particularly useful for those experiments consisting of stages. If B,
j=1,...,n,is an event defined in terms of a first stage and 4 is an event defined
in terms of the whole experiment including a second stage, then asking for
P[B,|A] is in a sense backward; one is asking for the probability of an event
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defined in terms of a first stage of the experiment conditioned on what happens
in a later stage of the experiment. The natural conditioning would be to con-
dition on what happens in the first stage of the experiment, and this is precisely
what Bayes’ formula does; it expresses P[B,| 4] in terms of the natural con-
ditioning given by P[4|B,] and P[B;], j=1, ..., n.

Theorem 31 Multiplication rule For a given probability space
(Q, o, P[-]), let A, ..., A, be events belonging to &/ for which
PlA, -+ A,_,] > 0; then

P[A1A2 e Ayl =P[A1]P[A2|A1]P[A3|A1A2] "'P[An|A1 A, ]

PROOF The proof can be attained by employing mathematical
induction and is left as an exercise. /11

As with the two previous theorems, the multiplication rule is primarily
useful for experiments defined in terms of stages. Suppose the experiment has
n stages and A4, is an event defined in terms of stage j of the experiment; then
. P[A;|A1A; -+ A;_,] is the conditional probability of an event described in
“terms of what happens on stage j conditioned on what happens on stages
1,2, ..., j— 1. The multiplication rule gives P[4, 4, - A,] in terms of
the natural conditional probabilities P[4;|A; A, --- A;_(]forj=2,..., n.

'EXAMPLE 25 There are five urns, and they are numbered |1 to 5. Each
urn contains 10 balls. Urn i has i defective balls and 10 — i nondefective
balls, i=1, 2, ..., 5. For instance, urn 3 has three defective balls and
seven nondefective balls. Consider the following random experiment:
First an urn is selected at random, and then a ball is selected at random
from the selected urn. (The experimenter does not know which urn was
selected.) Let us ask two questions: (i) What is the probability that a
defective ball will be selected? (i) If we have already selected the ball
and noted that it is defective, what is the probability that it came from
urn 5?

soLUTION Let A denote the event that a defective ball is selected and
B, the event that urn i is selected, i=1, ..., 5. Note that P[ B] =1,
i=1,...,5and P[4]|B;]=i/10,i=1,..., 5. Question (i) asks, What is
P[A]? Using the theorem of total probabilities, we have

5
2 ]

i=

l_iii_15'6_ 3
5 50/% 502 10

ol ~

PLAI= 3 PLAIBIPIB]
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Note that there is a total of 50 balls of which 15 are defective! Question
(ii) asks, What is P[Bs|4]? Since urn S has more defective balls than
any of the other urns and we selected a defective ball, we suspect that
P[Bs|A] > P[B;| A] for i =1, 2, 3, or 4. In fact, we suspect P[Bs|A]
> P[B,|A] >-- > P[B,|A]. Employing Bayes’ formula, we find

P[A|Bs]P[B i
P[leA]= . [ | 5] [ 5] =%_3_5_3.
Y PL4|BJPB]  T°
Similarly,
k/10)- Lk
P[Bk|A]=(—/3-)—5=E, k=1,...,5,
To

substantiating our suspicion. Note that unconditionally all the B,’s were
equally likely whereas, conditionally (conditioned on occurrence of event
A), they were not. Also, note that

5k 1

5
k;P[Bk|A]=k=lﬁ=15 kZ,lk= 57 = 1-_ /1]

EXAMPLE 26 Assume that a student is taking a multiple-choice test. On a
given question, the student either knows the answer, in which case he
answers it correctly, or he does not know the answer, in which case he
guesses hoping to guess the right answer. Assume that there are five
multiple-choice alternatives, as is often the case. The instructor is con-
fronted with this problem: Having observed that the student got the
correct answer, he wishes to know what is the probability that the student
knew the answer. Let p be the probability that the student will know the
answer and 1 — p the probability that the student guesses. Let us assume
that the probability that the student gets the right answer given that he
guesses is . (This may not be a realistic assumption since even though the
student does not know the right answer, he often would know that certain
alternatives are wrong, in which case his probability of guessing correctly
should be better than £.) Let A denote the event that the student got the
right answer and B denote the event that the student knew the right answer.
We are seeking P[B|A]. Using Bayes’ formula, we have

P[A|B]P[B] 1-p

PIBIA] = 5T BIPIB] + PLABIPE — 1 5+ 30 —7)'

Note that

P
p+%(1_p)2p- I/
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EXAMPLE 27 An urn contains ten balls of which three are black and seven
are white. The following game is played: At each trial a ball is selected
at random, its color is noted, and it is replaced along with two additional
balls of the same color. What is the probability that a black ball is
selected in each of the first three trials? Let B; denote the event that a
black ball is selected on the ith trial. We are seeking P[B, B, B;]. By the
multiplication rule,

P[B, B, B;] :P[B1]P[leBllP[Bs|B1Bz] = To TST ) ﬁ T6* /111

EXAMPLE 28 Suppose an urn contains M balls of which K are black and
M — K are white. A sample of size n is drawn. Find the probability
that the jth ball drawn is black given that the sample contains k black
balls. (We intuitively expect the answer to be k/n.) We have to con-
sider sampling (i) with replacement and (ii) without replacement.

SOLUTION Let A, denote the event that the sample contains exactly
k black balls and B; denote the event that the jth ball drawn is black.
We seek P[B;|4,]. Consider (i) first.

n) KM — Ky n— 1) K I(M — K)**
k M* k—1 M* !

by Eq. (3) of Subsec. 3.5. Since the balls are replaced, P[B;] = K/M for
any . Hence,

PlAy] = ( and P[A,|B;] = (

n=1\ kot ar pyamkpygn-1q. K
pi 4 = PIAIBIPIB] _ (k—l)[K M= KYTIM™ 150
A T N T n
[ k] (Z) Kk(M__ K)n—k/Mll n

For case (ii), .

(K)(M—K) (K—l)(M—K)
kJ]\n—k k—-1/\n—-k
R
n (n —1 )
i=1
by Eq. (5) of Subsec. 3.5. P[B;] = ¥ P[B;|C;]P[C;], where C; denotes
i=0

the event of exactly 7 black balls in the first j — 1 draws. Note that

)

(Y

P[A] =
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and
K—i
P[B;|C]=——
[B;1C = 37—
and so
(DG
izl K-—i i j—l—i_E
PIBI=2 =7 +1 M 7
j—1
Finally,

AT o Lo [ ey vty | S
n

’ P[] K\(M-K)\ /(M
k/\n—k n
Thus we obtain the same answer under either method of sampling. *////- -

Independence of events If P[4|B] does not depend on eveni B, that is,
P[A|B] = P[A], then it would seem natural to say that event A is independent
of event B. This is given in the following definition.

Definition 19 Independent events For a given probability space
(Q, «, P[-]), let A and B be two events in «/. Events 4 and B are
defined to be independent if and only if any one of the following conditions
is satisfied:

(i) P[AB] = P[A]P[B].
(i) P[A|B] = P[A]if P[B] > 0.
(iiiy P[B|A]= P[B]if P[4] > 0. /1]

Remark Some authors use *statistically independent,” or “stochasti-
cally independent,” instead of * independent.” /1]

To argue the equivalence of the above three conditions, it suffices to show
that (i) implies (i1), (ii) implies (iii), and (iii) implies (i). If P[AB]= P[4]P[B],
then P[4 |B] = P[AB]/P[B] = P[A]P[B]/P[B] = P[A]for P[B] > 0; so (i) implies
(ii). If P[A|B] = P[A], then P[B|A] = P[4|B]P[B]/P[4] = P[A]P[B]/P[A] =
P[B] for P[4] >0 and P[B] >0; so (ii) implies (iii). And if P[B|A]= P[B],
then P[AB]= P[B|A]P[A] = P[B]P[A] for P[A]>0. Clearly P[AB]=
P[A]P[B] if P[A] =0 or P[B] = 0.
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EXAMPLE 29 Consider the experiment of tossing two dice. Let 4 denote the
event of an odd total, B the event of an ace on the first die, and C the
event of a total of seven. We pose three problems:

(i) Are A and B independent?
(i) Are A and C independent?
(iii) Are B and C independent?

We obtain P[4|B] =} = P[A], P[A|C] =1 # P[A]1 =14, and P[C|B] =
1 = P[C] =1%; so A and B are independent, A4 is not independent of C,
and B and C are independent. i

The property of independence of two events 4 and B and the property that
A and B are mutually exclusive are distinct, though related, properties. For
example, two mutually exclusive events A and B are independent if and only if
P[A]P[B] = 0, which is true if and only if either A or B has zero probability.
Or if P[A] # 0 and P[B] # 0, then A4 and B independent implies that they are
not mutually exclusive, and 4 and B mutually exclusive implies that they are not
independent. Independence of A and B implies independence of other events
as well.

Theorem 32 1If A and B are two independent events defined on a given
probability space (Q, o, P[-]), then A and B are independent, 4 and B
are independent, and 4 and B are independent.

PROOF
P[AB] = P[A] — P[AB] = P[A] — P[A]P[B] = P[4}l — P[B]) =
P[A]P[B].
Similarly for the others. 111/

The notion of independent events may be extended to more than two
events.

Definition 20 Independence of several events For a given probability

space (Q, o, P|]), let Ay, A5, ..., 4, be n events in /. Events A,,
A,, ..., A, are defined to be independent if and only if
P[AiAj]=P[Ai]P[A1:] fori #j

PlA; AjA] = PIANPIAIPIA]  fori#j,j# kisk

p[mA] - H PA] I
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One might inquire whether all the above conditions are required in the
definition. For instance, does P[4, A4, A;] = P[A,]P[A,]P[A4,] imply P[4,4,]
= P[A,]P[A4,]? Obviously not, since P[4,4, A3] = P[4,1P[4,]1P[A4,] if P[A4;]
=0, but P[4,4,] # P[A,]P[A,] if A, and A, are not independent. Or does
pairwise independence imply independence? Again the answer is negative,
as the following example shows.

EXAMPLE 30 Pairwise independence does not imply independence. Let A,
denote the event of an odd face on the first die, 4, the event of an odd face
on the second die, and A5 the event of an odd total in the random experi-
ment that consists of tossing two dice. P[A4,]P[4,]= 3" 1=P[4,4,],
P[A,1P[A3] = - 3 = P[4;| 4,1P[4,] = P[4, 4;], and P[4, A4;] = } =
P[A,]P[A;]; so A,, A,, and A, are pairwise independent. However
P[A;A; A3] =0 # } = P[A,]P[4,]P[A45]; so A,, A,, and A; are not
independent. /1]

In one sense, independence and conditional probability are each used to find
the same thing, namely, P[4AB], for P[AB] = P[A]P[B] under independence and
P[AB] = P[A| B]P[B] under nonindependence. The nature of the events 4 and
B may make calculations of P[A4], P[B], and possibly P[4|B] easy, but direct
calculation of P[AB] difficult, in which case our formulas for independence or
conditional probability would allow us to avoid the difficult direct calculation
of P[AB]. We might note that P[AB] = P[A| B]P[B] is valid whether or not A4
is independent of B provided that P[4 | B] is defined.

The definition of independence is used not only to check if two given events
are independent but also to model experiments. For instance, for a given
experiment the nature of the events 4 and B might be such that we are willing
to assume that A and B are independent ; then the definition of independence gives
the probability of the event A n B in terms of P[A] and P[B]. Similarly for
more than two events.

EXAMPLE 31 Consider the experiment of sampling with replacement from
an urn containing M balls of which K are black and M — K white. Since
balls are being replaced after each draw, it seems reasonable to assume that
the outcome of the second draw is independent of the outcome of the
first. Then P[two blacks in first two draws] =
P[black on first draw]P[black on second draw] = (K/M)?. /1]
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PROBLEMS

To solve some of these problems it may be necessary to make certain assumptions,
such as sample points are equally likely, or trials are independent, etc., when such
assumptions are not explicitly stated. Some of the more difficult problems, or those
that require special knowledge, are marked with an *.

1

One urn contains one black ball and one gold ball. A second urn contains one

white and one gold ball. One ball is selected at random from each urn.

(@) Exhibit a sample space for this experiment.

(b) Exhibit the event space.

(¢) What is the probability that both balls will be of the same color?

(d) What is the probability that one ball will be green?

One urn contains three red balls, two white balls, and one blue ball. A second

urn contains one red ball, two white balls, and three blue balls.

(@) One ball is selected at random from each urn.

(i) Describe a sample space for this experiment.
(i) Find the probability that both balls will be of the same color.
(iii) Is the probability that both balls will be red greater than the prob-
ability that both will be white?

() The balls in the two urns are mixed together in a single urn, and then a sample
of three is drawn. Find the probability that all three colors are represented,
when (i) sampling with replacement and (ii) without replacement.

If 4 and B are disjoint events, P[4] =.5, and P[4 v B] = .6, what is P[B]?

An urn contains five balls numbered 1 to 5 of which the first three are black and

the last two are gold. A sample of size 2 is drawn with replacement. Let B,

denote the event that the first ball drawn is black and B, denote the event that the

second ball drawn is black.

(@) Describe a sample space for the experiment, and exhibit the events By, B,,
and B,B,.

() Find P[B,], P[B:], and P[B,B.].

(¢) Repeat parts (@) and (b) for sampling without replacement.

A car with six spark plugs is known to have two malfunctioning spark plugs.

If two plugs are pulled at random, what is the probability of getting both of

the malfunctioning plugs?

In an assembly-line operation, % of the items being produced are defective. If

three items are picked at random and tested, what is the probability:

(@) That exactly one of them will be defective ?

(b) That at least one of them will be defective ?

In a certain game a participant is allowed three attempts at scoring a hit. In the

three attempts he must alternate which hand is used; thus he has two possible

strategies: right hand, left hand, right hand; or left hand, right hand, left hand.

His chance of scoring a hit with his right hand is .8, while it is only .5 with his

left hand. If he is successful at the game provided that he scores at least two hits

in a row, what strategy gives the better chance of success? Answer the same
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question if .8 is replaced by p: and .5 by p,. Does your answer depend on p,

and P2 ?

(@) Suppose that 4 and B are two equally strong teams. Is it more probabl“e
that 4 will beat B in three games out of four or m five games out of seven?

() Suppose now that the probability that 4 beats B in an individual game is p.
Answer part (@). Does your answer depend on p?

If P[A] = % and P[B] =}, can 4 and B be disjoint? Explain.

Prove or disprove: If P[4] = P[B] = p, then P[4B] < p2.

Prove or disprove: If P[A] = P[B] then A = B.

Prove or disprove: If P[A] = 0, then 4 = ¢.

Prove or disprove: If P[4] =0, then P[AB] =

Prove: If P[4] = « and P[B] =8, then P[AB] >1 — o —f.

Prove properties (i) to (iv) of indicator functions,

Prove the more general statement in Theorem 19,

Exhibit (if such exists) a probability space, denoted by (Q, &7, P[-]), which satisfies #

the following. For 4, and A; members of &, if P[4,] = P[A4.], then 4, = A,.

Four drinkers (say I, II, 111, and 1V) are to rank three different brands of béer

(say A4, B, and C) in a blindfold test. Each drinker ranks the three beers ds. 1

(for the beer he likes best), 2, and 3, and then the assigned ranks of each brand

of beer are summed. Assume that the drinkers really cannot discriminate between

beers so that each is assigning his rankings at random.

(a) What is the probability that beer 4 will receive a total score of 4?

() What is the probability that some beer will receive a total score of 4?7

(¢) What is the probability that some beer will receive a total score of 5 or less"

The following are three of the classical problems in probability.

(@) Compare the probability of a total of 9 with a total of 10 when three falr
dice are tossed once (Galileo and Duke of Tuscany).

(b)) Compare the probability of at least one 6 in 4 tosses of a fair d1e Wlth the .

probability of at least one double-6 in 24 tosses of two fair dice (Chevaher
de Méré). .
(c) Compare the probability of at least one 6 when six dice are rolled with, the
probability of at least two 6s when twelve dice are rolled (Pepys to Newton).
A seller has a dozen small electric motors, two of which are faulty. - A custom
interested in the dozen motors. The seller can crate the motors with all twelve in
one box or with six in each of two boxes; he knows that the customer will inspect

two of the twelve motors if they are all crated in one box and one motor from each

of the two smaller boxes if they are crated six each to two smaller boxes. He
has three strategies in his attempt to sell the faulty motors: (i) crate all twelve
in one box; (ii) put one faulty motor in each of the two smaller boxes; or (iii) put
both of the faulty motors in one of the smaller boxes and no faulty motors in the
other. What is the probability that the customer will not inspect a faulty motor
under each of the three strategies?

""2“;\
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21 A sample of five objects is drawn from a larger population of N objects (N == 5).

Let N. or N,o denote the number of different samples that could be drawn

depending, respectively, on whether sampling is done with or without replacement.

Give the values for N, and N.o. Show that when N is very large, these two values

are approximately equal in the sense that their ratio is close to 1 but not in the

sense that their difference is close to 0.

22" Outofa group of 25 persons, what is the probability that all 25 will have different
birthdays? (Assume a 365-day year and that all days are equally likely.) '

23 A bridge player knows that his two opponents have exactly five hearts between
the two of them, Each opponent has thirteen cards. What is the probability
that there is a three-two split on the hearts (that is, one player has three hearts
and the other two)?

24 (a) If r balls are randomly placed into » urns (each ball having probability 1/n

' of going into the first urn), what is the probability that the first urn will
contain exactly & balls?
~(b) Let n—oo and r— oo while r/n=m remains constant. Show that the
s probability you calculated approaches e "m"/k!.

ol A biased coin has probability p of landing heads. Ace, Bones, and Clod toss the
coin successively, Ace tossing first, until a head occurs. The person who tosses
the first head wins. Find the probability of winning for each.

26 It is told that in certain rural areas of Russia marital fortunes were once told in the
following way: A girl would hold six strings in her hand with the ends protruding
above and below; a friend would tie together the six upper ends in pairs and then
tie together the six lower ends in pairs. If it turned out that the friend had tied

fthe six strings into at least one ring, this was supposed to indicate that the girl
~would get married within a year. What is the probability that a single ring will
be formed when the strings are tied at random? What is the probability that at
‘least one ring will be formed? Generalize the problem to 2 strings.

27 Mr. Bandit, a well-known rancher and not so well-known part-time cattle rustler,

has twenty head of cattle ready for market. Sixteen of these cattle are his own
«and consequently bear his own brand. The other four bear foreign brands. Mr.
Bandit knows that the brand inspector at the market place checks the brands of
0 percent of the cattle in any shipment. He has two trucks, one which will haul
all twenty cattle at once and the other that will haul ten at a time. Mr. Bandit '
* feels that he has four different strategies to follow in his attempt to market the
cattle without getting caught. The first is to sell all twenty head at once; the
others are to sell ten head on two different occasions, putting all four stolen cattle
in one set of ten, or three head in one shipment and one in the other, or two head in
each of the shipments of ten. Which strategy will minimize Mr. Bandit’s prob-
ability Of getting caught, and what is his probability of getting caught under each
strategy ?
28 Show that the formula of Eq. (4) is the same as the formula of Eq. (5).

£
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Prove Theorem 31.

Either prove or disprove each of the following (you may assume that none of the

events has zero probability):

(a) If P[A|B] > P[A], then P[B| A] > P[B].

(b) 1If P[A] > P[B], then P[A4|C]> P[B|C].

A certain computer program will operate using either of two subroutines, say 4

and B, depending on the problem; experience has shown that subroutine 4 will be

used 40 percent of the time and B will be used 60 percent of the time. If A4 is

used, then there is a 75 percent probability that the program will run before its

time limit is exceeded; and if B is used, there is a 50 percent chance that it will do

s0. What is the probability that the program will run without exceeding the time

limit?

Suppose that it is known that a fraction .001 of the people in a town have tuber-

culosis (TB). A tuberculosis test is given with the following properties: If the

person does have TB, the test will indicate it with a probability .999. If he does

not have TB, then there is a probability .002 that the test will erroneously indicate

that he does. For one randomly selected person, the test shows that he has

TB. What is the probability that he really does?

Consider the experiment of tossing two fair regular tetrahedra (a polyhedron with

four faces numbered 1 to 4) and noting the numbers on the downturned faces.

(a) Give three proper events (an event A4 is proper if 0 < P[4] < 1) which are
independent (if such exist).

(b) Give three proper events which are pairwise independent but not independent
(if such exist).

(¢) Give four proper events which are independent (if such exist).

Prove or disprove:

(@) If A and B are independent events, then P[AB|C]= P[A| C]P[B| C].

(b) If P[A|B]=P[B], then A and B are independent.

Prove or disprove:

(a) If P[A|B] > P[A], then P[B| A] > P[B).

(b)) If P[B|A]=P[B| A], then 4 and B are independent.

(¢) If a=P[A] and b = P[B], then P[A|B] = (a+ b — 1)/b.

Consider an urn containing 10 balls of which 5 are black. Choose an integer n

at random from the set 1, 2, 3, 4, 5, 6, and then choose a sample of size n without

replacement from the urn. Find the probability that all the balls in the sample

will be black.

A die is thrown as long as necessary for a 6 to turn up. Given that the 6 does not

turn up at the first throw, what is the probability that more than four throws will

be necessary?

Die A has four red and two blue faces, and die B has two red and four blue faces.

The following game is played: First a coin is tossed once. If it falls heads, the

game continues by repeatedly throwing die A; if it falls tails, die B is repeatedly

tossed.
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(a) Show that the probability of red at any throw is 3.

(b) If the first two throws of the die resulted in red, what is the probability of red
at the third throw?

(¢) If red turns up at the first » throws, what is the probability that die A4 is
being used ?

Urn A contains two white and two black balls; urn B contains three white and

two black balls. One ball is transferred from 4 to B; one ball is then drawn

from B and turns out to be white. What is the probability that the transferred

ball was white?

It is known that each of four people 4, B, C, and D tells the truth in a given

instance with probability 3. Suppose that A makes a statement, and then D says

that C says that B says that A was telling the truth, What is the probability

that A was actually telling the truth?

In a T maze, a laboratory animal is given a choice of going to the left and getting

food or going to the right and receiving a mild electric shock. Assume that

before any conditioning (in trial number 1) animals are equally likely to go to the

left or to the right. After having received food on a particular trial, the prob-

abilities of going to the left and right become .6 and .4, respectively, on the follow-

ing trial. However, after receiving a shock on a particular trial, the probabilities

of going to the left and right on the next trial are .8 and .2, respectively. What

is the probability that the animal will turn left on trial number 2? On trial

number 37

In a breeding experiment, the male parent is known to have either two dominant

genes (symbolized by AA4) or one dominant and one recessive (Aa). These two

cases are equally likely. The female parent is known to have two recessive genes

(aa). Since the offspring gets one gene from each parent, it will be either Aa or

aa, and it will be possible to say with certainty which one.

(a) If we suppose one offspring is Aae, what is the probability that the male
parent is 4A4? _

(b)) If we suppose two offspring are both Aa, what is the probability that the
male parent is AA4?

(c) If one offspring is aa, what is the probability that the male parent is Aa?

The constitution of two urns is

II

three black
two white

four black
six white

A draw is made by selecting an urn by a process which assigns probability p to the
selection of urn I and probability 1 — p to the selection of urn II.  The selection
of a ball from either urn is by a process which assigns equal probability to all
balls in the urn. What value of p makes the probability of obtaining a black
ball the same as if a single draw were made from an urn with seven black and
eight white balls (all balls equally probable of being drawn)?
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PROBABILITY | |

Given P[A] = .5 and P[4 v B} = .6, find P[B] if:

(@) A and B are mutually exclusive.

(b) A and B are independent.

(¢) P[A|B]=.4.

Three fair dice are thrown once. Given that no two show the same face:

(a) What is the probability that the sum of the faces is 77

(b) What is the probability that one is an ace?

Given that P[4] > 0 and P[B] > 0, prove or disprove:

(a) If P[A] = P[B], then P[A|B]= P[B| Al.

(b) 1If P[A|B) = P[B| A], then P[A] = P[B]. ‘
Five percent of the people have high blood pressure. Of the people with high
blood pressure, 75 percent drink alcohol; whereas, only 50 percent of the people
without high blood pressure drink alcohol. What percent of the drinkers have
high blood pressure?

A distributor of watermelon seeds determined from extensive tests that 4 percent
of a large batch of seeds will not germinate, He sells the seeds in packages of 50
seeds and guarantees at least 90 percent germination. What is the probability
that a given package will violate the guarantee?

If A and B are independent, P[4] = 4, and P[B] = 1, find P[4 U B).

Mr. Stoneguy, a wealthy diamond dealer, decides to reward his son by allowing
him to select one of two boxes. Each box contains three stones. In one box two
of the stones are real diamonds, and the other is a worthless imitation; and in the
other box one is a real diamond, and the other two worthless imitations. If the
son were to choose randomly between the two boxes, his chance of getting two
real diamonds would be 3. Mr. Stoneguy, being a sporting type, allows his
son to draw one stone from one of the boxes and to examine it to see if it is a real
diamond. The son decides to take the box that the stone he tested came from if
the tested stone is real and to take the other box otherwise. Now what is the
probability that the son will get two real diamonds?

If P[A] =P[B)=P[B| A] = 4, are A and B independent ?

If A and B are independent and P[A] = P[B] = %, what is P[4AB « AB]?

If P[B) = P[A4|B] = P[C| AB] = 4, what is PLABC]?

If A and B are independent and P[4) = P[B| A} = }, what is P[4 u B]?

Suppose B;, B2, and B; are mutually exclusive. If P[B;]= 1 and P[A|B;] =/6
for j =1, 2, 3, what is P[4]?

The game of craps is played by letting the thrower toss two dice until he either wins
or loses. The thrower wins on the first toss if he gets a total of 7 or |1; he loses
on the first toss if he gets a total of 2, 3, or 12. If he gets any other total on his
first toss, that total is called his point. He then tosses the dice repeatedly until he
obtains a total of 7 or his point. He wins if he gets his point and Ios_,es if he gets a
total of 7. What is the thrower’s probability of winning?

In a dice game a player casts a pair of dice twice. He wins if the two totals
thrown do not differ by more than 2 with the following exceptions: If he gets a
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P

3 on the first throw, he must produce a 4 on the second throw; if he gets an 11 on

the first throw, he must produce a 10 on the second throw. What is his prob-

ability of winning?

Assume that the conditional probability that a child born to a couple will be
is 4+ me, — fe,, where ¢, and ¢, are certain small constants, m is the

simber of male children already born to the couple, and f'is the number of female

children already born to the couple.

(@) What is the probability that the third child will be a boy given that the first

two are girls?
(b) Find the probability that the first three children will be all boys.

-(¢) Find the probability of at least one boy in the first three children.

(Your answers will be expressed in terms of ¢, and ¢, .)
A network of switches a, b, ¢, and d is connected across the power lines 4 and B
as shown in the sketch. Assume that the switches operate electrically and have
independent operating mechanisms. All are controlled simultaneously by the
same impulses; that is, it is intended that on an impulse all switches shall close
simultaneously. But each switch has a probability p of failure (it will not close
when it should).

7. A
a ' b
A Ie B
/. | 7
c d

\ Power lines /

(a¢) What is the probability that the circuit from A4 to B will fail to close?
() If aline is added on at e, as indicated in the sketch, what is the probability
that the circuit from A4 to B will fail to close?
(¢) 'If a line and switch are added at ¢, what is the probability that the circuit from
., A to B will fail to close?

Let B,, B;,..., B, be mutually disjoint, and let B — \J B;. Suppose P[B,] >0
i=1

and P[A|BJ=pforj=1, ..., n. Show that P[4|B] = p.

In a laboratory experiment, an attempt is made to teach an animal to turn right
in a maze. To aid in the teaching, the animal is rewarded if it turns right on a
given trial and punished if it turns left. On the first trial the animal is just as
likely to turn right as left. If on a particular trial the animal was rewarded, his
probability of turning right on the next trial is p, > §, and if on a given trial the
animal was punished, his probability of turning right on the next trial is P2 > Py.
(a¢) What is the probability that the animal will turn right on the third trial?

(b) What is the probability that the animal will turn right on the third trial,
given that he turned right on the first trial ?
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PROBABILITY 1

You are to play ticktacktoe with an opponent who on his turn makes his mark by
selecting a space at random from the unfilled spaces. You get to mark first.
Where should you mark to maximize your chance of winning, and what is your
probability of winning? (Note that your opponent cannot win, he can only
tie.)
Urns I and II each contain two white and two black balls. One ball is selected
from urn I and transferred to urn II; then one ball is drawn from urn II and turns
out to be white. What is the probability that the transferred ball was white ?
Two regular tetrahedra with faces numbered 1 to 4 are tossed repeatedly until a
total of 5 appears on the down faces. What is the probability that more than two
tosses are required ?
Given P[A] = .5 and P[4 v B] =.7:
(a) Find P[B]if A and B are independent.
(b) Find P[B] if A and B are mutually exclusive.
(c¢) Find P[B] if P[A|B] =.5.
A single die is tossed; then » coins are tossed, where # is the number shown on the
die. What is the probability of exactly two heads?
In simple Mendelian inheritance, a physical characteristic of a plant or animal is
determined by a single pair of genes. The color of peas is an example. Let y and
g represent yellow and green; peas will be green if the plant has the color-gene
pair (g, g); they will be yellow if the color-gene pair is (y, ») or (¥, g). In view of
this last combination, yellow is said to be dominant to green. Progeny get one
gene from each parent and are equally likely to get either gene from each parent’s
pair. If (y, ¥) peas are crossed with (g, g) peas, all the resulting peas will be (y, g)
and yellow because of dominance. If (y, g) peas are crossed with (g, g) peas, the
probability is .5 that the resulting peas will be yellow and is .5 that they will be
green. In a large number of such crosses one would expect about half the result-
ing peas to be yellow, the remainder to be green. In crosses between (y, g) and
(v, g) peas, what proportion would be expected to be yellow? What proportion
of the yellow peas would be expected to be (y, y)?
Peas may be smooth or wrinkled, and this is a simple Mendelian character.
Smooth is dominant to wrinkled so that (s, s) and (s, w) peas are smooth while
(w, w) peas are wrinkled. If (y, g) (s, w) peas are crossed with (g, g) (w, w) peas,
what are the possible outcomes, and what are their associated probabilities? For
the (3, g) (s, w) by (g, g) (s, w) cross? For the (y, g) (s, w) by (», g) (5, w) cross?
Prove the two unproven parts of Theorem 32.
A supplier of a certain testing device claims that his device has high reliability
inasmuch as P[A4|B] =P[A|B] = .95, where 4 = {device indicates component is
faulty} and B = {component is faulty}. You hope to use the device to locate the
faulty components in a large batch of components of which 5 percent are faulty.
(@) What is P[B|A4]?
(b) Suppose you want P[B|A]=.9, Let p=P[A4|B]=P[4|Bl. How large
does p have to be?
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RANDOM VARIABLES, DISTRIBUTION
FUNCTIONS, AND EXPECTATION

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to introduce the concepts of random variable,
distribution and density functions, and expectation. It is primarily a *“ definitions-
and-their-understanding” chapter; although some other results are given as
well. The definitions of random variable and cumulative distribution function
are given in Sec. 2, and the definitions of density functions are given in Sec. 3.
These definitions are easily stated since each is just a particular function. The
cumulative distribution function exists and is defined for each random variable;
whereas, a density function is defined only for particular random variables.
Expectations of functions of random variables are the underlying concept of all
of Sec. 4. This concept is introduced by considering two particular, yet
extremely important, expectations. These two are the mean and variance,
defined in Subsecs. 4.1 and 4.2, respectively. Subsection 4.3 is devoted to the
definition and properties of expectation of a function of a random variable.
A very important result in the chapter appears in Subsec. 4.4 as the Chebyshev
inequality and a generalization thereof. It is nice to be able to attain so famous
a result so soon and with so little weaponry. The Jensen inequality is given in
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Subsec. 4.5. Moments and moment generating functions, which are expecta-
tions of particular functions, are considered in the final subsection. Qne major
unproven result, that of the uniqueness of the moment generating function, is
given there. Also included is a brief discussion of some measures of some
characteristics, such as location and dispersion, of distribution or density
functions.

This chapter provides an introduction to the language of distribution
theory. Only the univariate case is considered; the bivariate and multivariate
cases will be considered in Chap. IV. It serves as a preface to, or even as a
companion to, Chap. IIl, where a number of parametric families of distribution
functions is presented. Chapter IIl gives many examples of the concepts
defined in Chap. II.

2 RANDOM VARIABLE AND CUMULATIVE
" DISTRIBUTION FUNCTION

2.1 Introduction

In Chap. I we defined what we meant by a probability space, which we denoted
by the triplet (Q, &/, P{ - ]). We started with a conceptual random experiment;
we called the totality of possible outcomes of this experiment the sample space
and denoted it by Q. &/ was used to denote a collection of subsets, called
events, of the sample space. Finally our probability function P[] was a set
function having domain & and counterdomain the interval [0, 1]. Our object
was, and still is, to assess probabilities of events. In other words, we want to
model our random experiment so as to be able to give values to the probabilities
of events. The notion of random variable, to be defined presently, will be used
to describe events, and a cumulative distribution function will be used to give the
probabilities of certain events defined in terms of random variables; so both
concepts will assist us in defining probabilities of events, our goal. One advan-
tage that a cumulative distribution function will have over its counterpart, the
probability function (they both give probabilities of events), is that it is a
function with domain the real line and counterdomain the interval [0, 1]. Thus
we will be able to graph it. It will become a convenient tool in modeling
random experiments. In fact, we will often model a random experiment by
assuming certain things about a random variable and its distribution function
and in so doing completely bypass describing the probability space.
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2.2 Definitions

We commence by defining a random variable.

- Definition 1 Random Variable For a given probability space (Q, &/,
P[], a random variable, denoted by X or X(-), is a function with
domain Q and counterdomain the real line. The function X( -) must be
such that the set 4,, defined by A4, = {w: X(w) < r}, belongs to & for-every
real number r. /1]

If one thinks in terms of a random experiment, Q is the totality of out-
comes of that random experiment, and the function, or random variable, X( - )
with domain Q makes some real number correspond to each outcome of the
experiment, That is the important part of our definition. The fact that we
also require the collection of w’s for which X(w) < rtobeanevent(i.e., anelement
of o) for each real number r is not much of a restriction for our purposes
“since our intention is to use the notion of random variable only in describing
“events. .We will seldom be interested in a random variable per se; rather we
will be interested in events defined in terms of random variables. One might
note that the P[] of our probability space (Q, &/, P[-]) is not used in our
definition.

The use of words “random ™ and ““variable” in the above definition is
unfortunate since their use cannot be convincingly justified. The expression
“random variable’ is a misnomer that has gained such widespread use that it
would be foolish for us to try to rename it.

In our definition we denoted a random variable by either X(-) or X.
Although X{( - ) is a more complete notation, one that emphasizes that a random
variable is a function, we will usually use the shorter notation of X. For many-
experiments, there is a need to define more than one random variable; hence
further notations are necessary. We will try to use capital Latin letters with or
without affixes from near the end of the alphabet to denote random variables.
Also, we use the corresponding small letter to denote a value of the random
variable,

EXAMPLE 1 Consider the experiment of tossing a single coin. Let the
random variable X denote the number of heads. Q — {head, tail}, and
X(w) = 1 if = head, and X(w) = 0 if w = tail; so, the random variable X
associates a real number with each outcome of the experiment. We
called X a random variable so mathematically speaking we should show
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2d dice
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that it satisfies the definition; that is, we should show that {@w: X(w) < r}
belongs to &/ for every real number r. & consists of the four subsets:
¢, {head}, {tail}, and Q. Now, if r <0, {w: X(w) <r}=¢; and if
0<r<l,{w: X(w)<r}={tail};and if r > 1, {w: X(w) <r} =Q = {head,
tail}. Hence, for each r the set {®w: X(w) < r} belongs to &/;s0 X()isa:
random variable. /1]

EXAMPLE 2 Consider the experiment of tossing two dice. 2 can be de-
scribed by the 36 points displayed in Fig. 1. Q={(/,j):i=1,...,6and
j=1,...,6}. Several random variables can be defined; for instance, let
X denote the sum of the upturned faces;so X(w) =i + jifw = (i, j). Also,
let Y denote the absolute difference between the upturned faces; then
Y(w)=|i—j| if o = (i, j). It can be shown that both X and Y are ran-
dom variables. We see that X can take on the values 2, 3, ..., 12and Y
can take on the values 0, 1, ..., 5. /1]

In both of the above examples we described the random variables in terms
of the random experiment rather than in specifying their functional form; such
will usually be the case.

¢ Definition2 Cumulativedistribution function The cumulativedistribution
Sfunction of a random variable X, denoted by Fy(-), is defined to be
that function with domain the real line and counterdomain the interval
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[0, 1] which satisfies Fy(x) = P[X < x] = P[{w: X(w) < x}] for every real
number Xx. /111

A cumulative distribution function is uniquely defined for each random
variable. If it is known, it can be used to find probabilities of events defined
in terms of its corresponding random variable. (One might note that it is in
this definition that we use the requirement that {&: X(w) < r} belong to & for
every real r which appears in our definition of random variable X.) Note that
different random variables can have the same cumulative distribution function.
See Example 4 below.

The use of each of the three words in the expression “cumulative distri-
bution function” is justifiable. A cumulative distribution function is first of
all a function; it is a distribution function inasmuch as it tells us how the values
of the random variable are distributed, and it is a cumulative distribution func-
tion since it gives the distribution of values in cumulative form. Many writers
omit the word “cumulative” in this definition. Examples and properties of
cumulative distribution functions follow.

EXAMPLE 3 Consider again the experiment of tossing a single coin. Assume
that the coin is fair. Let X denote the number of heads. Then,

0 if x <0
Fy(x)= {3 if0<x <1
1 if 1 < x.

Or Fy(x) = 31, 1)(X) + Iy, )(x) in our indicator function notation. ////

EXAMPLE 4 In the experiment of tossing two fair dice, let Y denote the
absolute difference. The cumulative distribution of ¥, Fy( - ), is sketched
in Fig. 2. Also, let X, denote the value on the upturned face of the kth
die for k=1, 2. X, and X, are different random variables, yet both
have the same cumulative distribution function, which is Fy (x)=

51 .
Y. = I, 1+1)(%) + L6, )(x) and is sketched in Fig. 3. i

i=1

Careful scrutiny of the definition and above examples might indicate the
following properties of any cumulative distribution function Fy( - ).



56 RANDOM VARIABLES, DISTRIBUTION FUNCTIONS, AND EXPECTATION 11

Fy(y)
1!
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Properties of a Cumulative Distribution Function Fy( - )

X — oo x—+

(i) Fyx(-)is a monotone, nondecreasing function; that is, Fy(a) < Fx(b)
fora <b.

(iii) Fy( -) is continuous from the right; that is,

lim Fy(x + 1) = Fx(x).
0<h-0
Except for (ii), we will not prove these properties. Note that the event
{w: X(w) < b} ={X<b={X<alufa <X<bland {X<aln{a <X <b}
= ¢; hence, Fy(b) =P[X <b]=P[X <a]l+ Pla < X <b] = P[X <a] = Fy(a)
which proves (ii). Property (iii), the continuity of Fy(-) from the right, results
from our defining Fx(x) to be P[X < x]. If we had defined, as some authors do,
Fx(x) to be P[X < x], then Fy( - ) would have been continuous from the left.

Definition 3 Cumulative distribution function Any function F(-) with
domain the real line and counterdomain the interval [0, 1] satisfying the
above three properties is defined to be a cumulative distribution function.

/1

This definition allows us to use the term ‘‘cumulative distribution func-
tion”’ without mentioning random variable.

After defining what is meant by continuous and discrete random variables
in the first two subsections of the next section, we will give another property
that cumulative distribution functions possess, the property of decomposition
into three parts.
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The cumulative distribution functions defined here are univariate; the
introduction of bivariate and multivariate cumulative distribution functions
will be deferred until Chap. 1V.

3 DENSITY FUNCTIONS

Random variable and the cumulative distribution function of a random variable
have been defined. The cumulative distribution function described the distri-
bution of values of the random variable. For two distinct classes of random
variables, the distribution of values can be described more simply by using
density functions. These two classes, distinguished by the words ‘““discrete”
and “continuous,” are considered in the next two subsections.

3.1 Discrete Random Variables

Definition 4 Discrete random variable A random variable X will be
defined to be discrete if the range of X is countable. If a random variable
X is discrete, then its corresponding cumulative distribution function
Fy(-) will be defined to be discrete. 11l

By the range of X being countable we mean that there exists a finite or
denumerable set of real numbers, say x,, x, | X3,...,such that X takes on values
only in that set. If X is discrete with distinct values Xy, X2, ..., X,, ..., then
Q=) {0 Xw) =xn}=y{X=xn}, and {X =x} n{X=x;} = ¢ for i+#];

hence 1 = P[Q] =) P[X = x,] by the third axiom of probability.
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Definition 5 Discrete density function of a discrete random variable If
X is a discrete random variable with distinct values x;, X3, ..., X,, «-->
then the function, denoted by f4( - ) and defined by

_ [P[X = x;] ifx=x;,j=01,2,...,n,...
fX(x)_ 0 ifx;éxj (1)

is defined to be the discrete density function of X. /] '

The values of a discrete random variable are often called mass points; and,
Jfx(x;) denotes the mass associated with the mass point x;. Probability mass
Sfunction, discrete frequency function, and probability function are other terms
used in place of discrete density function. Also, the notation px(-) is some-
times used intead of fy( - ) for discrete density functions. fx(-) is a function
with domain the real line and counterdomain the interval [0, 1]. If we use the
indicator function,

£ =Y PLX = x, U, (9, %)

n=1

where 7, ,(x) = 1 if x = x, and I, ,(x) = 0 if x # x,,.

Theorem 1 Let X be a discrete random variable. Fx(-) can be obtained
from f%(-), and vice versa.

PROOF Denote the mass points of X by x, X5, .... Suppose fy(*)

is given; then Fx(x) = )  fx(x;). Conversely, suppose Fy(-)is given;
{Jrxy<x}

then fx(x) = Fy(x;) — lim Fy(x; — h); hence fx(x;) can be found for
0<h—0

each mass point x;; however, fy(x) =0forx # x;, j=1,2,...,s0 fx(x)is

determined for all real numbers. /1]

EXAMPLE 5 To illustrate what is meant in Theorem 1, consider the experi-
ment of tossing a single die. Let X denote the number of spots on the
upper face:

Sx(x) = (é) Iy, 2,...,6/(%),

and

5
Fy(x) = l_Z,l(i/6)l[i, i+ 1)(x) + 1[6, oo)(x)'
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According to Theorem 1, for given f3(-), Fx(x) can be found for any x;
for instance, if x = 2.5,

2

Fy(2.5) = Z Sx(xp) = fx(1) + f(2) = 5
{jix;2.5}

And, if Fy(-) is given, fyx(x) can be found for any x. For example, for

x =3,

AO=EBO- tim KG-n=(2)-(3) =5

0<h—=0 6 6

The cumulative distribution function of a discrete random variable has
steps at the mass points; that is, at the mass point x;, Fy(-) has a step of size
Jx(xp), and Fx(-) is flat between mass points.

EXAMPLE .6 Consider the experiment of tossing two dice. Let X denote
the total of the upturned faces. The mass points of X are 2, 3, ..., 12.

fx(*) is sketched in Fig. 4. Let Y denote the absolute difference of
the upturned faces; then fy(-) is given in tabular form by

y‘01‘2[3[4l5

10

TR N I i1

The discrete density function tells us how likely or probable each of the
values of a discrete random variable is. It also enables one to calculate the
probability of events described in terms of the discrete random variable X.
For example, let X have mass points x,, x,, ..., x,, ... then Pla< X < b] =

Y fx(x)) for a <b.

ji{a<xy<b}
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Definition 6 Discrete density function Any function f(-) with domain
the real line and counterdomain [0, 1] is defined to be a discrete density
Sfunction if for some countable set x;, X5, ..., X,, ..

(i) f&xp>0forj=1,2,....
() f()=0forx#x;j=12,....

(iii)y > f(x;) =1, where the summation is over the points x,, X,, ...,

X,y /11

s

This definition allows us to speak of discrete density functions without
reference to some random variable. Hence we can talk about properties that
a density function might have without referring to a random variable.

3.2 Continuous Random Variables
Definition 7 Continuous random variable A random variable X is
called continuous if there exists a function f5(-) such that Fy(x) = [ fy(u)du

for every real number x. The cumulative distribution function Fy() of a
continuous random variable X is called absolutely continuous. /]

Definition 8 Probability density function of a continuous random variable
If X is a continuous random variable, the function fy(-) in Fy(x) =

j'x f+x(t) du is called the probability density function of X. /]

Other names that are used instead of probability density function include
density function, continuous density function, and integrating density function.
Note that strictly speaking the probability density function fy(-) of a
random variable X is not uniquely defined. All that the definition requires is
that the integral of fy(-) gives Fy(x) for every x, and more than one function
fx(+) may satisfy such requirement. For example, suppose Fy(x) = x5, )(x) +

I, o)(X); then fx(w) = o, () satisfies Fy(x) =__|' fx(u) du for every x, and
so fy(+) is a probability density function of X. However fy(u) = I, 4)(u) +
691 ,,(u) + I3, 1)) also satisfies Fy(x) = | fy(u) du. (The idea is that if the

value of a function is changed at only a “few” points, then its integral is
unchanged.) In practice a unique choice of fx(-) is often dictated by continuity
considerations and for this reason we will usually allow ourselves the liberty of



3 DENSITY FUNCTIONS 61

speaking of the probability density when in fact a probability density is more
correct.

One should point out that the word “continuous” in “continuous
random variable ” is not used in its usual sense. Although a random variable
is a function and the notion of a continuous function is fairly well established
in mathematics, “continuous” here is not used in that usual mathematical
sense. In fact it is not clear in what sense it is used. Two possible justifica-
tions do come to mind. In contrasting discrete random variables with contin-
uous random variables, one notes that a discrete random variable takes on a
finite or denumerable set of values whereas a continuous random variable takes.
on a nondenumerable set of values. Possibly it is the connection between
“nondenumerable ” and “continuum” that justifies use of the word ‘‘contin-
uous.” All the continuous random variables that we shall encounter will take
on a continuum of values. - The second justification arises when one notes that
the absolute continuity of the cumulative distribution function is the regular
mathematical definition of an absolutely continuous function (in words, a
function is called absolutely continuous if it can be written as the integral of its
derivative); the “continuous,” then, in a corresponding continuous random
variable could be considered just an abbreviation of “absolutely continuous.”

Theorem 2 Let X be a continuous random variable. Then Fy(:) can
be obtained from an f;(-), and vice versa.

PROOF If X is a continuous random variable and an fx(-) is given,
X
then Fy(x)isobtained by integrating fx(-); that is, Fy(x) = [ fy(u)du. On

the other hand, if Fx(-) is given, then an fy(x) can be obtained by differ-
entiation; that is, fx(x) = dFy(x)/dx for those points x for which F »(x) is
differentiable. /1

The notations for discrete density function and probability density func-
tion are the same, yet they have quite different interpretations. For discrete

random variables fy(x) = P[X = x], which is not true for continuous random
variables. For continuous random variables,

fxr) = XD _ iy ExOr 4 %) — Fa(x— M)
dx Ax~0 2Ax ’

hence fx(x)2Ax & Fy(x + Ax) — Fy(x — Ax) = P[x — Ax < X < x + Ax]: that
is, the probability that X is in a small interval containing the value x is approxi-
mately equal to fx(x) times the width of the interval. For discrete random
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variables fx(-) is a function with domain the real line and counterdomain the
interval [0, 1]; whereas, for continuous random variables fx(-) is a function with
domain the real line and counterdomain the infinite interval [0, c0).

- Remark We will use the term “ density function” without the modifier
of “ discrete” or “ probability”’ to represent either kind of density.  ////

EXAMPLE 7 Let X be the random variable representing the length of a
telephone conversation. One could model this experiment by assuming
that the distribution of X is given by Fy(x) = (1 — e" )4, ..,(x), where
/ is some positive number. The corresponding probability density func-
tion would be given by fx(x)=1e **I, .,(x). If we assume that
telephone conversations are measured in minutes, P[S< X < 10] =
[i0he ™ dx=e"*—e 1% =¢"! — 7?2 x.23fori=14,0rP[5 < X < 10]
=PX<I10]—-PX<5]=(0—-e*)—(1—-—e*)=e"!—¢? for
A= 1. I

The probability density function is used to calculate the probability of
events defined in terms of the corresponding continuous random variable X.
For example, Pla < X < b] = [ fy(x) dx for a< b.

Definition 9 Probability density function Any function f{-) with domain
the real line and counterdomain [0, o) is defined to be a probability
density function if and only if

(i) f(x) =0 for all x.

@) | feydr=1. i

With this definition we can speak of probability density functions without
reference to random variables. We might note that a probability density func-
tion of a continuous random variable as defined in Definition 8 does indeed
possess the two properties in the above definition.

3.3 Other Random Variables

Not all random variables are either continuous or discrete, or not all cumulative
distribution functions are either absolutely continuous or discrete.



3 DENSITY FUNCTIONS 63

Fy(x) = (1= pe” *)g..0)(¥)

}1—'1’ — X
0
FIGURE 5

EXAMPLE 8 Consider the experiment of recording the delay that a motorist
encounters at a one-way traffic stop sign. Let X be the random variable
that represents the delay that the motorist experiences after making the
required stop. There is a certain probability that there will be no oppos-
ing traffic so that the motorist will be able to proceed with no delay. On
the other hand, if the motorist has to wait, he may have to wait for any of
a continuum of possible times. This experiment could be modeled by
assuming that X has a cumulative distribution function given by Fy(x)
= (1 — pe )y, )(x). This Fx(x) has a jump of 1 — p at x =0 but is
continuous for x > 0. See Fig. 5. /1]

Many practical examples of cumulative distribution functions that are
partly discrete and partly absolutely continuous can be given. Yet there are
still other types of cumulative distribution functions. There are continuous
cumulative distribution functions, called singular continuous, whose derivative
is 0 at almost all points. We will not consider such distribution functions other
than to note the following resuit.

Decomposition of a cumulative distribution function Any cumulative
distribution function F(x) may be represented in the form

F(x) = p,Fo(x) + p F*(x) + p3 F*°(x),  where p; > 0,i=1, 2, 3. (3)

3
Y py =1, and F*(-), F**(-),and F**(+) areeach cumulative distribution functions
i=1
with F(-) discrete, F*°(-) absolutely continuous, and F(-) singular continuous.
Cumulative distributions studied in this book will have at most a discrete
part and an absolutely continuous part; that is, the ps in Eq. (3) will always be 0
for the F(-) that we will study.
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EXAMPLE 9 To illustrate how the decomposition of a cumulative distribu-

tion function can be implemented, consider Fy(x) = (1 — pe™*)5, )(X)

asin Example 8. Fy(x) = (1 — p)F*(x) + pF*(x),where FU(x) = Lo, o)(X)

and  F*°(x) = (1 — e™ ") ,)(X). Note that Fy(x)=(1 —p)F(x) +
pF*(x) = (1 _P)I[o, oo)(x) + p(1 — e—lx)l[o, oo)(x) =( - Pe_lx)l[o, oo)('x)'

I

A density function corresponding to a cumulative distribution that is
partly discrete and partly absolutely continuous could be defined as follows:
If F(x) =(1 — p)F(x) + pF**(x), where 0 < p< 1 and FY-) and F*(-) are,
respectively, discrete and absolutely continuous cumulative distribution func-
tions, let the density function f(x) corresponding to F(x) be defined by f(x)
= (1 — p)fUx) + pf*(x), where f%(-) is the discrete density function corre-
sponding to F%-) and f*°(-) is the probability density function corresponding to
F?*(+). Such a density function would require careful interpretation; so when
considering cumulative distribution functions that are partly discrete and
partly continuous, we will tend to work with the cumulative distribution func-
tion itself rather than with a density function.

Remark In future chapters we will frequently have to state that a
random variable has a certain distribution. We will make such a state-
ment by giving either the cumulative distribution function or the density
function of the random variable of interest. 11/

4 EXPECTATIONS AND MOMENTS

An extremely useful concept in problems involving random variables or distri-
butions is that of expectation. The subsections of this section give definitions
and results regarding expectations.

4.1 Mean

Definition 10 Mean Let X be a random variable. The mean of X,
denoted by uy or £[X], is defined by:

(i) E[X] =) xifx(x)) (4)

if X is discrete with mass points x,, x,, ..., X;

R
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(ii) - exl= | * xfy (0)dx (5)

- QC

if X is continuous with probability density function Sx(X).
oo 0

(iii) £1X1= | [1 - Fx(x)]dx - [ Fx(x)dx (6)
0 -

for an arbitrary random variable X. I

In (i), £[X] is defined to be the indicated series provided that the series is
absolutely convergent; otherwise, we say that the mean does not exist. And in
(ii), €[ X] is defined to be the indicated integral if the integral exists; otherwise,
we say that the mean does not exist. Finally, in (iii), we require that both
integrals be finite for the existence of &[X].

Note what the definition says: In ) x;fx(x;), the summand is the jth value

of the random variable X multiplied b;/ the probability that X equals that jth
value, and then the summation is overall values. So&[X]is an “average” of the
values that the random variable takes on, where each value is weighted by the
probability that the random variable is equal to that value. Values that are
more probable receive more weight. The same is true in integral form in (ii).
There the value x is multiplied by the approximate probability that X equals
the value x, namely fy(x) dx, and then integrated over all values.
Several remarks are in order.

Remark In the definition of a mean of a random variable, only density
functions [in (i) and (ii)] or distribution functions [in (iii)] were used;
hence we have really defined the mean for these functions without reference
to random variables. We then call the defined mean the mean of the
cumulative distribution function or of the appropriate density function.
Hence, we can and will speak of the mean of a distribution or density
function as well as the mean of a random variable. I/

Remark &[X] is the center of gravity (or centroid) of the unit mass that
is determined by the density function of X. So the mean of X is a meas-
ure of where the values of the random variable X are “centered.” Other
measures of ‘“location™ or ““center” of a random variable or its corre-
sponding density are given in Subsec. 4.6. T
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Remark (iii) of the definition is for all random variables; whereas,
(i) is for discrete random variables, and (ii) is for continuous random
variables. Of course, £[X] could have been defined by just giving (iii).
The reason for including (i) and (ii) is that they are more intuitive for
their respective cases. It can be proved, although we will not do it, that
(i) follows from (iii) in the case of discrete random variables and (ii) follows
from (iii) in the case of continuous random variables. Qur main use
of (iii) will be in finding the mean of a random variable X that is neither
discrete nor continuous. See Example 12 below. /1]

EXAMPLE 10 Consider the experiment of tossing two dice. Let X denote
the total of the two dice and Y their absolute difference. The discrete
density functions for X and Y are given in Example 6.

5

ég[Y]=Z}’jfrU’j)=i;)?fr(i)=0'3‘%+1':lu
+2: L +3 L +4-L+5-5=13
12
é"[X]=‘=ZZU”x(i)=7-

Note that £[¥] is not one of the possible values of Y. /1]

=]

O

~
[+

EXAMPLE 11 Let X be a continuous random variable with probability
density function f3(x) = de™**I1o, )(X).

E[X] = fw xfx(x) dx = f:xle—“ dx = %

- Q0

The corresponding cumulative distribution function is

Fx(® = (1 = ™o, ()3 50 X1 = [ 1 = Fx(@)] d

[ Faydx=[Q~1+e Ny dx =10 I

EXAMPLE 12 Let X be a random variable with cumulative distribution
function given by Fx(x) = (1 —pe_;"‘)][O. )(X); then

) 0 o
é”[X]=f0 [1 — Fy(®)] dx—f*wa(x) dx=f0 pe=i dx =".

Here, we have used Eq. (6) to find the mean of a random variable that is
partly discrete and partly continuous. Il
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EXAMPLE 13 Let X be a random variable with probability density function
given by fy(x) = x_21[1, «)(X); then

© dx
é”[X]=f x — = limlog, b = <0,
1 X b~ 0
so we say that £[X] does not exist. We might also say that the mean of X
is infinite since it is clear here that the integral that defines the mean is
infinite. [

4.2 Variance

The mean of a random variable X, defined in the previous subsection, was a
measure of central location of the density of X. The variance of a random vari-
able X will be a measure of the spread or dispersion of the density of X.

Definition 11 Variance Let X be a random variable, and let uy be
&[X]. The variance of X, denoted by 63 or var [X], is defined by

(i) var [X] = ; (x; — 1x)*fxlx)) @)
if X is discrete with mass points Xy, X5,..., X;,....

(i) var [X]= [ (x = w)¥ia) dx ®
if X is continuous with probability density function fy(x).
(iii) var [X] = f:zx[l — Fy(®) + Fe(— %) dx — 12 9)
for an arbitrary random variable X. /1]

The variances are defined only if the series in (i) is convergent or if the
integrals in (ii) and (iii) exist. Again, the variance of a random variable is
defined in terms of the density function or cumulative distribution function of
the random variable; hence variance could be defined in terms of these functions
without reference to a random variable.

Note what the definition says: In (i), the square of the difference between
the jth value of the random variable X and the mean of X is multiplied by the
probability that X equals the jth value, and then these terms are summed.
More weight is assigned to the more probable squared differences. A similar
comment applies for (ii). Variance is a measure of spread since if the values
of a random variable X tend to be far from their mean, the variance of X will
be larger than the variance of a comparable random variable ¥ whose values
tend to be near their mean. It is clear from (i) and (ii) and true for (iii) that
variance is nonnegative. We saw that a mean was the center of gravity of a
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density; similarly (for those readers familiar with elementary physics or me-
chanics), variance represents the moment of inertia of the same density with
respect to a perpendicular axis through the center of gravity.

Definition 12 Standard deviation If X is a random variable, the
standard deviation of X, denoted by oy, is defined as + ./ var [X]. /1]

The standard deviation of a random variable, like the variance, is a meas-
ure of the spread or dispersion of the values of the random variable. In many
applications it is preferable to the variance as such a measure since it will have
the same measurement units as the random variable itself.

EXAMPLE 14 Let X be the total of the two dice in the experiment of tossing
two dice.

var [X] = Y.(x; — px)’fx(xp)
=Q2-7V 3% +CB-DFH+U@-D'FH+(5-D%

+(6 7)35+(7 7) +(8_7)25+(9 36
+(10 = )% + (11 = N5 + (12 = T) g = 3L I

EXAMPLE 15 Let X be a random variable with probability density given by
Sx(x) = Ae L, . \(x); then

Var [X] = | :(x — 1)) dx
= J:O (x — %) zle”“ dx

1
FEN I/

EXAMPLE 16 Let X be a random variable with cumulative distribution
given by Fx(x) = (1 — pe™*9I, . (x); then

Var [X] = [ "1 — F(x) + F(=x)] dx — 12

o] 2
= f 2xpe™** dx — (B)
0 A

=22 (g):l_’@l‘_f’) I
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4.3 Expected Value of a Function of a Random Variable

We defined the expectation of an arbitrary random variable X, called the mean
of X, in Subsec. 4.1. In this subsection, we will define the expectation of a
function of a random variable for discrete or continuous random variables.

Definition 13 Expectation Let X be a random variable and g(-) be
a function with both domain and counterdomain the real line. The
expectation or expected value of the function g(-) of the random variable
X, denoted by &{g(X)], is defined by:

(i) Eg(X)] = 3 gx)) fx(x)) (10)

if X is discrete with mass points x;, X, ..., xj, ... (provided this
series is absolutely convergent).

(i) Slol=[ gofmdx (D

if X is continuous with probability density function fy(x) (provided
2 o9 fx(x) dx < 0).* 1

Expectation or expected value is not really a very good name since it is
not necessarily what you ‘‘expect.” For example, the expected value of a
discrete random variable is not necessarily one of the possible values of the
discrete random variable, in which case, you would not “expect” to get the
expected value. A better name might be ““ average value ” rather than ““ expected

value.”
Since &[g(X)] is defined in terms of the density function of X, it could be

defined without reference to a random variable.

Remark If g(x) = x, then &[g(X)] = £[X] is the mean of X. If g(x) =
(x—px)?, then &[g(X)] = EUX — py)?] = var [X]. .

* £[g(X)] has been defined here for random variables that are either discrete or
continuous; it can be defined for other random variables as well. For the reader
who is familiar with the Stieltjes integral, &£[g(X)] is defined as the Stieltjes integral
§Z 0 g(x) dFx(x) (provided this integral exists), where Fy(*) is the cumulative distribu-
tion function of X. If X' is a random variable whose cumulative distribution function is
partly discrete and partly continuous, then (according to Subsec. 3.3) Fx(x)=
(1 — p)F(x) + pF**(x) for some 0 < p < 1. Now &[g(X)] can be defined to be &[g(X)]
= (1—p) 2 9D+ p F20g(x) f2(x) dx, where £9() is the discrete density func-
tion corresponding to FI(*) and f*(-) is the probability density function corre-
sponding to F*(*).
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Theorem 3 Below are properties of expected value:
(i) ¢&[c] = c for a constant c.
(i) &[ecg(X)] = c&[g(X)] for a constant c.
(i)  &le1g(X) + ¢29:AX)] = 1[g1(X)] + ¢, E[g:(X)]-
(iv) €lg:1(X)] < E[g2(X)]if g,(x) < g5(x) for all x.

PROOF Assume X is continuous. To prove (i), take g(x) = ¢, then

01 =8ld = | efxmdx=c| Hmdz=c

-0

[= o]

Sleg) = [ cofu@dx =c|  g0fulx) dx = eSlg(X)],

—_ a0 — a0

which proves (ii). (iii) is given by

8legi(X) + 2001 = [ Tegi@) + c2g2(91/x() dx

- o0

o o

=¢, [ g@A@dxt+er| g0 dx

= ¢,8[g,(X)] + ¢, E[g(X)].
Finally,

0 < £lg2(X) — 9:(X)] = 6[9:(X)] — Elg1(X)],

which gives (iv).
Similar proofs could be presented for the discrete random variable

case. 1

Theorem 4 If X is a random variable, var [X] = &[(X — £[X]?] =
E[X?] — (€[X])? provided &[X?] exists.

PROOF (We first note that if &[X?] exists, then &[X] exists.)* By
our definitions of variance and &[g(X)], it follows that var [X]=
E[(X — €[XD*’)  Now&[(X — #[X])*] = £1X? — 2XE[X] + (€[X])’] =
E[X?]— 2AS[XD? + (€1X])? = &[X*] — (£[XD>. I

The above theorem provides us with two methods of calculating a vari-
ance, namely &[(X — px)?] or £[X?] — uZ. Note that both methods require py .

* Here and in the future we are not going to concern ourselves with checking existence.
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&[g(X)] is used in each of the following three subsections. In Subsec. 4.4
and 4.5 two inequalities involving &[¢(X)] are given. Definitions and examples
of &[g(X)] for particular functions g(-) are given in Subsec. 4.6.

4.4 Chebyshev Inequality

Theorem 5 Let X be a random variable and g(+) a nonnegative function
with domain the real line; then

PloC0 > ] < S

ey

for every k > 0. (12)

PROOF Assume that X is a continuous random variable with
probability density function fx(-); then

[>.2]

g()fx) dx = f{ g(x)fx(x) dx

x: g(x)=k}

8901 = |

+ g x> [ g(afylx)dx

{x:g(x) <k} {x: g(x) 2k}

> kfx(x) dx = kP[g(X) = k].

{x: 8(x)=k}
Divide by k, and the result follows. A similar proof holds for X discrete.
I

Corollary Chebyshev inequality If X is a random variable with finite
variance,

1
P[| X — px| =rox] = PI(X — puy)* > r?el] < > for every r > 0. (13)

PrROOF Takeg(x) = (x — pix)? and k = r’62in Eq.(12) of Theorem 5.

I

Remark If X is a random variable with finite variance,
Pl X — py| <rox}= 1—;15, (19
which is just a rewriting of Eq. (13). /i

The Chebyshev inequality is used in various ways. We will use it later to
prove the law of large numbers. Note what Eq. (14) says:

1
P[ﬂx_r0x<X<pX+rax]21——5;
r
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that is, the probability that X falls within roy units of puy is greater than or
equal to 1 — 1/r>. For r=2, one gets Pluy — 20y < X < py + 204]> %, or
for any random variable X having finite variance at least three-fourths of the
mass of X falls within two standard deviations of its mean.

Ordinarily, to calculate the probability of an event described in terms of
a random variable X, the distribution or density of X is needed; the Chebyshev
inequality gives a bound, which does not depend on the distribution of X, for the
probability of particular events described in terms of a random variable and
its mean and variance.

4.5 Jensen Inequality

Definition 14 Convex function A continuous function g(-) with domain
and counterdomain the real line is called convex if for every x, on the
real line, there exists a line which goes through the point (x,, g(x,)) and
lies on or under the graph of the function g(-). /1

Theorem 6 Jensen inequality Let X be a random variable with mean
&[X], and let g(-) be a convex function; then &[g(X)] = g(&[X]).

PROOF Since g(x) is continuous and convex, there exists a line, say
I(x) = a + bx, satisfying I(x)=a+ bx<g(x) and KE[X]) = g(&[X]).
I(x) is a line given by the definition of continuous and convex that goes
through the point (£[X], g(£[X]). Note that £[(X)] = &[(a + bX)] =
a + b&[X] = (&1XD; hence g(£[X]) = (E[X]) = £[UX)] < £[g(X)] [using
property (iv) of expected values (see Theorem 3) for the last inequality].

1

The Jensen inequality can be used to prove the Rao-Blackwell theorem to
appear in Chap. VII. We point out that, in general, &[g(X)] # g(€[X]); for
example, note that g(x) = x* is convex; hence &[X?]> (€[X])?, which says
that the variance of X, which is £[X?] — (£[X])?, is nonnegative.

4.6 Moments and Moment Generating Functions

The moments (or raw moments) of a random variable or of a distribution are
the expectations of the powers of the random variable which has the given
distribution.



4 EXPECTATIONS AND MOMENTS 73

Definition 15 Moments If X is a random variable, the rth moment of
X, usually denoted by g, , is defined as

pu = E[X7] (15)

if the expectation exists. 1111
Note that pj = £[X] = py, the mean of X.

Definition 16 Central moments If X is a random variable, the rth
central moment of X about a is defined as &[(X — a)’]. If a= ux, we
have the rth central moment of X about uy, denoted by p,, which is

# = EMX — '] (16)
1

Note that yu; = &[(X — ux)] = 0and pu, = &[(X — uy)?], the variance of X.
Also, note that all odd moments of X about uy are 0 if the density function of X
is symmetrical about u,, provided such moments exist.
In the ensuing few paragraphs we will comment on how the first four
moments of a random variable or density are used as measures of various
. characteristics of the corresponding density. For some of these characteristics,
* other measures can be defined in terms of quantiles.

Definition 17 Quantile The gt/ quantile of a random variable X or of
its corresponding distribution is denoted by £, and is defined as the
smallest number & satisfying Fy(&) > q. /]

If X is a continuous random variable, then the gth quantile of X is given as
the smallest number ¢ satisfying Fy(§) =¢. See Fig. 6.

Definition 18 Median The median of a random variable X, denoted by
med,, med (X), or £ 54, is the .5th quantile. /1]

Remark In some texts the median of X is alternatively defined as any
number, say med (X), satisfying P[X < med (X)] > 4 and P[X > med (X)]

2 3. 1

If X is a continuous random variable, then the median of X satisfies

med (X) ©
f feydx =4 = [ fy(x)dx;

— med (X)
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Fy(x)
t

1.0

F x(x)
75

I
25 [
!
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so the median of X is any number that has half the mass of X to its right and
the other half to its left, which justifies use of the word ‘“ median.”

We havealready mentioned that £[X], the first moment, locates the ““ center ”’
of the density of X. The median of X is also used to indicate a central
location of the density of X. A third measure of location of the density of X,
though not necessarily a measure of central location, is the mode of X, which is
defined as that point (if such a point exists) at which f;(-) attains its maximum.
Other measures of location [for example, 3(¢ ,5 + £ 45)] could be devised, but
three, mean, median, and mode, are the ones commonly used.

We previously mentioned that the second moment about the mean, the
variance of a distribution, measures the spread or dispersion of a distribution.
Let us look a little further into the manner in which the variance characterizes
the distribution. Suppose that f;(x) and f,(x) are two densities with the same
mean u such that

uta

| @ -fedx=0 17

for every value of a. Two such densities are illustrated in Fig. 7. It can be
shown that in this case the variance 67 in the first density is smaller than the

FIGURE 7
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(x — u)}
g(x)
'd

FIGURE 8 B

variance ¢3 in the second density. We shall not take the time to prove this in
detail, but the argument is roughly this: Let

g(x) = fi(x) — f2(x),

where f,(x) and f,(x) satisfy Eq. (17). Since | g(x) dx =0, the positive area

between g(x) and the x axis is equal to the negative area. Furthermore, in
view of Eq. (17), every positive element of area g(x") dx” may be balanced by a
negative element g(x") dx” in such a way that x” is further from u than x’.
When these elements of area are multiplied by (x — x)?, the negative elements
will be multiplied by larger factors than their corresponding positive elements
(see Fig. 8); hence

[ - wge de<o

unless f;(x) and f5(x) are equal. Thus it follows that ¢? < 62. The converse
of these statements is not true. That is, if one is told that 6? < ¢, he cannot
conclude that the corresponding densities satisfy Eq. (17) for all values of a;
although it can be shown that Eq. (17) must be true for certain values of a.
Thus the condition o] < ¢} does not give one any precise information about
the nature of the corresponding distributions, but it is evident that f;(x) has
more area near the mean than f,(x), at least for certain intervals about the mean.

We indicated above how variance is used as a measure of spread or
dispersion of a distribution. ~Alternative measures of dispersion can be defined
in terms of quantiles. For example £ ;5 — { ;5 called the interquartile range,
is a measure of spread. Also, ¢, — ¢y, for some 4<p <1 is a possible
measure of spread.

The third moment p; about the mean is sometimes called a measure of
asymmetry, or skewness. Symmetrical distributions like those in Fig. 9 can be
shown to have p3 = 0. A curve shaped like £,(x) in Fig. 10 is said to be skewed
to the left and can be shown to have a negative third moment about the mean;
one shaped like f5(x) is called skewed to the right and can be shown to have a
positive third moment about the mean. Actually, however, knowledge of the
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Si(x)

fa (x)

FIGURE 9

third moment gives almost no clue as to the shape of the distribution, and we
mention it mainly to point out that fact. Thus, for example, the density f5(x)
in Fig. 10 has u; =0, but it is far from symmetrical. By changing the curve
slightly we could give it either a positive or negative third moment. The ratio
us/a>, which is unitless, is called the coefficient of skewness.

The quantity s = (mean — median)/(standard deviation) provides an
alternative measure of skewness. It can be proved that —1 < s < 1.

The fourth moment about the mean is sometimes used as a measure of
excess or kurtosis, which is the degree of flatness of a density near its center.
Positive values of u,/o* — 3, called the coefficient of excess or kurtosis, are
sometimes used to indicate that a density is more peaked around its center than
the density of a normal curve (see Subsec. 3.2 of Chap. IlI), and negative values
are sometimes used to indicate that a density is more flat around its center than
the density of a normal curve. This measure, however, suffers from the same
failing as does the measure of skewness; namely, it does not always measure
what it is supposed to.

While a particular moment or a few of the moments may give little
information about a distribution (see Fig. 11 for a sketch of two densities having
the same first four moments. See Ref. 40. Also see Prob. 30 in Chap. IIL),
the entire set of moments (uj, u), uj, ...) will ordinarily determine the distri-

FIGURE 10
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“3 -2 -1 0 1 2 3
FIGURE 11

bution exactly, and for this reason we shall have occasion to use the moments
in theoretical work.

" In applied statistics, the first two moments are of great importance, as
we shall see, but the third and higher moments are rarely useful. Ordinarily
one does not know what distribution function one is working with in a practical
problem, and often it makes little difference what the actual shape of the distri-
bution is. But it is usually necessary to know at least the location of the
distribution and to have some idea of its dispersion. These characteristics can
be estimated by examining a sample drawn from a set of objects known to have
the distribution in question. This estimation problem is probably the most
important problem in applied statistics, and a large part of this book will be
devoted to a study of it.

We now define another kind of moment, facrorial moment.

Definition 19 Factorial moment If X is a random variable, the rth
factorial moment of X is defined as (r is a positive integer):

SIX(X —1)--- (X —r + 1)]. (18)

{1

For some random variables (usually discrete), factorial moments are
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easier to calculate than raw moments. However the raw moments can be
obtained from the factorial moments and vice versa.

The moments of a density function play an important role in theoretical
and applied statistics. In fact, in some cases, if all the moments are known,
the density can be determined. This will be discussed briefly at the end of
this subsection. Since the moments of a density are important, it would be
useful if a function could be found that would give us a representation of all
the moments. Such a function is called a moment generating function.

Definition 20 Moment generating function Let X be a random vari-
able with density fy(-). The expected value of ¢* is defined to be the
moment generating function of X if the expected value exists for every
value of ¢ in some interval —h <t < h; h>0. The moment generating
function, denoted by mx(t) or m(?), is

= o]

m(t) = E[eX] = f e fx(%) dx (19)
if the random variable X is continuous and is

m(t) = E[e*] =Y. e fx(x)

if the random variable is discrete. /1]

One might note that a moment generating function is defined in terms of
a density function, and since density functions were defined without reference
to random variables (see Definitions 6 and 9), a moment generating function
can be discussed without reference to random variables.

If a moment generating function exists, then m(r) is continuously differ-
entiable in some neighborhood of the origin. If we differentiate the moment
generating function r times with respect to ¢, we have

dl’ [« o]

Ir m(t) = f_ wxrextfx(x) dx, (20)

and letting t — 0, we find

L mo=ex1=s, @
where the symbol on the left is to be interpreted to mean the rth derivative of
m(t) evaluated as £ » 0. Thus the moments of a distribution may be obtained
from the moment generating function by differentiation, hence its name.

If in Eq. (19) we replace €' by its series expansion, we obtain the series
expansion of m(t) in terms of the moments of fx(+); thus
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1 1
m(t) = 6[1 F Xt (XD () + ]

’ 1 t 42
=1+u1t+5u2t +

_ 5 Ly (22)

from which it is again evident that u, may be obtained from m(?); p, is the co-
efficient of ¢"/r!.

EXAMPLE 17 Let X be a random variable with probability density function
given by fx(x) = le™ Lo y(%).

% A
my(t) = &le'*] = fo & e dx = ypa fort < A.

o dm(t) A e 1
m'(t) = TRl hence m(O)—é”[X]—A.
22 2
And m'(r) = m, so m'(0) = &[X?%] = F I

EXAMPLE 18 Consider the random variable X having probability density
function fx(x) = x72I;; ,(x). (See Example13.) If the momentgenerat-
ing function of X exists, then it is given by [¥ x™%edx. It can be
shown, however, that the integral does not exist for any # > 0, and hence
the moment generating function does not exist for this random variable X

11

As with moments, there is also a generating function for factorial moments.

Definition 21 Factorial moment generating function Let X be a ran-
dom variable. The factorial moment generating function is defined as
&[t*] if this expectation exists. .

The factorial moment generating function is used to generate factorial
moments in the same way as the raw moments are obtained from &[¢**] except
that ¢ approaches 1 instead of 0. It sometimes simplifies finding moments
of discrete distributions.
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EXAMPLE 19 Suppose X has a discrete density function given by

“2.,1::
fx(x)=ex, forx=0,1,2,....
Then
D X, Ax
g’[tx] = Z "e ' A — oA = QA= 1)
x=0 X
d d .
o el = P et = 1M, hence %é"[tx] = A /1]

t=1

In addition to raw moments, central moments, and factorial moments,
there are other kinds of moments, called cumulants, or semi-invariants. Cumu-
lants will be defined in terms of the cumulant generating function. We will not
make use of cumulants in this book. N

Definition22 Cumulant and cumulant generating function Thelogarithm
of the moment generating function of X is defined to be the cumulant
generating function of X. The rth cumulant of X, denoted by x,(X) or k,,
is the coefficient of ¢"/r! in the Taylor series expansion of the cumulant
generating function. /1]

A moment generating function is used, as its name suggests, to generate
moments. That, however, will not be its only use for us. An important use
will be in determining distributions.

Theorem 7 Let X and Y be two random variables with densities fx(-)
and fy(), respectively. Suppose that my(f) and my(¢) both exist and are
equal for all ¢ in the interval —h < ¢ < h for some A> 0. Then the two
cumulative distribution functions Fx(-) and Fy(*) are equal. 11/

A proof of the above theorem can be obtained using certain transform
theory that is beyond the scope of this book. We should note, however, what
the theorem asserts. It says that if we can find the moment generating function
of a random variable, then, theoretically, we can find the distribution of the
random variable since there is a unique distribution function for a given moment
generating function. This theorem will prove to be extremely useful in finding
the distribution of certain functions of random variables. In particular, see
Sec. 4 of Chap. V.
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EXAMPLE 20 Suppose that a random variable .X has a moment generating
function my(t) = 1/(1 — ¢) for —1 <t <1; then we know that the den-
sity of X is given by fy(x) = e I15.») (¥) since we showed in Example
17 above that Ae™* ., .,(x) has A/(A—¢) for its moment generating
function. /1]

Problem of moments We have seen that a density function determines a set
of moments |, ,u"z, ... when they exist. One of the important problems in
theoretical statistics is this: Given a set of moments, what is the density function
from which these moments came, and is there only one density function that
has these particular moments? We shall give only partial answers. First,
there exists a sequence of moments for which there is an infinite (nondenumer-
able) collection of different distribution functions having these same moments.
In general, a sequence of moments u}, u;, ... does not determine a unique
distribution function. However, we did see that if the moment generating
function of a random variable did exist, then this moment generating function
did uniquely determine the corresponding distribution function. (See Theorem
7 above.) Hence, there are conditions (existence of the moment generating
function is a sufficient condition) under which a sequence of moments does
uniquely determine a distribution function. The general problem of whether or
not a distribution function is determined by its sequence of moments is
referred to as the problem of moments and will not be discussed further.

PROBLEMS
1 (a) Show that the following are probability density functions (p.d.f.’s):
Si(x) = e (g 0)(x)
Sfa(x) = 2e7 1o, o \(x)
SE)=0+ DA —0f,(x) 0<B0<1.

(b) Prove or disprove: If fi(x) and f>(x) are p.d.f’s and if 6, + 0, = 1, then
6, fi(x) +6.12(x) is a p.d.f.
2 Show that the following is a density function and find its median:

a2(or + 2x) X2 + x) ‘
f(X) = -x—z'-(;+—x)2 I(a.uo)(x)+ m I(o' ¢](X), for o > 0

3 Find the constant X so that the following is a p.d.f.

f(x) = szi(_x, x)(x).
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Suppose that the cumulative distribution function (c.d.f.) Fx(x) can be written

as a function of (x — «)/8, where « and B8 > 0 are constants; that is, x, &, and 8

appear in Fx(+) only in the indicated form.

(a) Prove that if « is increased by Ae«, then so is the mean of X.

(b) Prove that if 8 is multiplied by k(k > 0), then so is the standard deviation
of X.

The experiment is to toss two balls into four boxes in such a way that each ball

is equally likely to fall in any box. Let X denote the number of balls in the first
box.

(@) What is the c.d.f. of X?

(b) What is the density function of X'?

(¢) Find the mean and variance of X.

A fair coin is tossed until a head appears. Let X denote the number of tosses

required. '

(@) Find the density function of X.

(b) Find the mean and variance of X.

(¢) Find the moment generating function (m.g.f.) of X.

A has two pennies; B has one. They match pennies until one of them has all

three. Let X denote the number of trials required to end the game.

(@) What is the density function of X?

(b) Find the mean and variance of X.

(¢) What is the probability that B wins the game?

Let fx(x) =(1/B)[1 — |(x — @)/B| U (a=p. a+5/(x), where « and B are fixed con-

stants satisfying — o <a < o and 8 > 0.

(@) Demonstrate that fx(-) is a p.d.f.,, and sketch it.

() Find the c.d.f. corresponding to fx(*). -

(¢) Find the mean and variance of X.

(d) Find the gth quantile of X. |

Let fx(x) = k(1/B}{1 — [(x — 0)/B1*}(a-5. «+(X), Where — oo < a <o and B >0,

(@) Find £ so that fix(-) is a p.d.f., and sketch the p.d.f.

(b) Find the mean, median, and variance of X.

(¢) Find &l X — «|].

(d) Find the gth quantile of X.

Let fx(x) = 0o 1)(x) + Iti. 2x(x) + (1 —DI(2.55(x)}, where 8 is a fixed constant

satisfying 0 < 6 < 1.

(a) Find the c.d.f. of X.

(b)) Find the mean, median, and variance of X.

Let f(x; ) =0f(x; 1)+ (1 — 6)f(x; 0), where 8 is a fixed constant satisfying

0 <6 <1. Assume that f(-; 0) and f(-; 1) are both p.d.f.’s.

(a) Show that f(-; 6) is also a p.d.f.

(b) Find the mean and variance of f(- ; 6) in terms of the mean and variance of
f(-;0)and f(-; 1), respectively.

(¢) Find the m.g.f. of f(-; 8) in terms of the m.g.f.’s of f(-; 0) and f(-; 1).
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12 A bombing plane flies directly above a railroad track. Assume that if a large
(small) bomb falls within 40 (15) feet of the track, the track will be sufficiently
damaged so that traffic will be disrupted. Let X denote the perpendicular
distance from the track that a bomb falls. Assume that

(@)
(b)

13 (a)

*(b)

14 (a)

(b)

(c)

100 — x

5000 1[0.100)(X)-

Sx(x) =

Find the probability that a large bomb will disrupt traffic.

If the plane can carry three large (eight small) bombs and uses all three
(eight), what is the probability that traffic will be disrupted?

Let X be a random variable with mean px and variance ¢?. Show that
E[(X — b)*), as a function of b, is minimized when b = p.

Let X beacontinuous random variable withmedianm. Minimize &[| X — b|]
as a function of 5. Hint: Show that &[|X— b|1=&[|X—m|]+
2 |7 (x — bifx(x) dx.

If X is a random variable such that &£[X]=3 and &[X?] =13, use the
Chebyshev inequality to determine a lower bound for P[—2 < X < 8].

Let X be a discrete random variable with density

fx(x) =30 1)(x) + ioy(x) + 31\ (x).

For k =2 evaluate P[{ X — ux| = kox]. (This shows that in general the
Chebyshev inequality cannot be improved.)

If X is a random variable with &[.X] == u satisfying P[X < 0] == 0, show that
PIX > 2u] < 3.

15 Let X be a random variable with p.d.f. given by

Sx(x) = | 1 — x|I[0_ 21(x).

Find the mean and variance of X.
16 Let X be a random variable having c.d.f.

Fx(x) = pH(x) + (1 — p)G(x),

where p is a fixed real number satisfying 0 < p < 1,

and

(@)
(b)

()

H(X) = XI(()_ 1](X) + I(l. w)(x)’

G(x) = %XI(O. 23(X) + Iz, w0 )(X).
Sketch Fx(x) for p = 1.

Give a formula for the p.d.f. of X or the discrete density function of X,
whichever is appropriate.
Evaluate P{XY <3l X <1].

17 Doesthere exist a random variable X forwhich P[uy — 2¢, < X < px +20x] = .67
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An urn contains balls numbered 1, 2, 3. First a ball is drawn from the urn,
and then a fair coin is tossed the number of times as the number shown on the
drawn ball. Find the expected number of heads.

If X has distribution given by P[X =0]=P[X =2]=p and P[X=1]1=1—2p
for 0 < p < %, for what p is the variance of X a maximum?

If X is a random variable for which P[.X < 0] =0 and &[X] = x < o, prove that
P[X < ut]=1—1/t for every t >1. '

Given the c.d.f.

Fx(x)=0 for x <0
=x%+.2 for0 <x<.5
=X for .5 <x <1
=1 for I <x.

(a) Express Fx(x) in terms of indicator functions.
(b) Express Fy(x) in the form

aF*(x) + bF*(x),

where F*(-) is an absolutely continuous c.d.f. and FU(-) is a discrete c.d.f.
(¢) Find P[.25 < X < .75].
(d) Find P[.25 < X < .5].
Let f(x) = Ke™**(1 — e™*"}Mo, »)(X).
(a) Find K such that f(-) is a density function.
(b) Find the corresponding c.d.f.
(¢) Find P[X >1].
A coin is tossed four times. Let X denote the number of times a head is followed
immediately by a tail. Find the distribution, mean, and variance of X.
Let fx(x; 6) = (6x + $)I-1.1r(x), where 6 is a constant.
(a) For what range of values of 8 is fx(-; 6) a density function?
(b) Find the mean and median of X.
(¢) For what values of @ is var [ X] maximized?
Let X be a discrete random variable with the nonnegative integers as values.

Note that &[t*] = > t/P[X = j]. Hence,&[t*]isa probability generating function
J=0

of X, inasmuch as the coefficient of #/ gives P[X =;]. Find &[¢*] for the random
variable of Probs. 6 and 7.
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SPECIAL PARAMETRIC FAMILIES OF
UNIVARIATE DISTRIBUTIONS

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to present certain parametric families of univariate
density functions that have standard names. A parametric family of density
functions is a collection of density functions that is indexed by a quantity called
a parameter. For example, let f(x; 1) = le %I, ,,(x), where A > 0; then for
each 1 >0, f(+; 1) is a probability density function. 1 is the parameter, and as
2 ranges over the positive numbers, the collection { (+; 1): 2 > 0} is a parametric
family of density functions.

The chapter consists of three main sections: parametric families of dis-
crete densities are given in one; parametric families of probability density func-
tions are given in another, and comments relating the two are given in the final
section. For most of the families of distributions introduced, the means,
variances, and moment generating functions are presented; also, a sketch of
several representative members of a presented family is often included. A
table summarizing results of Secs. 2 and 3 is given in Appendix B.
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2 DISCRETE DISTRIBUTIONS

In this section we list several parametric families of univariate discrete densities.
Sketches of most are given ; the mean and variance of each are derived, and usually
examples of random experiments for which the defined parametric family
might provide a realistic model are included.

The parameter (or parameters) indexes the family of densities. For
each family of densities that is presented, the values that the parameter can
assume will be specified. There is no uniform notation for parameters; both
Greek and Latin letters are used to designate them.

2.1 Discrete Uniform Distribution

Definition 1 Discrete uniform distribution Each member of the family
of discrete density functions

forx=1,2,..., N 1

=_I{1.2....,N}(x)s (1)

N

1
@ =fe Ny ="
0

otherwise

where the parameter N ranges over the positive integers, is defined to have
a discrete uniform distribution. A random variable X having a density
given in Eq. (1) is called a discrete uniform random variable. /1]

Z—e

=]
3]
(8

L

Density of discrete uniform.

Theorem 1 If X has a discrete uniform distribution, then &[X] =
(N + 1)/2,

(N2 -1)

var [X] = B

N o1
, and my(t) = &le¥] = Y ' —.
/=t N
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PROOF

N1 N+
é&X= .—=—~—-—-—_
[x] ,-Z,’N 2

N 1 N +1\?
var [X] = &[X°] — (&[X])* = .ijﬁ_( )

=1 2
NN +DRN+1) (N+1)? (N+DIN-1)
B 6N T4 12 '
X y jt 1
fl= 2y Il

Remark The discrete uniform distribution is sometimes defined in
density form as f(x; N)=[1/(N + Dl ;... n (x), for N a nonnegative
integer. If such is the case, the formulas for the mean and variance have
to be modified accordingly. I/

Bernoulli and Binomial Distributions

Definition 2 Bernoulli distribution A random variable X is defined
to have a Bernoulli distribution if the discrete density function of X is
given by

Sx(x) = fx(x; p)
p’d—p)* forx=0o0rl

= =p*(l _P)l _xI{o, l}(x), (2)
0 otherwise

where the parameter p satisfies 0 <p <1, 1 — p is often denoted by g.

I

FIGURE 2 [" P
Bernoulli density. 0 1 —X
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Theorem 2 If X has a Bernoulli distribution, then
S[X]1=p, var[X]=pg, and  my(t) =pe' +q. (3

PROOF &[X]=0-g+1-p=p.
var [X] = 6[X?] — (E[X])* =0 g+ 1% p—p* =pq.
my(t) = &[e’X] = g + pe'. /1]

EXAMPLE | A random experiment whose outcomes have been classified
into two categories, called ““success’” and *‘failure,” represented by the
letters s and ¢, respectively, is called a Bernoulli trial. 1If a random
variable X is defined as 1 if a Bernoulli trial results in success and 0 if
the same Bernoulli trial results in failure, then X has a Bernoulli distribu-
tion with parameter p = P[success]. /1]

EXAMPLE 2 For a given arbitrary probability space (Q, o/, P[] and for 4
belonging to <7, define the random variable X to be the indicator function
of A; that is, X(w) = I ,(w); then X has a Bernoulli distribution with
parameter p = P[X = 1] = P[A4]. /1]

Definition 3 Binomial distribution A random variable X is defined to
have a binomial distribution if the discrete density function of X is given
by

n\ < n-x _
x)p forx=0,1,...,n
0 otherwise : (4)

Sx(x) = fx(x;n, p) = {(

= (’;) qun—xl(o, 1yorss n}(x)’

n=10p =25 n=10,p=25

]
012 3 435

FIGURE 3
Binomial densities.
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where the two parameters # and p satisfy 0 < p < 1, n ranges over the
positive integers, and ¢ =1 — p. A distribution defined by the density
function given in Eq. (4) is called a binomial distribution. /11!

Theorem 3 If X has a binomial distribution, then

E[X]=np, var[X]=npg, and  my()=(q+ pe’). (5)
PROOF
mx(t) —_ éw[etX] — xgoerx(:)pan-x — xgo(:)(pet)an—x
=(pe' +q)".
Now

m(t) = npe'(pe' + g)y"~!

and
bmﬁ(t) = n(n — 1)(pe")*(pe’ + q)"~? + npe'(pe’ +q)"™*;
hence |
E[X] = mx(0) =np
and
var [X] = &[X°] — (€[ X])?

= my(©0) — (np)* = n(n — p* + np — (np)* = np(l — p). I

Remark The binomial distribution reduces to the Bernoulli distribution
when n=1. Sometimes the Bernoulli distribution is called the point
binomial. /]

EXAMPLE 3 Consider a random experiment consisting of » repeated inde-
pendent Bernoulli trials when p is the probability of success o at each
individual trial. The term * repeated” is used to indicate that the prob-
ability of o remains the same from trial to trial. The sample space for
such a random experiment can be represented as follows:

Q‘__{(lezz,---,Zn):zi:{,forzi:/}_

z; indicates the result of the ith trial. Since the trials are independent,
the probability of any specified outcome, say {(#, /s 0, f 0, 35 -, f, D)},
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is given by ggpqpp - - - qp. Let the random variable X represent the num-
ber of successes in the n repeated independent Bernoulli trials. Now
P[X = x] = Plexactly x successes and »n — x failures in » trials] =

A - . .
(x) pq" *forx=0,1, ..., nsince each outcome of the experiment that has

exactly x successes has probability p*¢" > and there are (’;) such outcomes.

Hence X has a binomial distribution. /]

EXAMPLE 4 Consider sampling with replacement from an urn containing
M balls, K of which are defective. Let X represent the number of defec-
tive balls in a sample of size n. The individual draws are Bernoulli trials
where ‘“ defective” corresponds to ‘“‘success,” and the experiment of
taking a sample of size n with replacement consists of n repeated inde-
pendent Bernoulli trials where p = P[success] = K/M; so X has the
binomial distribution

(n) [E} [1 — -IE:\ for x=0,1,...,n, (6)

x/ M M

which is the same as P[4, ] in Eq. (3) of Subsec. 3.5 of Chap. I, for x = k.
/17

The sketches in Fig. 3 seem to indicate that the terms fy(x; n, p) increase
monotonically and then decrease monotonically. The following theorem states
that such is indeed the case.

Theorem 4 Let X have a binomial distribution with density fx(x; n, p);
then fy(x — 1; n, p) <fx(x; n, p) for x <(n+ l)p; fx(x—1; n, p)>
fx(x;n,p)forx > (n+ Dp,and fy(x — 1;n,p) =fx(x;n,p)if x=(n + 1)p
and (n + 1)p is an integer, where x ranges over 1,..., n.

PROOF

fx(x; n,p) _n—x+1 p

|+ (n+1Dp—x
fx(x—1;n,p) x q xq

which is greater than 1 if x < (n + 1)p, smaller than 1 if x > (rn + 1)p,
and equal to 1 if the integer x should equal (n + 1)p. /1]

b
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2.3 Hypergeometric Distribution

Definition 4 Hypergeometric distribution A random variable X is
defined to have a hypergeometric distribution if the discrete density function
of X is given by

(03
X/AR X for x=0,1,...,n
fX(x; MsK, n)-:( M
n
0 otherwise (7)

(GG

- (M) I{O.l,...,n}(x)

n

where M is a positive integer, K is a nonnegative integer that is at most M,
and » is a positive integer that is at most M. Any distribution function
defined by the density function given in Eq. (7) above is called a Ayper-
geometric distribution. /1]

Theorem 5 If X is a hypergeometric distribution, then

K K M- M —
E[X]=n"— and var [X]=n-— K. " ®)

M M~ M M-I
?ROOF
K\(M - K K—-1\({M—-K

n—1

_ m (a b a+b _
using Y ( ) (m )= m ) given in Appendix A.
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M=10:K=4:n=4 M=10K=4n=S5

t Tg-x&] ]

0 | 2 3 4

FIGURE 4
Hypergeometric densities.

EIX(X — 1)]

IS
R

K(K-1) & (If—_éz)(ﬁg: I;)

=n(n — I)M(M— l)xZ’z M—Z)
n—2
(K—Z)(M—Z—K+2)
K(K-1)22\ y n—2-—y B KK -1
=n(n = 1)M(M- 1) ,,;0 (M—Z) =ntn=1) M(M —1)
n—2

Hence

var [X] = 6[X?] — (€[X])* = 6[X(X — D] + &[X] — (6[X])°
K(K-1) K K?

S —
M(M—1)+nM Ve

cnE Jomn Koty nK

=n(n —1)

M M-1 M
_nK [(M — K)}(M — n)J
M MM - 1) 11/

Remark If we set K/M = p, then the mean of the hypergeometric dis-
tribution coincides with the mean of the binomial distribution, and the
variance of the hypergeometric distribution is (M — n)/(M — 1) times the
variance of the binomial distribution. i /1]
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EXAMPLE 5 Let X denote the number of defectives in a sample of size n
when sampling is done without replacement from an urn containing M
balls, K of which are defective. Then X has a hypergeometric distribution.
See Eq. (5) of Subsec. 3.5 in Chap. . /11!

2.4 Poisson Distribution

Definition 5 Poisson distribution A random variable X is defined to
have a Poisson distribution if the density of X is given by

—Ax
1”’ ,'1 for x=0,1,2,...)

X! e—)l,lx
fx(x)zfx(xii)=4| [=T 0.1,..4(x), (9)

(0 otherwise

where the parameter 1 satisfies 1 > 0. The density given in Eq. (9) is
called a Poisson density. /1]

Theorem 6 Let X be a Poisson distributed random variable; then

E[X] = 4, var [X] = 4, and  my(t) = M D), (10)
607
*
A=1 368 368
303 i=1
184
076 061
¢ 013 002 I 015 003
l F 3 F 1 —&—— X T & & » X
0 1 2 3 4 s 0 1 2 3 4 s
i=4
195 .19
147 : 156
073 J I I 104 560
018 ! L30 013 005 002 .001
0 3 5 6 8 o9 10 11 12 °F
FIGURE 5

Poisson densities.
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PROOF
© R i)
ma(t) = fle¥]) = 5 £
_ i () o Ahet.
=0 x! ’
hence,
miy(t) = e~ el
and
my(t) = le~*e'e*[Je' + 1].
So,
E[X] = myx(0) = 4
and
var [X] = 6[X%] — ([X] = mx(0) — A2 =24 + 1] — 2% = A, 11

The Poisson distribution provides a realistic model for many random
phenomena. Since the values of a Poisson random variable are the nonnega-
tive integers, any random phenomenon for which a count of some sort is of
interest is a candidate for modeling by assuming a Poisson distribution. Such
a count might be the number of fatal traffic accidents per week in a given state,
the number of radioactive particle emissions per unit of time, the number of
telephone calls per hour coming into the switchboard of a large business, the
number of meteorites that collide with a test satellite during a single orbit,
the number of organisms per unit volume of some fluid, the number of defects
per unit of some material, the number of flaws per unit length of some wire,
etc. Naturally, not all counts can be realistically modeled with a Poisson dis-
tribution, but some can; in fact, if certain assumptions regarding the phenomenon
under observation are satisfied, the Poisson model is the correct model.

Let us assume now that we are observing the occurrence of certain happen-
ings in time, space, region, or length. A happening might be a fatal traffic
accident, a particle emission, the arrival of a telephone call, a meteorite col-
lision, a defect in an area of material, a flaw in a length of wire, etc. We will
talk as though the happenings are occurring in time; although happenings
occurring in space or length are appropriate as well. The occurrences of the
happening in time could be sketched as in Fig. 6. An occurrence of a happen-
ing is represented by X ; the sketch indicates that seven happenings occurred
between time 0 and time t,. Assume now that there exists a positive quantity,
say v, which satisfies the following:
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5 ¢ :
0 iy
FIGURE 6

X
X
X
X
+
=

() The probability that exactly one happening will occur in a small
time interval of length 4 is approximately equal to vk, or Plone happening
in interval of length A] = vk + o(h).

(iiy The probability of more than one happening in a small time interval
of length A is negligible when compared to the probability of just one
happening in the same time interval, or P[two or more happenings in
interval of length 4] = o(h).

(ili) The numbers of happenings in nonoverlapping time intervals are
independent.

The term o(h), which is read ‘“some function of smaller order than 4,”
denotes an unspecified function which satisfies

. o(h)
lim —= =

h—=0

0.

The quantity v can be interpreted as the mean rate at which happenings occur per
unit of time and is consequently referred to as the mean rate of occurrence.

Theorem 7 If the above three assumptions are satisfied, the number of
occurrences of a happening in a period of time of length ¢ has a Poisson
distribution with parameter A =vt. Or if the random variable Z(¢)
denotes the number of occurrences of the happening in a time interval
of length ¢, then P[Z(t) = z] = e *"(vt)*/z! for z =0, 1, 2, ...,

We will outline two different proofs, neither of which is mathemati-
cally rigorous.

PROOF For convenience, let t be a point in time after time 0; so the
time interval (0, t] has length ¢, and the time interval (¢, ¢ + /] has length
h. Let P,(s) = P[Z(s) = n] = Plexactly n happenings in an interval of
length s]; then

Py(t + h) =P[no happenings in interval (0, ¢ + 4]]

= P[no happenings in (0, t] and no happenings in (¢, ¢ + #]]
= P[no happenings in (0, ¢]1P[no happenings in (1, t + 4]]
= Po(t)Po(h),

using (iii), the independence assumption.
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Now P[no happenings in (2, t + A]] = 1 — P[one or more happenings
in (¢, t+h]] =1 — Plone happening in (¢, ¢t + #]] — P[more than one
happening in (¢, t+ ]l =1—vh—o(h) — o(h); so Py(t+ h) = Pylt)
[1 — vA — o(h) — o(h)], or

Polt + hh) “PoD) _ _\p iy p iy P - oth)

and on passing to the limit one obtains the differential equation Py(t) =
— vPy(r), whose solution is Py(t) = e "', using the condition Py(0) = 1.
Similarly, P,(t + h) = P{(t)Po(h) + Po(t)P,(h), or Pt + h) = P,()[1 — vh
— o(h)] + Po()[vh + o(h)], which gives the differential equation P;(¢) =
— vP,(t) + vPy(t), the solution of which is given by P,(t) = vte™ ", using
the initial condition P,(0) =0. Continuing in a similar fashion one
obtains P/ (1) = — vP,(t) + vP,_,(1), forn =2, 3, ....

It is seen that this system of differential equations is satisfied by
P.(t) = (vt)’e” ¥/n.

The second proof can be had by dividing the interval (0, ¢) into, say
n time subintervals, each of length A =1¢/n. The probability that k
happenings occur in the interval (0, 1) is approximately equal to the prob-
ability that exactly one happening has occurred in each of £ of the »
subintervals that we divided the interval (0, ¢) into. Now the probability
of a happening, or “success,” in a given subinterval is vh. Each sub-
interval provides us with a Bernoulli trial; either the subinterval has a
happening, or it does not. Also, in view of the assumptions made, these
Bernoulli trials are independent, repeated Bernoulli trials; hence the
probability of exactly k ““successes’ in the n trials is given by (see

Example 3)
(osra—r-+- Q-3

which is an approximation to the desired probability that £ happenings will
occur in time interval (0, f). An exact expression can be obtained by
letting the number of subintervals increase to infinity, that is, by letting »
tend to infinity:

(Z) [v?t]k[l - %t]n_k = kl, (Vt)"[l _ _‘g]"_k (:zk . (W{f-w

n -k
as n — oo, noting that [l — E] — e v, [1 — _v.{] — 1, and (n)k/nk — 1.

n n
111
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Theorem 7 gives conditions under which certain random experiments in-
volving counts of happenings in time (or length, space, area, volume, etc.) can
be realistically modeled by assuming a Poisson distribution. The parameter v
in the Poisson distribution is usually unknown. Techniques for estlmatmg
parameters such as v will be presented in Chap. V1I.

In practice great care has to be taken to avoid erroneously applying the
Poisson distribution to counts. For example, in studying the distribution of
insect larvae over some crop area, the Poisson model is apt to be invalid since
insects lay eggs in clusters entailing that larvae are likely to be found in clusters,
which is inconsistent with the assumption of independence of counts in small
adjacent subareas.

EXAMPLE 6 Suppose that the average number of telephone calls arriving
at the switchboard of a small corporation is 30 calls per hour. (i) What
is the probability that no calls will arrive in a 3-minute period? (ii) What
is the probability that more than five calls will arrive in a 5-minute interval ?
Assume that the number of calls arriving during any time period has a
Poisson distribution. Assume that time is measured in minutes; then 30
calls per hour is equivalent to .5 calls per minute, so the mean rate of

occurrence is .5 per minute. P[no calls in 3-minute period] =e "' =
e~ (33 = 713 223,

. . . ey
P[more than five calls in 5-minute interval] = ) —
k=6 !

o0 —(.5K5) 2.5 k
=3 c k!( ) X .042. /1]

k=6

EXAMPLE 7 A merchant knows that the number of a certain kind of item
that he can sell in a given period of time is Poisson distributed. How
many such items should the merchant stock so that the probability will be
.95 that he will have enough items to meet the customer demand for a time

period of length T?7 Let v denote the mean rate of occurrence per unit
time and K the unknown number of items that the merchant should stock.
Let X denote the number of demands for this kind of item during the time

period of length 7. The 80111’110n requires finding K so that P[X < K]
> .95 or finding K so that Z [e_VT(vT)"/k'] >.95. In particular, if the

merchant sells an average of tWo such items per day, how many should
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he stock so that he will have probability at least .95 of having enough
items to meet demand for a 30-day month? Find X so that

K o~ (23 0)60k
Z ——— > .95,
or find K so that
w0 —6060k
y & < .05.
k=K+1 k!

The desired K can be found using an appropriate Poisson table (e.g.,
Molina, 1942 [45]). Itis K =73. 11/

EXAMPLE 8 Suppose that flaws in plywood occur at random with an average

of one flaw per 50 square feet. What is the probability that a 4 foot

x 8 foot sheet will have no flaws? At most one flaw? To get a sol-

ution assume that the number of flaws per unit area is Poisson distributed.
P[no flaws] = e~ 5932 = ¢4 & 527.

Plat most one flaw] = e™"%* + .64e™ %% & .865. 11/

A Poisson density function, like the binomial density, possesses a certain
monotonicity that is precisely stated in the following theorem.

Theorem 8 Consider the Poisson density

_)‘ﬂ.k

ek' fOI'k=0,1,2,_“_

e~ kT e A)k

—l)_k—l _;'Zk
(ek 1)'>ek' for k > 4,

and k
;e AT Ak

fk Y = ek',l if A is an integer and k£ = A.

PROOF
' ek — 1))k
e *A¥k! A’
which is less than 1 if k£ < A, greater than 1 if k > 4, and equal to 1 if A
is an integer and £ = . /11!
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2.5 Geometric and Negative Binomial Distributions

Two other families of discrete distributions that play important roles in statistics
are the geometric (or Pascal) and negative binomial distributions. The reason
that we consider the two together is twofold; first, the geometric distribution is a
special case of the negative binomial distribution, and, second, the sum of
independent and identically distributed geometric random variables is negative
binomially distributed, as we shall see in Chap. V. In Subsec. 3.3 of this chapter,
the exponential and gamma distributions are defined. We shall see that in
several respects the geometric and negative binomial distributions are discrete
analogs of the exponential and gamma distributions.

Definition 6 Geometric distribution A random variable X is defined
to have geometric (or Pascal) distribution if the density of X is given by

Sx(x) = fx(x; p)

p(l — p)* forx=0,1,...

- =p(l = p¥l,, . (%), (I1)
0 otherwise

where the parameter p satisfies 0 < p < 1. (Define g=1-p) /1]

Definition 7 Negative binomial distribution A random variable Y
with density

fx(x) = fx(x;r,p)

+x—1 rox - , X
_ (r ; )Pq =(xr)P(—q) for x=0,1,2,...

0 otherwise (12)
r+x—1y , |
= ( )p 0L, 4, ..4(%),
X
where the parameters r and p satisfy , - |, 2, 3, ...and 0 <p <l

(g =1—p), is defined to have a negative binomigi distribution. The
density given by Eq. (12) is called a negative binomiyi density.

1

Remark If in the negative binomial distributio

. ) N n r =1, then the negative
binomial density specializes to the geometric de

nsity. 1
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p=13
1
i
I ? —a— . . s » - * X
0 ] 2 3 4 5 6 7 8
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2
p=1%
[ T T ? . - . * — X
0 1 2 3 4 5 6 7 8
p
: 1
P=%
FIGURE 7 ]IIIr,eee”
Geometric densities. 0 1 2 3 4 5 6 7 8

Theorem 9 If the random variable X has a geometric distribution,
then
9

. var[X]=-=, and myr) = —L
)4 1 —ge

E[X] = (13)

re

R

PROOF Since a geometric distribution is a special case of a negative
binomial distribution, Theorem 9 is a corollary of Theorem 11. /1]

The geometric distribution is well named since the values that the geometric
density assumes are the terms of a geometric series. Also the mode of the
geometric density is necessarily 0. A geometric density possesses one other
interesting property, which is given in the following theorem.

Theorem 10 If X has the geometric density with parameter p, then

PIX2i+j|X=il=P[X =/] fori,j=0,1,2,....
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PROOF P[X =i+ jlX=2i]= P[PX[/‘Z, it,]j]
50
=(1-py
= P[X =] 1

Theorem 10 says that the probability that a geometric random variable is
greater than or equal to i + j given that it is greater than or equal to i is equal to
the unconditional probability that it will be greater than or equal to j. We will
comment on this again in the following example.

EXAMPLE 9 Consider a sequence of independent, repeated Bernoulli trials
with p equal to the probability of success on an individual trial. Let the
random variable X represent the number of trials required before the first
success; then X has the geometric density given by Eq. (11). To see this,
note that the first success will occur on trial x + 1 if this (x + 1)st trial
results in a success and the first x trials resulted in failures; but, by in-
dependence, x successive failures followed by a success has probability
(1 — p)*p. 1n the language of this example, Theorem 10 states that the
probability that at least / + j trials are required before the first success,
given that there have been i/ successive failures, is equal to the uncon-
ditional probability that at least j trials are needed before the first suc-
cess. That is, the fact that one has already observed i successive failures
does not change the distribution of the number of trials required to obtain
the first success. 1]/

A random variable X that has a geometric distribution is often referred
to as a discrete waiting-time random variable. It represents how long (in terms
of the number of failures) one has to wait for a success.

Before leaving the geometric distribution, we note that some authors
define the geometric distribution by assuming 1 (instead of Q) is the smallest
mass point. The density then has the form

f(x; p) = p(l — P)x_ll{l,z,...}(x)s (14)
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and the mean is 1/p, the variance isq/p?, and the moment generating function is
pe'/(1 — ge').

Theorem 11 Let X have a negative binomial distribution; then

rq r
ElX] = —p-, var [ X] =:—?q5 , and my(t) = [l —pqe‘] . (15)

PROOF my(1) = &[] = i)e‘x(_xr) p(—aq)y

[see Eq. (33) in Appendix Al.

my(t) = p"(—r)(1 — ge)™" "' (—ge')

and
my(1) = rgp'lg(r + 1)e*'(1 — ge’) ™" "% + &'(1 —gqe')™"~'];
hence
sIX]=myn| =%
=0 P
and

var [X] = mx(1) e (€[X1)* = rgplgp™" " 2(r+ D)+ p~" '] — (%1)

P p p* /1

The negative binomial distribution, like the Poisson, has the nonnegative
integers for its mass points; hence, the negative binomial distribution is poten-
tially a model for a random experiment where a count of some sort is of interest.
Indeed, the negative binomial distribution has been applied in population counts,
in health and accident statistics, in communications, and in other counts as
well. Unlike the Poisson distribution, where the mean and variance are the
same, the variance of the negative binomial distribution is greater than its mean.
We will see in Subsec. 4.3 of this chapter that the negative binomial distribution
can be obtained as a contagious distribution from the Poisson distribution.



2 DISCRETE DISTRIBUTIONS 103

EXAMPLE 10 Consider a sequence of independent, repeated Bernoulli
trials with p equal to the probability of success on an individual trial. Let
the random variable X represent the number of failures prior to the rth
success; then X has the negative binomial density given by Eq. (12), as the
following argument shows: The last trial must result in a success, having
probability p; among the first x + r — 1 trials there must be r — 1 successes
and x failures, and the probability of this is

x+r—1) ,—y x I'-I-X—l) r—1,x
L e

which when multiplied by p gives the desired result. /1]

A random variable X having a negative binomial distribution is often
referred to as a discrete waiting-time random variable. [t represents how long
(in terms of the number of failures) one waits for the rth success.

EXAMPLE 11 The negative binomial distribution is of importance in the
consideration of inverse binomial sampling. Suppose a proportion p
of individuals in a population possesses a certain characteristic. 1f
individuals in the population are sampled until exactly r individuals with
the certain characteristic are found, then the number of individuals in
excess of r that are observed or sampled has a negative binomial dis-
tribution. i

2.6 Other Discrete Distributions

In the previous five subsections we presented seven parametric families of uni-
variate discrete density functions. Each is commonly known by the names
given. There are many other families of discrete density functions. In fact,
new families can be formed from the presented families by various processes.
One such process is called truncation. We will illustrate this process by looking
at the Poisson distribution truncated at 0. Suppose, as is sometimes the case,
that the zero count cannot be observed yet the Poisson distribution seems a
reasonable model. One might then distribute the mass ordinarily given to the
mass point O proportionately among the other mass points obtaining the family
of densities

—-A1x oA
fx(x)={g 2x1 - e forx=.1,2,...
otherwise.

(16)
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A random variable having density given by Eq. (16) is called a Poisson
random variable truncated at 0.

Another process for obtaining a new family of densities from a given
family can also be illustrated with the Poisson distribution. Suppose that a
random variable X, representing a count of some sort, has a Poisson distribu-
tion. If the experimenter is stuck with a rather poor counter, one that cannot
count beyond 2, the random variable that the experimenter actually observes
has density given by

z‘OIl 2

f(2) | e | e~ * l—e_‘—).e_zl

The counter counts correctly values 0 and 1 of the random variable X; but if X
takes on any value 2 or more, the counter counts 2. Such a random variable
is often referred to as a censored random variable.

The above two illustrations indicate how other families of discrete densities
can be formulated from existing families. We close this section by giving two
further, not so well-known, families of discrete densities.

Definition 8§ Beta-binomial distribution The distribution with discrete
density function

I{O, Lyeer .n}(x)

(17)

n) [+ B) . I'x+o)I'(n+ B — x)

f(x) =f(X;n’ %, B)= (_x r(a)r(ﬁ) T(n—l—a-i—ﬂ)

where n is a nonnegative integer, a >0, and 8 > 0, is defined as the beta-
binomial distribution.

I'(m) is the well-known gamma function I'(m) = [5° x™~'e™ dx for
m > 0. See Appendix A. The beta-binomial distribution has

no and ) _ naf(n+a+p)
A+ p NG AN = e+ B+ 1)

Mean = (18)

It has the same mass points as the binomial distribution. Ifa=f=1,
then the beta-binomial distribution reduces to a discrete uniform distribu-
tion over the integers 0, 1, ... n. /1]
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Definition 9 Logarithmic distribution The distribution with discrete
density function

( qx 3\
" ioe s for x=1,2,... .
—xlog.p qu
f(x;p) = =_—xlgge—p1{1,z,...}(x), (19)

\0 otherwise /
where the parameters satisfy 0 < p <1 and ¢ =1 — p is defined as the

logarithmic distribution. o //// )

The name is justified if one recalls the power-series expansion of loge(l = q).
The logarithmic distribution has ~

q : q(g + log, p)
and variance =

S . 20
—plog.p —(plog,. p)’ (20)

Mean =
[t can be derived as a limiting distribution of negative binomial distributions
that have been generalized to include r, any positive number (rather than just
an integer), truncated at 0. The limiting distribution is obtained by letting r
approach 0.

3 CONTINUOUS DISTRIBUTIONS

In this section several parametric families of univariate probability density
functions are presented. Sketches of some are included ; the mean and variance
(when they exist) of each are given.

3.1 Uniform or Rectangular Distribution

A very simple distribution for a continuous random variable is the uniform dis-
tribution. [t is particularly useful in theoretical statistics because it is convenient
to deal with mathematically.

Definition 10 Uniform distribution 1f the probability density function
of a random variable X is given by

) =fx(x; a, b) = Iia, 5y(x), 21)
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FIGURE 8
Uniform probability density.

where the parameters a and b satisfy — o0 < a < b < o0, then the random
variable X is defined to be uniformly distributed over the interval [a, b],
and the distribution given by Eq. (21) is called a uniform distribution.

/11
Theorem 12 If X is uniformly distributed over [a, ], then
a+b (b — a)? & — ™
— = e . 22
X1 =12, =S5 ad m(=g— . @
PROOF
b 1 b2 —a®? a+b
E[X] = fax—b—adx=2(b—a)_ 5
b, 1 + b\?
var [X] = £[X?] — (€[ X])* = J. x? dx — (a )
a b — a 2
_ b — a? (a!-f-b)z_(b—a!)2
"~ 3(b—a) 4 12
b 1 ebl‘ _ eal‘
)=¢&¥]= | & dx = :
my(t) = 81N = [ & — dx T ”

The uniform distribution gets its name from the fact that its density is
uniform, or constant, over the interval [a, b]. It is also called the rectangular
distribution—the shape of the density is rectangular.

The cumulative distribution function of a uniform random variable is
given by

X —a

b _ a) I[a.b](X) + Lp. )(X). (23)

Fy(x) = (
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It provides a useful model for a few random phenomena. For instance, if it
is known that the values of some random variable X can only be in a finite
interval, say [a, b], and if one assumes that any two subintervals of [a, b] of
equal length have the same probability of containing X, then X has a uniform
distribution over the interval [a, #]. When one speaks of a random number
from the interval [0, 1], one is thinking of the value of a uniformly distributed
random variable over the interval [0, 1].

EXAMPLE 12 If a wheel is spun and then allowed to come to rest, the point
on the circumference of the wheel that is located opposite a certain fixed
marker could be considered the value of a random variable X that is
uniformly distributed over the circumference of the wheel. One could
then compute the probability that X will fall in any given arc. /1]

Although we defined the uniform distribution as being uniformly dis-
tributed over the closed interval [a, b], one could just as well define it over the
open interval (a, b) [in which case fx(x) = (b — a)™'I, ,(x)] or over either of the
half-open—half-closed intervals (a, b] or [a, b). Note that all four of the possible
densities have the same cumulative distribution function. This lack of unique-
ness of probability density functions was first mentioned in Subsec. 3.2 of
Chap. 1L

3.2 Normal Distribution

A great many of the techniques used in applied statistics are based upon the
normal distribution; it will frequently appear in the remainder of this book.

Definition 11 Normal distribution A random variable X is defined to
be normally distributed if its density is given by

Sx(x) = fx(x; u, o) = L e~ (x—m)?/2a?

2n0

; (24)

where the parameters u and o satisfy —o <y < 0 and ¢ >0. Any
distribution defined by a density function given in Eq. (24) is called a
normal distribution. /1]

2
We have used the symbols £ and ¢° to represent the parameters because

these parameters turn out, as we shall see, to be the mean and variance, respec-
tively, of the distribution.
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FIGURE 9 |
Normal densities. _2 _—1 gl 1 u 2 3 4 5 x

One can readily check that the mode of a normal density occurs at x = u
and inflection points occurat y — ¢ and u + 6. (See Fig. 9.) Since the normal
distribution occurs so frequently in later chapters, special notation is introduced
for it. If random variable X is normally distributed with mean g and variance
o?, we will write X ~ N(u, 6%). We will also use the notation ¢, ,.(x) for the
density of X ~ N(u, 6®) and @, ,.(x) for the cumulative distribution function.

If the normal random variable has mean O and variance 1, it is called a
standard or normalized normal random variable. For a standard normal ran-
dom variable the subscripts of the density and distribution function notations
are dropped; that is,

_ 1

Since ¢, ,(x) is given to be a density function, it is implied that

e ¥ and D(x) = JJ ¢(u) du. (25)

[ ot ax=1,

but we should satisfy ourselves that this is true. The verification is somewhat
troublesome because the indefinite integral of this particular density function
does not have a simple functional expression. Suppose that we represent the
area under the curve by A4; then

1 % —a-wy2e
A= _f e TN dx,

\/230' — o

and on making the substitution y = (x — py)/o, we find that

[ o]

-5l

e ¥ dy.
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10

5
FIGURE 10
Normal cumulative distribution | __I-/I 3
function. , u— 3o u—a6 pu p+o u+ o

We wish to show that 4 = 1, and this is most easily done by showing that 4% is
1 and then reasoning that 4 =1 since ¢, ,2(x) is positive. We may put

u,a?

fw -3y dy ——

_ |
v AR S N
= inf_w J‘io e~ 102+ gy d>

by writing the product of two integrals as a double integral. In this integral
we change the variables to polar coordinates by the substitutions

a0

__Lzl dz

y=rsin0

z=rcos0,
and the integral becomes

1 ® 2%
= —4r?
- fo fo re” ¥ do dr
= J' re ¥ dr
0
= 1.
Theorem 13 If X is a normal random variable,
E[X1=p, var[X]=0% and  m,(f) = e#*o02, (26)

PROOF
my(t) = &[e'*] = e"‘é”[e'(x ~M]

[ o]

tuJ. _ et(x—#) =(1/262)(x— u)? dx
-0 \/21Z

f "(1/202)[(1—;1)2—Zazt(x—,u)] dx

\/21r - '

If we complete the square inside the bracket, it becomes

2 240 ) — (v — 1\2 2
(x — 1)? = 20°t(x — p) = (x — 0> — 2624(x — 1) + o*% — o%12

=(x—p—a?)? — 6%,
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and we have
1 v o]
Toral-

The integral together with the factor 1/\/ 2o is necessarily 1 since it is the

area under a normal distribution with mean pu + 6%t and variance o2
Hence,

tu o2t2f2

mx(t) = e'e e”FTumotnt2et gy

mx(t) — e,ut+alt2/2.
On differentiating m(f) twice and substituting ¢ = 0, we find

E[X] = my(0) = u
and
var [X] = §[X?] — (S[X])? = my(0) — u* = o2,

thus justifying our use of the symbols x and o2 for the parameters. ////

Since the indefinite integral of ¢, ,.(x) does not have a simple functional
form, one can only exhibit the cumulative distribution function as

®, () = | _ B o2(u) . (27)

The following theorem shows that we can find the probability that a normally
distributed random variable, with mean u and variance ¢?, falls in any interval
in terms of the standard normal cumulative distribution function, and this
standard normal cumulative distribution function is tabled in Table 2 of
Appendix D.

Theorem 14 If X ~ N(u, ¢?), then

b — -
P[a<X<b]=(I)( ”)—tp(a ”). (28)
o o
PROOF
b 1 2
Pla<X < b]=j e Hx—w/e)l gy
a /2no
(b—u)/a
= ! —1: ew*z2 dZ
(a—p)/e \/27r

o

=q>(”"‘) _cp(“;“). Il
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Remark ®(x) =1 — ®(—x). 111

The normal distribution appears to be a reasonable model of the behavior
of certain random phenomena. It also is the limiting form of many other prob-
ability distributions. Some such limits are given in Subsec. 4.1 of this chapter.
The normal distribution is also the limiting distribution in the famous central-
limit theorem, which is discussed in Sec. 4 of Chap. V and again in Sec. 3 of
Chap. VI.

Most students are already somewhat familiar with the normal distribution
because of their experience with ““grading on the curve.” This notion is
covered in the following example.

EXAMPLE 13 Suppose that an instructor assumes that a student’s final
score is the value of a normally distributed random variable. If the
instructor decides to award a grade of A4 to those students whose score
exceeds u + o, a B to those students whose score falls between u and
u + o, a Cif a score falls between 4 — ¢ and u, a D if a score falls between
u — 20 and p — o, and an F if the score falls below y — 20, then the pro-
portions of each grade given can be calculated. For example, since

PIX>u+0]l=1—-P[X<pu+0o]=1 —Q(La_—”)
o
=1— (1) ~ .1587,
one would expect 15.87 percent of the students to receive A’s. /1]

EXAMPLE 14 Suppose that the diameters of shafts manufactured by a cer-
tain machine are normal random variables with mean 10 centimeters and
standard deviation .1 centimeter. If for a given application the shaft must
meet the requirement that its diameter fall between 9.9 and 10.2 centi-
meters, what proportion of the shafts made by this machine will meet the
requirement ?

10.2 — 10 _
P[99 < X<102] = ® (_1__) o (9.9 1 10)
= () — &(—1) ~ 9772 — 1587 = 8185. m

3.3 Exponential and Gamma Distributions

Two other families of distributions that play important roles in statistics are the
(negative) exponential and gamma distributions, which are defined in this sub-
section. The reason that the two are considered together is twofold; first, the
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exponential is a special case of the gamma, and, second, the sum of independent
identically distributed exponential random variables is gamma-distributed, as
we shall see in Chap. V.

Definition 12 Exponential distribution If a random variable X has a
density given by

Sx(x; 2y = Ae™ g, (%), (29)
where A > 0, then X is defined to have an (negative) exponential distribu-
tion. /1
Definition 13 Gamma distribution If a random variable X has density
given by

)“ r—1_—Aix
fx(x;r, ) = i"(—r) (AxX) "Le™ " I1g, o)(X)s (30)

where r > 0 and A > 0, then X is defined to have a gamma distribution.
I'(+) is the gamma function and it is discussed in Appendix A. 1]

Remark If in the gamma density r = 1, the gamma density specializes
to the exponential density. /1]

Theorem 15 If X has an exponential distribution, then

1 1 A
E[X] = 7 var [X] = FER and myx(t) = T for t < A
(1)

PROOF The exponential distribution was the distribution used as an
example for some definitions given in Chap.I1, and derivations of the above
appear there. Also, Theorem 15 is a corollary to the following theorem.

/1]

Theorem 16 If X has a gamma distribution with parameters r and 4,
then

r r A AT
&[X] = 3oV [X] = 7 and  my(t) = (A_—;’) for t < A.
(32)
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1.0
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FIGURE 11
Gamma densities (A= 1),

PROOF

my(t) = &[e'*]
—_ A etxxr—le—},x dx

o I'(r)

A r .m (/1 _ t)r St —(i-1) ( /1 )r
_ - r xd — .
(,1—:) fo e ¢ =

my(ty=rA"(A—t)~""!

and
my(t) =r(r + DA(A — )72,
hence
ELX] = miy(0) = %
and

var [X] = &[X?] — (£[ X])?
2 r 1 2
— my0) — (g) _rr+ 1) L0 (g) =

The exponential distribution has been used ag g model for lifetimes of
various things. When we introduced the Poisson distribution, we spoke of cer-
tain happenings, for example, particle emissions, occurring in time. The length
of the time interval between successive happenings can be shown to have an
exponential distribution provided that the number of happenings in a fixed
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time interval has a Poisson distribution. We comment on this again in Subsec.
4.2 below. Also, if we assume again that the number of happenings in a fixed
time interval is Poisson distributed, the length of time between time 0 and the
instant when the rth happening occurs can be shown to have a gamma distribu-
tion. So a gamma random variable can be thought of as a continuous waiting-
time random variable. It is the time one has to wait for the rth happening.
Recall that the geometric and negative binomial random variables were dis-
crete waiting-time random variables, In a sense, they are discrete analogs of the
negative exponential and gamma distributions, respectively.

Theorem 17 If the random variable X has a gamma distribution with
parameters » and A, where r is a positive integer, then

F(x)=1-— ril M.

(33)

PROOF The proof can be obtained by successive integrations by
parts. /111

For A = 1, Fy(x) given in Eq. (33) is called the incomplete gamma function
and has been extensively tabulated.

Theorem 18 If the random variable X has an exponential distribution
with parameter 4, then
P[X>a+ b|X>a] =P[X > b], fora>0and 6 > 0.

PIX>a+b] e "D
P[X>a] = e *

— e % = P[X > b]. Il

PROOF P[X>a+b|X>a]=

Let X represent the lifetime of a given component; then, in words,
Theorem 18 states that the conditional probability that the component will last
a + b time units given that it has lasted a time units is the same as its initial
probability of lasting b time units. Another way of saying this is to say that an
“old” functioning component has the same lifetime distribution as a ““new”
functioning component or that the component is not subject to fatigue or to

wear.
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3.4 Beta Distribution

A family of probability densities of continuous random variables taking on values
in the interval (0, 1) is the family of beta distributions.

Definition 14 Beta distribution If a random variable X has a density
given by

fx(x) = fx(x; a,b) = x* (1 — x)b_ll(o, (%), (34)

B(a, b)
where a > 0 and b > 0, then X is defined to have a beta distribution. [/[/

The function B(a, b) = [§ x*~'(1 — x)* " dx, called the beta function, is
mentioned briefly in Appendix A.

Remark The beta distribution reduces to the uniform distribution over
0, Yifa=5b=1. /1]

Remark The cumulative distribution function of a beta-distributed

random variable is

1
B(a, b)

Fy(x;a,b) =1, 1)(x)f0 W = w)" " du + Iy, g)(%); (35)

it is often called the incomplete beta and has been extensively tabulated.

1/
20
1.5
a=1
10 b =1
|
i
S+ :
‘ :
FIGURE 12 | | | '
X

Beta densities. 0 .2 4 .6 .8 10
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The moment generating function for the beta distribution does not have a
simple form; however the moments are readily found by using their definition.

Theorem 19 If X is a beta-distributed random variable, then

a ab
§)="g  and varlXl= cmm e
PROOF
kY __ 1 ' +a— _ -
E[X*] = 5oh fox" (1 — x)P~! dx
_Blk+a,b) Tk+al(k) I(a+b)
 Bla,b) T(k+a+b T@I®)
Tk +aI(a+b)
- T(@I(k + a + by
hence,

Ia+DIa+b) a

61X = Tala+b+1) a+bd

and

2
var [X] = &[X?] — (€[X))? = I'a +2T(a + b) ( a )

T@la+b+2 \a+b
(a+l)a a 2_ ab
=(a+b+1)(a+b)_(a+b) T @+ b+ Da+b)? /11

The family of beta densities is a two-parameter family of densities that
is positive on the interval (0, 1) and can assume quite a variety of different
shapes, and, consequently, the beta distribution can be used to model an experi-
ment for which one of the shapes is appropriate.

3.5 Other Continuous Distributions

In this subsection other parametric families of probability density functions that
will appear later in this book are briefly introduced; many other families exist.
The introductions of the three families of distributions, that go by the names of
Student’s t distribution, chi-square distribution, and F distribution, are de-
ferred until Chap. VI. These three families, as we shall see, are very important
when sampling from normal distributions.
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Cauchy distribution A distribution which we shall find useful for illustrative
purposes is the Cauchy, which has the density

(36)

1
S 2 B) = 2B [ — /Ty

where — o0 <a < o0 and f > 0.

Although the Cauchy density is symmetrical about the parameter a, its
mean and higher moments do not exist. The cumulative distribution function
18

1 = du
Fy(x) = ; f_w nB{l + [(u — a)/B1*} (37)

+ Larctan *=%
= _ + —arctan
2 = p

Lognormal distribution Let X be a positive random variable, and let a new
random variable Y be defined as Y =log, X. If Y has a normal distribution,
then X is said to have a lognormal distribution. The density of a lognormal
distribution is given by

1 1
f(x; p, 0%) = —— exp[— — (log. x — u)z] I, wy(%), (38)
X./2nc 20

where — o0 < < o0 and ¢ > 0.
X1 = et and var [X] = e2nt20® _ y2p+a? (39)

for a lognormal random variable X. Also, if X has a lognormal distribution,
then &[log, (X)] = u, and var [log, (X)] = ¢2.

Double exponential or Laplace distribution A random variable X is said to

have a double exponential, or Laplace, distribution if the density function of X
is given by

o) = o . ) = 5 exp (1 ), @

where —oo <a < oo and f>0. If X has a Laplace distribution, then
f[X]=a  and var [X] =282 (41)
Weibull distribution The density

Sf(x;a,b) =abx® e "I (%) (42)



118 SPECIAL PARAMETRIC FAMILIES OF UNIVARIATE DISTRIBUTIONS I

where a > 0 and b > 0, is called the Weibull density, a distribution that has been
successfully used in reliability theory. For b =1, the Weibull density reduces
to the exponential density. 1t has mean (1/a)'*T'(1 + b~') and variance
(1/a)**[T(1 + 2671 = T2(1 + b7YH].

Logistic distribution The /ogistic distribution is given in cumulative distribu-
tion form by

1
F(x;aaﬁ) = 1+ e—(x—a)”g, ) (43)

where —o0 <@ < 00 and f>0. The mean of the logistic distribution is given
by «. The variance is given by p*n%/3. Note that Fla —d; a, )=
1 — F(e + d; a, B), and so the density of the logistic is symmetrical about .
This distribution has been used to model tolerance levels in bioassay problems.

Pareto distribution The Pareto distribution is given in density-function form
by
0 /x 0+1
fX(x;xO ) 9) = (_O) I(xo, oc)(x)a (44)
Xo \ X

where 6 > 0 and x, > 0. The mean and variance respectively of the Pareto
distribution are given by
Bx, Ox3 ( 0x,

71 for 6>1 and a5 \5—1

2
) for 6> 2.

This distribution has found application in modeling problems involving distribu-
tions of incomes when incomes exceed a certain limit x; .

Gumbel distribution The cumulative distribution function
F(x;a, B) = exp(—e” *7/#), (45)

where —o0 <a < oo and B> 0 is called the Gumbel distribution. It appears
as a limiting distribution in the theory of extreme-value statistics.

Pearsonian system of distributions Consider a density function fy(x)
which satisfies the differential equation

1 dfy(x) x+a
fi(¥) dx by +bx +byx?

(46)

for constants @, by, b;, and b, . Such a density is said to belong to the Pearsonian
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system of density functions. Many of the probability density functions that we
have considered are special cases of the Pearsonian system. For example, if

Arxr—l —Aix

fx() = _IT)_ I[o,w)(x)a

then
1 dfx(x)__ +r—l=x—(r—1)//1
fx(x) dx X ~x/4

for x > 0; so the gamma distribution is a member of the Pearsonian system with
a = “"(r - 1)//1, bl = —1//1, and bo = b2 =0.

4 COMMENTS

We conclude this chapter by making several comments that tie together some
of the density functions defined in Secs. 2 and 3 of this chapter.

4.1 Approximations

Although many approximations of one distribution by another exist, we will
give only three here. Others will be given along with the central-limit theorem
in Chaps. V and VI.

Binomial by Poisson We defined the binomial discrete density function,
with parameters »# and p, as

(z) p*(l —p)y'—= forx=0,1,...,n.

If the parameter n approaches infinity and p approaches 0 in such a way that
np remains constant, say equal to A, then

—Arx

(Z) Pl —py* ex! (47)

for fixed integer x. The above follows immediately from the following con-

sideration:
n _ VA AN
()= pr= == () (1)
X x! \n n

_ A () (1 3 &)"(1 B 11) = ESVE:

n x!’
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since

N A\ ~* AL
(nz -1, (1 —-—) -1, and (l — —) —e? as n— .
n n n

Thus, for large n and small p the binomial probability(ﬁ)p"(l —-p)
can be approximated by the Poisson probability e™"?(np)*/x!. The utility of
this approximation is evident if one notes that the binomial probability in-

volves two parameters and the Poisson only one.
Binomial and Poisson by normal

Theorem 20 Let random variable X have a Poisson distribution with
parameter A; then for fixed a < b

P[a<ﬂ<b]

A

=Pl+a/i<X<A+b/A]-Ob)— ®a) as i- . (48)

PROOF Omitted. [Eq. (48) can be proved using Stirling’s formula,
which is given in Appendix A. It also follows from the central-limit
theorem.] /1]

Theorem 21 De Moivre-Laplace limit theorem Let a random variable
X have a binomial distribution with parameters » and p; then for fixed
a<b

X —_— - -
P[a < \/lp < b] =Plnp + a\/npq <X<np+ b\/npq]—>
npq
o) —P(a) asn— 0. (49)

PROOF Omitted. (This is a special case of the central-limit
theorem, given in Chaps. V and VI.) /1]

Remark We approximated the binomial distribution with a Poisson
distribution in Eq. (47) for large n and small p. Theorem 21 gives a
normal approximation of the binomial distribution for large ». /1]

The usefulness of Theorems 20 and 21 rests in the approximations Elit
they give. For instance, Eq. (49) states that P[np + a\/ npg < X <np+ b\/ npq]
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is approximately equal to ®(b) — ®(a) for large n. Orif c =np + a\/ n’p; and
d=np + b\/ npq, then Eq. (49) gives that P[c < X < d] is approximately equal
to

cb(fi-_—ff’) _® (c —" )

\/ npq \/ npq

for large n, and, so, an approximate value for the probability that a binomial
random variable falls in an interval can be obtained from the standard normal

distribution. Note that the binomial distribution is discrete and the approximat-
ing normal distribution is continuous.

EXAMPLE 15 Suppose that two fair dice are tossed 600 times. Let X
denote the number of times a total of 7 occurs. Then X has a binomial
distribution with parameters n =600 and p=1. &[X]=100. Find
P[90 < X < 110].

110 1\/ /5\600-J
P[90< X <110]= ) (6(,)0)(—) (—) ,
j=90 J 6 6

a sum that is tedious to evaluate. Using the approximation given by
Eq. (49), we have

110 — 100 -
P90 < X <110]~ ® (—) —® (MO)

NET
= B /9 — B(—./2) ~ ©(1.095) — D(—1.095) ~ .726.
/1]

500
6

4.2 Poisson and Exponential Relationship

When the Poisson distribution was introduced in Subsec. 2.4, an experiment
consisting of the counting of the number of happenings of a certain phenomenon
in time was given special consideration. We argued that under certain conditions
the count of the number of happenings in a fixed time interval was Poisson dis-
tributed with parameter, the mean, proportional to the length of the interval.
Suppose now that one of these happenings has just occurred; what then is the
distribution of the length of time, say X, that one will have to wait until the

next happening? P[X > t] = P[no happenings in time interval of length t] =
e~ "', where v Is the mean occurrence rate; so

Fx(D =P[X<t]=1-P[X>t]=1—¢"" fort>0;
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that is, X has an exponential distribution. On the other hand, it can be proved,
under an independence assumption, that if the happenings are occurring in
time in such a way that the distribution of the lengths of time between successive
happenings is exponential, then the distribution of the number of happenings
in a fixed time interval is Poisson distributed. Thus the exponential and Poisson
distributions are related.

4.3 Contagious Distributions and Truncated Distributions

A brief introduction to the concept of contagious distributions is given here.
If £5(), /1), . - -, () - . . is a sequence of density functions which are either all
discrete density functions or all probability density functions which may or may
not depend on parameters, and pg, py, ..., Py, --- 18 @ sequence of parameters

satisfying p, > 0 and ) p, =1, then ) p,fi(x) is a density function, which is
i=0 i=0

sometimes called a contagious distribution or a mixture. For example, if
Fo(X) =@, 5o2(x) (@ normal with mean p, and variance 63) and fi(x) = ¢, ,,2(x),
then

p0¢yo,ao2(x) + I 41 ¢u1,012(x)

1 e‘?.f[(.vc—ﬂlo)/ao]2 + p_l e-%lr[(-r—m)/tn]2 (50)

\/ﬂao \/Ztal

where p, = p and p, =1 — p, is a mixture of two normal densities. Equation
(50) is also sometimes referred to as a contaminated normal. A random variable
X has distribution given by Eq. (50) if it is normally distributed with mean g, and
variance ¢4 with probability p and normally distributed with mean p, and vari-
ance o with probability 1 — p. Contagious distributions or mixtures can be
useful models for certain experiments. For instance, the mixture of two normal
distributions given in Eq. (50) has five parameters, namely, p, uo, #,, 6o, and
o,. If we vary these five parameters, the density can be forced to assume a
variety of different shapes, some of which are bimodal; that is, the density has
two distinct local maximums.

Physical considerations of the random experiment at hand can sometimes
persuade one to consider modeling the experiment with a mixture. The
experimenter may know that the phenomena that he is observing are a mixture;
for example, the radioactive particle emissions under observation might be a
mixture of the particle emissions of two, or several, different types of radioactive
materials. :

=(1—p)
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The concept of mixing can be extended. Let {f(x; 6)} be a family of
density functions parameterized or indexed by 8. Let the totality of values
that the parameter ¢ can assume be denoted by 8. If @ is an interval (possibly
infinite) and g(6) is a probability density function which is O for all arguments
not in ©, then

J5.f(x; 0)9(6) 46 (51)

is again a density function, called a contagious distribution or a mixture. For
example, suppose f(x; 0) = e~ %0%/x! for x =0, 1, 2, ... and f(x; 6) = 0 other-
wise and

r

T() E“'_le_}'ﬁ'l(o,oo)(g)a

.g(ﬂ) =

a gamma density. Then

89x )Vr
J, fex0)- 9(0) do = f — Ixr)e""“‘de

r+x 1 —().+1)0 de

xvr(r)
oo T(r+x) 2[4+ DO le™ @GR + 1)6]
x'F(r) (A +1)y** J' I'(r + x)

{4 I'r+x) 1
B (,1 + 1) (DI (A + 1F

r+x—1 A \/ 1 *
= = 1...
( x )(,1+1) (,1+1) for x=0,1,...,

which is the density function of a negative binomial distribution with param-
eters r and p =A/(A +1). We say that the derived negative binomial distri-
bution is the gamma mixture of Poissons.

—-0nx
[F g a6
0

is sometimes called a compound Poisson, where g(8)I, ,,(0) is a probability
density function.

We have sketchily illustrated above how new parametric families of den-
sities can be obtained from existing families by the technique of mixing. In
Subsec. 2.6 we indicated how truncation could be employed to generate new
families of discrete densities. Truncation can also be utilized to form other
families of continuous distributions. For instance, the family of beta distri-
butions provides densities that are useful in modeling an experiment for which
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it is known that the values that the random variable can assume are between 0
and 1. A truncated normal or gamma distribution would also provide a useful
model for such an experiment. A normal distribution that is truncated at 0
on the left and at 1 on the right is defined in density form as

d)u,az(x)I(O, 1)(x)
@, (1) — D, (0)

This truncated normal distribution, like the beta distribution, assumes values
between 0 and 1.

Truncation can be defined in general. If X is a random variable with
density fx(-) and cumulative distribution Fy(-), then the density of X truncated
on the left at @ and on the right at 4 is given by

f(x)=f(x; p, 0) = (52)

Sx(OM (2, 5)(%)
Fx(b) — Fx(a)

(53)

PROBLEMS

I (a) Let X be a random variable having a binomial distribution with parameters

n=25and p=.2. Evaluate P[X <pux — 20x].

() If X is a random variable with Poisson distribution satisfying P[X =0] =
P[X = 1], what is §[X]?

(¢) If X is uniformly distributed over (1, 2), find z such that P[X >z -+ ux] = |.

(d) If Xis normally distributed with mean 2 and variance 1, find P[| X — 2| < 1].

(¢) Suppose X is binomially distributed with parameters » and p; further sup-
pose that &[X] =5 and var [X] =4. Find # and p.

(f) If &[X]1=10 and ox =3, can X have a negative binomial distribution?

(¢) If X has a negative exponential distribution with mean 2, find P[X < 1] X <2].

(h) Name three distributions for which P[X <{px] = }.

(i) Let X be a random variable having binomial distribution with parameters
n=100 and p =.1. Evaluate P[X < ux — 3ox].

(j) If X has a Poisson distribution and P[X = 0] = }, what is £[X]?

(k) Suppose X has a binomial distribution with parameters » and p. For what
p is var [ X] maximized if we assumed # is fixed ?

(/) Suppose X has a negative exponential distribution with parameter A. If
P[X < 1] = P[X > 1], what is var [X]?

(m) Suppose X is a continuous random variable with uniform distribution
having mean 1 and variance 4. What is PLX <0]?

(n) If X has a beta distribution, can &[1/X] be unity?

(0) Can X ever have the same distribution as —X? If so, when?

(p) If X is a random variable having moment generating function exp (et — 1),
what is &[X]?

2 (a) Find the mode of the beta distribution.
() Find the mode of the gamma distribution.
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‘Name a parametric family of distributions which satisfies:

(a) The mean must be greater than or equal to the variance.

(b) The mean must be equal to the variance.

(¢) The mean must be less than or equal to the variance.

(d) The mean can be less than, equal to, or greater than the variance (for dif-
ferent parameter values).

(@) If X is normally distributed with mean 2 and variance 2, express
P[| X — 1] < 2] in terms of the standard normal cumulative distribution
function.

(b) If X is normally distributed with mean p > 0 and variance o? = p?, express
P[X < —u| X < ] in terms of the standard normal cumulative distribution
function.

(¢) Let X be normally distributed with mean u and variance 2. Suppose o2 is
some function of u, say o = h(w). Pick #(-) so that P[X < 0] does not
depend on u for pu > 0.

Use the alternate definition of the median as given in the remark following Defi-

nition 18 of Chap. II. Find the median in each of the following cases:

(@)  fx(x) = Ae™ 10, »)(x).

() X is uniformly distributed on the interval (6,, 6,).

(¢) X has a binomial distribution with » =4, p = .5.

(d) X has a binomial distribution with » =5, p = .5.

(¢) X has a binomial distribution with n =2, p = .9.

A contractor has found through experience that the low bid for a job (excluding

his own bid) is a random variable that is uniformly distributed over the interval

2C, 2C), where C is the contractor’s cost estimate (no profit or loss) of the job.

If profit is defined as O if the contractor does not get the job (his bid is greater than

the low bid) and as the difference between his bid and his cost estimate C if he gets

the job, what should he bid (in terms of C) in order to maximize his expected
profit?

A merchant has found that the number of items of brand X Y.Z that he can sell

in a day is a Poisson random variable with mean 4.

(@) How many items of brand XYZ should the merchant stock to be 95 percent
certain that he will have enough to last for 25 days? (Give a numerical
answer.)

(b) What is the expected number of days out of 25 that the merchant will sell
no items of brand XYZ?

(a) If Xis binomially distributed with parameters » and p, what is the distribution
of Y=n-- X7

() Two dice are thrown # times. Let X denote the number of throws in which the
number on the first die exceeds the number On the second die. What is the
distribution of X?

*(c) A drunk performs a “randomwalk > over pOsitions 0, + 1, +2,... as follows:
He starts at 0. He takes successive one-unit steps, going to the right with
probability p and to the left with probability 1 — p. His steps are inde-
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pendent. Let X denote his position after » steps. Find the distribution of
(X -+ n)/2, and then find &[X].

*(d) Let X, (X,) have a binomial distribution with parameters » and p, (# and p,).

9

10

*11

12

13

*14

*15

If D1 < P2, show that P[X1 Sk]ZP[Xz Sk] for & =0, 1, ooy H. (ThlS
result says that the smaller the p, the more the binomial distribution is shifted
to the left.)

In a town with 5000 adults, a sample of 100 is asked their opinion of a proposed

municipal project; 60 are found to favor it, and 40 oppose it. If, in fact, the

adults of the town were equally divided on the proposal, what would be the prob-

ability of obtaining a majority of 60 or more favoring it in a sample of 100?

A distributor of bean seeds determines from extensive tests that 5 percent of a large

batch of seeds will not germinate. He sells the seeds in packages of 200 and

guarantees 90 percent germination. What is the probability that a given package
will violate the guarantee?

(a) A manufacturing process is intended to produce electrical fuses with no
more than 1 percent defective. It is checked every hour by trying 10 fuses
selected at random from the hour’s production. If 1 or more of the 10
fail, the process is halted and carefully examined. If, in fact, its prob-
ability of producing a defective fuse is .01, what is the probability that the
process will needlessly be examined in a given instance?

(b) Referring to part (a), how many fuses (instead of 10) should be tested if the
manufacturer desires that the probability be about .95 that the process will
be examined when it is producing 10 percent defectives?

An insurance company finds that .005 percent of the population die from a certain

kind of accident each year. What is the probability that the company must pay

off on more than 3 of 10,000 insured risks against such accidents in a given
year?

(@) If X has a Poisson distribution with P[X =1]=P[X =2], what is

P[X =1 or2]?

(b) If X has a Poisson distribution with mean 1, show that &[| X — 1|] = 2ox/e.

Recall Theorems 4 and 8. Formulate, and then prove or disprove a similar

theorem for the negative binomial distribution.

Let X be normally distributed with mean p and variance o2. Truncate the density

of X on the left at a and on the right at 5, and then calculate the mean of the trun-

cated distribution. (Note that the mean of the truncated distribution should fall
between g and b. Furthermore, if a = p — ¢ and b = u -} ¢, then the mean of the

truncated distribution should equal w.)

*]6 Show that the hypergeometric distribution can be approximated by the binomial

distribution for large M and K; i.e., show that
() (h=¥)
X n—x
lim :(’;) (1 —py~*

Maywx M
Koo
K/M-»p n
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Let X be the life in hours of a radio tube. Assume that X is normally distributed

with mean 200 and variance o>. If a purchaser of such radio tubes requires that

at least 90 percent of the tubes have lives exceeding 150 hours, what is the largest

value o can be and still have the purchaser satisfied ?

Assume that the number of fatal car accidents in a certain state obeys a Poisson

distribution with an average of one per day. '

(@) What is the probability of more than ten such accidents in a week?

(b) What is the probability that more than 2 days will lapse between two such
accidents?

The distribution given by

1
fx; B) = B xe= ¥’ [, .(x) for B >0

is called the Rayleigh distribution.

(a) Show that the mean and variance exist, and find them.

() Does the Rayleigh distribution belong to the Pearsonian system?
The distribution given by

f(x; B) = st/~ x2e= B o (%) for 8 >0

is called the Maxwell distribution.
(a) Show that the mean and variance exist, and find them.
() Does this distribution belong to the Pearsonian system?
The distribution given by

flx;n) = B, [n—212) (1 — x2)=2p_ 5(x)

is called the r distribution.
(@) Show that the mean and variance exist, and find them.
() Does this distribution belong to the Pearsonian system?
A die is cast until a 6 appears. What is the probability that it must be cast more
than five times?
Red-blood-cell deficiency may be determined by examining a specimen of the
blood under a microscope. Suppose that a certain small fixed volume contains,
on an average, 20 red cells for normal persons. What is the probability that a
specimen from a normal person will contain less than 15 red cells?
A telephone switchboard handles 600 calls, on an average, during a rush hour.
The board can make a maximum of 20 connections per minute. Use the Poisson
distribution to evaluate the probability that the board will be overtaxed during any
given minute.
Suppose that a particle is equally likely to release one, two, or three other particles,
and suppose that these second-generation particles are in turn each equally likely

to release one, two, or three third-generation particles. What is the density of
the number of third-generation particles?
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Find the mean of the Gumbel distribution.
Derive the mean and variance of the Weibull distribution.
Show that

n " p
P[X > k] = N pign-i — J (] = gyen
(X=h=2 (f)p" Blon—_k-1nJ, 0 L wrde

for X a binomially distributed random variable. That is, if X is binomially dis-
tributed with parameters » and p and Y is beta-distributed with parameters & and
n— k-1, then Fy(p) =1— Fx(k — ).

Suppose that X has a binomial distribution with parameters » and p and Y has a
negative binomial distribution with parameters r and p. Show that Fx(r — 1) =
| — Fy(n—r).

If U is a random variable that is uniformly distributed over the interval [0, 1], then
the random variable Z, = [U* — (1 — U)*J/A is said to have Tukey's symmetrical
lambda distribution. Find the first four moments of Z,. Find two different A’s,
say A; and Az, such that Z;, and Z,, have the same first four moments and unit
standard deviations.



IV

JOINT AND CONDITIONAL DISTRIBUTIONS,
STOCHASTIC INDEPENDENCE,
MORE EXPECTATION

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to introdice the concepts of k-dimensional
distribution functions, conditional distributions, joint and conditional expecta-
tion, and independence of random variables. It, like Chap. 11, is primarily a
* definitions-and-their-understanding ™ chapter.

The chapter is divided into four main sections in addition to the present
one. In Sec. 2, joint distributions, both in cumulative and density-function
form, are introduced. The important k-dimensional discrete distribution,
called the multinomial, is included as an example. Conditional distributionsand
independence of random variables are the subject of Sec. 3. Section 4 deals
with expectation with respect to k-variate distributions. Definitions of covari-
ance, the correlation coefficient, and joint moment generating functions, all
of which are special expectations, are given. The important concept of condi-
tional expectation is discussed in Subsec. 4.3. Results relating independence
and expectation are presented in Subsec. 4.5, and the famous Cauchy-Schwarz
inequality is proved in Subsec. 4.6. The last main section, Sec. 5, is devoted
to the important bivariate normal distribution, which gives one unified example
of many of the terms defined in the preceding sections.
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This chapter is the multidimensional analog of Chap. II. It provides
definitions needed to understand distributional-theory results of Chap. V.

2 JOINT DISTRIBUTION FUNCTIONS

In the study of many random experiments, there are, or can be, more than one
random variable of interest; hence we are compelled to extend our definitions
of the distribution and density function of one random variable to those of
several random variables. Such definitions are the essence of this section,
which is the multivariate counterpart of Secs. 2 and 3 of Chap. 1I. As in the
univariate case we will first define, in Subsec. 2.1, the cumulative distribution
function. Although it is not as convenient to work with as density functions,
it does exist for any set of k random variables. Density functions for jointly
discrete and jointly continuous random variables will be given in Subsecs. 2.2
and 2.3, respectively.

2.1 Cumulative Distribution Function

Definition 1 Joint cumulative distribution function Let X, X,,....X;
be k random variables all defined on the same probability space
(Q, o, P[-]). The joint cumulative distribution function of Xy, ..., X,
denoted by Fx, .. x.(*» ..., ), is defined as P[X; < x;; ... ; Xi'< x;] for
all (xq, x3, ..., Xi). /1]

Thus a joint cumulative distribution function is a function with domain
euclidean k space and counterdomain the interval [0, 1]. If & =2, the joint
cumulative distribution function is a function of two variables, and so its
domain is just the xy plane.

EXAMPLE 1 Consider the experiment of tossing two tetrahedra (regular
four-sided polyhedron) each with sides labeled 1 to 4. Let X denote the
number on the downturned face of the first tetrahedron and Y the larger
of the downturned numbers. The goal is to find Fx y(-, *), the joint cu-
mulative distribution function of X and Y. Observe first that the random
variables X and Y jointly take on only the values

(1, 1), (1, 2), (1, 3), (1, 4),
(2,2),(2,3),2,4), °
(3,3, (. 4,
4, 4).
(The first component is the value of X, and the second the value of Y.)
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Sample space for experiment of tossing

two tetrahedra.

2 3

4

First tetrahedron

The sample space for this experiment is displayed in Fig. 1. The 16
sample points are assumed to be equally likely. Our objective is to find

Fy y(x, y) for each point (x, y).
find Fy (2, 3)=P[X<2; Y<3].

As an example let (x, y) = (2, 3), and

Now the event {X <2 and Y < 3}
corresponds to the encircled sample points in Fig. 1; hence Fy y(2, 3) =
% Similarly, Fx y(x, y) can be found for other values of x and y.
Fx y(x, y) is tabled in Fig. 2.

/1

We saw that the cumulative distribution function of a unidimensional
random variable had certain properties; the same is true of a joint cumulative.
We shall list these properties for the joint cumulative distribution function of
two random variables; the generalization to k dimensions is straightforward.

TABLE OF VALUES OF Fx_y(x,))

4 <y 0 15 s # 1
I<y<4 0 fs () T T
-~
2<y<3 0 Te s s s
1<y<2 0 15 Ts s b
y<1 0 0 0 0 0
x <1 1<x<2 2<x<3 3<x<4 4 <x

FIGURE 2
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Properties of bivariate cumulative distribution function F{(-, )

() F(—o0,y)= lim F(x, y)=0forally, F(x, —0) = lim F(x, y) =0

X = — 00 Yy-—»—

forall x, and lim K(x, y) = F(o0, ®©) =1.

X -+ 00
Y-

(1y If x; <x,and y, <y,, then P[x; < X < x,; 3 < Y < ,]
= F(x3, y2) — F(x3, y1) — F(xy, ¥3) + F(x1, 1) 2 0.
(iil) F(x, y) is right continuous in each argument; that is,
lim F(x + h,y)= lim F(x,y + h) = F(x, y).

0<h—0 0<h=0

We will not prove these properties. Property (il) is a monotonicity
property of sorts; it is not equivalent to F(x,, y,) < F(x,, y,) for x;, < x,
and y, <y,. Consider, for example, the bivariate function G(x, y) defined
as in Fig. 3. Note that G(x,, y,) < G(x,, y,) for x, <x, and y, <y,,
yet Gl +el+e)—G(+¢l—e—G(—-¢l+e)+G(l —¢e]l—¢8)=1-—
(1 —¢e)—(l —e)=2—1<0fore<i;soG(x, y) does not satisfy property
(i) and consequently is not a bivariate cumulative distribution function.

Definition 2 Bivariate cumulative distribution function Any function
satisfying properties (i) to (iii) is defined to be a bivariate cumulative
distribution function without reference to any random variables. /11

Definition 3 Marginal cumulative distribution function If Fy ,(-, -)is
the joint cumulative distribution function of X and Y, then the cumulative
distribution functions Fx(*) and Fy(') are called marginal cumulative
distribution functions. 1/

TABLE OF G(x, y)

1<y 0 X 1
0<y<«l 0 0 ¥y
y<o 0 0 0
x <0 0<x<1 1<x

FIGURE 3
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Remark Fy(x) = Fx y(x, o), and Fy(y) = Fx, y(0, y); that is, knowl-
edge of the joint cumulative distribution function of X and Y implies
knowledge of the two marginal cumulative distribution functions. /1]

The converse of the above remark is not generally true; in fact, an example
(Example 8) will be given in Subsec. 2.3 below that gives an entire family of
joint cumulative distribution functions, and each member of the family has the
same marginal distributions.

We will conclude this section with a remark that gives an inequality
involving the joint cumulative distribution and marginal distributions. The
proof is left as an exercise.

Remark Fy(x) + Fy(3) — | < Fx y(x, ) < / Fx(x)Fy(y) for all x, y.
/1]

2.2 Joint Density Functions for Discrete Random Variables

If X;, X,, ..., Xi are random variables defined on the same probability space,
then (X, X,, ..., Xi) is called a k-dimensional random variable.

Definition 4 Joint discrete random variables The k-dimensional ran-
dom variable (X;, X,, ..., X)) is defined to be a k-dimensional discrete
random variable if it can assume values only at a countable number of
points (x;, X2, ..., X;) in k-dimensional real space. We also say that
the random variables X,, X,, ..., X, are joint discrete random variables.

/1

Definition 5 Joint discrete density function If (X,, X,,..., X,) is
a k-dimensional discrete random variable, then the joint discrete density

function of (X,, X,, ..., X)), denoted by /%, x,...x. (> *s..., "), is defined
to be

Ixi %0 x (X105 X2, X)) =PIX =x X =%, .00 X =x]

for (x;, x5, ..., x&), a value of (X, X, ..., X)) and is defined to be 0
otherwise. /1]
Remark ) fy, . x(x;, ..., x) =1, where the summation is over all

possible values of (X, ..., X,). /11
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fx. (% y)

1

J V.V VY
SNV Y

/S |
S/
/

FIGURE 4 x

EXAMPLE 2 Let X denote the number on the downturned face of the first
tetrahedron and Y'thelarger of the downturned numbers in the experiment
of tossing two tetrahedra. The values that (X, Y) can take on are (1, 1),
(1,2), (1, 3),(1,4),(2, 2),(2, 3), (2, 4), (3, 3), (3, 4), and (4, 4); hence X and
Y are jointly discrete. The joint discrete density function of X and Y
is given in Fig. 4.
In tabular form it is given as

(x, ¥) { (1, 1)|(1,2) | (1, 3) | (1,4)|(2, 2)[(2,3) [(2, 4) ’(3, 3) {(3, 4) { 4, 4)

- ] _1_|1|1|_2_|_1_|_1_|_3_|¢‘4_
fx,y(x=37)| T‘6’| 16 16 16 16 16 16 16 16 16

or in another tabular form as

I_
j._

1
4 | 18 q

6 16 16
3 A | s |
2 | %5 | s
I 1%
y/x ] 2 3 4 /1]

Theorem 1 If X and Y are jointly discrete random variables, then
knowledge of Fx y(-, *) is equivalent to knowledge of fx y(-, :). Also,
the statement extends to k-dimensional discrete random variables.
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PROOF Let (x,, y;), (X2, ¥2), ... be the possible values of (X, Y).
If fx v(*, *) is given, then Fx y(x, y) =) fx y(x;, y;), where the summa-
tion is over all ; for which x; < x and y; <y. Conversely, if Fx y(*, ‘) is
given, then for (x;, y;), a possible value of (X, Y),

fx,y(xi, y)) = Fyx, (i, y) — lm Fy y(x; — h, y;)

0<h—0
—_ ]im FX’Y(xi, y;_h)
0<h—0
0<h—0

Definition 6 Marginal discrete density If X and Y are jointly discrete
random variables, then fyx(‘) and fy(-) are called marginal discrete
density functions. More generally, let X, ,..., X; be any subset of the

jointly discrete random variables X, ..., X, thenfy, | x, (Xi5-.-5 X;,
is also called a marginal density. 11
Remark If X, ..., X, are jointly"discrete random variables, then any

marginal discrete density can be found from the joint density, but not
conversely. For example, if X and Y are jointly discrete with values
(xlv }’1)> (x2= y2)7 veey then

fx(x) = z Sx v (xis i) and Sr(n) = Z Sx, v(Xi, yi)- /1]

{F1xi=x} {iryi=wy}

Heretofore we have indexed the values of (X, Y) with a single index,
namely /. That is, we listed values as (xy, y,), (x5, ¥2), ..., (x;» ¥;), ... . The
values of (X, Y) could also be indexed by using separate indices for the X and Y
values. For instance, we could let / index the possible X values, say x,, ...,
X;, . ..,and j index the possible Y values, say y,, vy Yj» «+.. Then the values
of (X, Y)would be a subset of the points (x;, y)fori=1,2,...andj=1,2,....
If this latter method of indexing is used, then the marginal density of X is
obtained as follows:

fx(xk) = fo y(Xx, Y

where the summation is over all y; for the fixed x,. The marginal density of Y
is analogously obtained. The following example may help to clarify these two
different methods of indexing the values of (X, Y).

EXAMPLE 3 Return to the experiment of tossing two tetrahedra, and define
X as the number on the downturned face of the first tetrahedron and Y as
the larger of the numbers on the two downturned faces. The joint
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density of X and Y is given in Fig. 4. The values of (X, Y) can be listed
as (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), and (4, 4),
10 points in all. Or, if we note that X has values 1, 2, 3, and 4; Y has
values 1, 2, 3, and 4; and Y is greater than or equal X, the values of
(X, Y)are{(i,j):i=1,...,4;j=1,...,4; and i <j}. Let us use each
of these methods of indexing to evaluate Fx y(2, 3) from the joint density.
Under the first method of indexing,

Fx,v(2,3)= Z Ix, v(Xi5 ¥i)

{iix:<2,y:<3}

=fx, y(l, 1)"‘ fx, Y(] ’ 2)
+ fx,v(1, 3)+ fx, (2, 2)+ fx, v(2,3) =%

Under the second method of indexing,

2 3
FX, Y(2s 3) = Z Zifx,y(faf) = 1_66-

i=1J
Similarly, all other values of Fx y(*, ) could be obtained. Also
Sfy(3) ={ Z }fx, v, ¥ =fx, (1, 3) + fx, v(2, 3) + fx, v(3, 3)
Lyr=3
=T16' + Tl'é' + 16 =16
Similarly fy(1) =%, fy(2) =%, and fy(4) =%, which together with
f¥(3) = % give the marginal discrete density function of Y. 111/

EXAMPLE 4 We mentioned that marginal densities can be obtained from
the joint density, but not conversely. The following is an example of a
family of joint densities that all have the same marginals, and hence we
see that in general the joint density is not uniquely determined from
knowledge of the marginals. Consider altering the joint density given
in the previous examples as follows:

4 Te + € e —¢ ' s 1%

3 s —¢ e te 6

2 | & | &

1 Ts

y/ 1 2 3 4
x
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For each 0 < ¢ <, the above table defines a joint density. Note that
the marginal densities are independent of ¢, and hence each of the joint
densities (there is a different joint density for each 0 <& <) has the

same marginals. /11

We saw that the binomial distribution was associated with independent,
repeated Bernoulli trials; we shall see in the example below that the multinomial
distribution is associated with independent, repeated trials that generalize from
Bernoulli trials with two outcomes to more than two outcomes.

EXAMPLE 5 Suppose that there are & + 1 (distinct) possible outcomes of a

trial. Denote these outcomes by u;, vy, ..., 54y, and let p; = Plo;],
k+1

i=1,...,k+ 1. Obviously we must have ) p;=1,justasp+¢g=11in
i=1

the binomial case. Suppose that we repeat the trial » times. Let X,
denote the number of times outcome .; occurs in the »n trials,
i=1,..., k+ 1. If the trials are repeated and independent, then the
discrete density function of the random variables X;, ..., X, is

fxrree X 0 = 1 i, (n

k+1 k
where x; =0, ....,nand ) x;=n Notethat X,,, =n— Y X,.

i=1 i=1
To justify Eq. (1), note that the left-hand side is P[ X, = x;; X, = x,;
...} Xip1 = Xk41]; so, we want the probability that the » trials result in

exactly x, outcomes .,,, exactly x, outcomes .,, ..., exactly x,,; outcomes
k+1

s+1> Where ) x; =n.  Any specific ordering of these n outcomes has

1
Xk + 1

probability pj' - p3* - - pp%| by the assumption of independent trials,
and there are n!/x,; !x,! " - x,1! such orderings. /1]

Definition 7 Multinomial distribution The joint discrete density func-
tion given in Eq. (1) is called the multinomial distribution. 1/

The multinomial distribution is a (k + ])parameter faml]y of distri-
butions, the parameters being n and p;, p,, ..., p,. pi., is, like g in the
binomial distribution, exactly determined by p,,, =1 —p, —p, — - — pr. A
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f(xl’ x2)
1

20+ 1

1 /

2 /
o /L L/
P

FIGURE 5 '

particular case of a multinomial distribution is obtained by putting, for example,
n=3 k=2 p, =.2,and p, = .3, to get
3!

'2 X . X2 '5 3—x|—x2.

Jx, x(X15 x3) = f(xy, x3) =

This density is plotted in Fig. 5.

We might observe that if X,, X,, ..., X; have the multinomial distribu-
tion given in Eq. (1), then the marginal distribution of X; is a binomial distri-
bution with parameters n and p;. This observation can be verified by recalling
the experiment of repeated, independent trials. Each trial can be thought of
as resulting either in outcome s; or not in outcome 4;, in which case the trial is
Bernoulli, implying that X; has a binomial distribution with parameters » and p;.

2.3 Joint Density Functions for Continuous Random Variables

Definition 8 Joint continuous random variables and density function The
k-dimensional random variable (X,, X,, ..., X;) is defined to be a
k-dimensional continuous random variable if and only if there exists a
function fx,, .., x> .-, *) = 0 such that

Fy xldXps oo X)) = f_ f_ Txer oz gy oo uy) duy oo duy (2)

for all (x, ..., X} Sx, ... x(, ..., ") is defined to be a joint probability
density function. /!
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As in the unidimensional case, a joint probability density function has
two properties:

(1) le,...,xk(xl, ey xk) 2 0.
(ll) f_ --oJ le.-..,Xk(xl9 co ey xk) dxl oo dxk:'-l.

A unidimensional probability density function was used to find proba-
bilities. For example, for X a continuous random variable with probability
density fx(-), Pla < X < b} = [!fx(x) dx; that is, the area under fx(*) over the
interval (a, b) gave P[a < X < b]; and, more generally, P[X € B] = jB fx(x) dx;
that is, the area under f%(-) over the set B gave P[X € B]. In the two-dimen-
sional case, volume gives probabilities. For instance, let (X;, X,) be jointly
continuous random variables with joint probability density function
fx., x,(X1> x2), and let R be some region in the x, x, plane; then P[(X;, X,) € R]
= [ fx,. x,(x1, X2) dx; dx,; that is, the probability that (X, X,) falls in the

R

region R is given by the volume under fx, x,(-, *) over the region R. In particu-
lar if R = {(xl, x2): a, < X4 < bl; a, < X, < bz}, then

b b
Pla, <X, <b;a,<X,<b,]= f “ Jxi, x:(X15 X2) dxl] dx, .

A joint probability density function is defined as any nonnegative integrand
satisfying Eq. (2) and hence is not uniquely defined.

EXAMPLE 6 Consider the bivariate function

S(x,y) = K(x + J’)I(o,l)(x)l(o, 1Y) = K(x + p)y(x, y),

where U={(x, y): 0<x<1 and 0<y <1}, a unit square. Can the

constant K be selected so that f(x, y) will be a joint probability density
function? If K is positive, f(x, y) > 0.

fio f_wwa(x, y)ydxdy = f: folK(x + y)dx dy
1.1
=Kfo fo(x + y)dx dy

1
=K [ G +»dy
0

=K} +13)
=1
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fx,y)
3

2

FIGURE 6 y

for K=1. So f(x, ¥)=(x+ Mo, 1)(x} 0 1h(¥) is a joint probability
density function. It is sketched in Fig. 6.

Probabilities of events defined in terms of the random variables can
be obtained by integrating the joint probability density function over the
indicated region; for example

1 3
P0<X<1;0< Y<%]=f f(x+y)dxdy
0 Y0

S{EE

1 1
3z t 52
3.

[}

4
which is the volume under the surface z = x + y over the region {(x, y):
0< x<4;0< y<}in the xy plane. 1!

Theorem 2 If X and Y are jointly continuous random variables, then
knowledge of Fx y(-, ‘) is equivalent to knowledge of an fx y(*, -). The
remark extends to k-dimensional continuous random variables.

PROOF For a given fyx 4(-, ), Fy y(x, y) is obtained for any
(x, y) by

y x
Fy y(x,y)= f_ f_ fx, y(u, v) du dv.
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For given Fx y(-, *), an fx y(x, y) can be obtained by

52Fx, (X, ¥)

fX, Y(xay)= dx 0_}7

for x, y points, where Fy (x, ) is differentiable. /1

Definition 9 Marginal probability density functions If X and Y are
jointly continuous random variables, then fyx(-) and fy(-) are called
marginal probability density functions. More generally, let X;,, ..., X;,
be any subset of the jointly continuous random variables X,, ..., X.
Ixi,, o x, (Xips 05 X)) s called a marginal density of the m-dimensional
random variable (X;,, ..., X; ). /1]

Remark If X,, ..., X, are jointly continuous random variables, then
any marginal probability density function can be found. (However,
knowledge of all marginal densities does not, in general, imply knowledge
of the joint density, as Example 8 below shows.) If X and Y are jointly
continuous, then

0= foxndy  ad  f0)=[ foonde )

since

d x a0 o)
=22 T ([ pawnds) du] = [ ercsnyay
_ /1]
EXAMPLE 7 Consider the joint probability density
Sx,v(x, ¥) = (x + Yo, y(H 0, 1y(¥).

y x
Fx y(x, y) = I(o, 1)(x)l(0,1)(y) J;) fo(u + v) du dv
1 .x
+ Lo, 5Ot ) [ ] 4+ 0) du do

y .1
+ Ity, )X 0, 1H(¥) fo fo (u +v)du dv

+ Iy, o) X)M11, 0)())
= H(x*y + xyz)l(o, 1)(x)I(0,1)(y) + (x? + XM o, (X1, w)(¥)
+(y + yZ)I[l, o) (X0, (M)} + Iy, wy(X)M 1, wy()-
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Sx(x) = f_wwfx,y(xa y)dy

1
= Io, 1)(x) fo(x + y)dy

=(x + $ o, 1(x);
or,
OF x y(x, o©)
0x
_ 0F x(x)
T ox

Jx(x) =

d (x% +x
=I(0,1)(x)5;€-( > )

=(x + Do, 1(x). /1]

EXAMPLE 8 Let f4x(x) and fy(y) be two probability density functions with
corresponding cumulative distribution functions Fy(x) and Fy(y), respec-
tively. For —1 <a <1, define

S, v(%, y; @) = fx(x)fy(WH1 + al2Fx(x) — 11[2Fy(y) — 11} (4)

We will show (i) that for each « satisfying —1 <a <1, fx y(x, y; a) is a
joint probability density function and (ii) that the marginals of fy ,(x, y; &)
are fx(x) and fy(y), respectively. Thus, { fx y(x, y;2): —1 < o < 1} will be
an infinite family of joint probability density functions, each having the
same two given marginals. To verify (i) we must show that fx y(x, y; o)
is nonnegative and, if integrated over the xy plane, integrates to 1.

FOVAONL + al2F (x) — 112Fy(y) — 11} = 0
if 1> —af2Fx(x) — 1l[2Fy(») — 1];

but «, 2Fx(x) — 1, and 2F,(y) — 1 are all between —1 and 1, and hence
also their product, which implies fy y(x, y; «) is nonnegative. Since

| = J:ofx(x) dx = J:O (fjow Sx, v(%, y; ) d}’) dx,
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it suffices to show that f,(x) and fy(y) are the marginals of fx y(x, y; @)
J-:fx, v(X, y; ) dy

= [ HOOROHE + o02F () = 12FY) — 1 dy

£ [ ) dy + af 920~ 1] 2FY) = 1150 dy
—fx),  noting that | _ww[2F,, ) = 1) dy

=J‘1(2u—l)du=0
0

by making the transformation u = Fy(y). /11

3 CONDITIONAL DISTRIBUTIONS AND
STOCHASTIC INDEPENDENCE

In the preceding section we defined the joint distribution and joint density
functions of several random variables; in this section we define conditional
distributions and the related concept of stochastic independence. Most defini-
tions will be given first for only two random variables and later extended to k
random variables.

/

3.1 Conditional Distribution Functions
for Discrete Random Variables

Definition 10 Conditional discrete density function Let X and Y be
jointly discrete random variables with joint discrete density function
Sx.v(*» *). The conditional discrete density function of Y given X = x,
denoted by fy x(: | x), is defined to be

fx, (X, »)
Sx(x)

if fx(x) >0, where fx(x) is the marginal density of X evaluated at x.
fy1x(- | x) is undefined for fx(x) = 0. Similarly,

Srix(y|x) = ; (5)

_ Ix, v(x, )
Txir(x|y) = —fy(y) ’ (6)
if fy(y) > 0. m
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Since X and Y are discrete, they have mass points, say x;, x,, ... for X
and yy, y,,... for Y. If f4(x) >0, then x =x; for some 7, and fx(x;)
= P[X = x;]. The numerator of the right-hand side of Eq. (5) is fx y(x;, ;)
=P[X=x;; Y=yp;];s0

Tx, v(Xi5 ;) _ PIX =x;;Y = y;]
Jx(xp) PLX = x]

leX(yjlxn‘): =P[Y=yj|X=xi]>

for y; a mass point of Y and x; a mass point of X; hence fyx(* | x) is a condi-
tional probability as defined in Subsec. 3.6 of Chap. 1. fyx(-|x) is called a
conditional discrete density function and hence should possess the properties
of a discrete density function. To see that it does, consider x as some fixed
mass point of X. Then fyx(y|x) is a function with argument y; and to be a
discrete density function must be nonnegative and, if summed over the possible
values (mass points) of ¥, must sum to 1. fyx(¥[x) is nonnegative since
Sx,v(x, y) is nonnegative and fx(x) is positive.

_ fX.Y(xayj)= 1 _=fx(x)=
D MO RS ¥R ¥

where the summation is over all the mass points of Y. (We used the fact that
the marginal discrete density of X is obtained by summing the joint density of
X and Y over the possible values of Y.) So fyx(-|x) is indeed a density; it
tells us how the values of Y are distributed for a given value x of X.

The conditional cumulative distribution of Y given X = x can be defined
for two jointly discrete random variables by recalling the close relationship
between discrete density functions and cumulative distribution functions.

Definition 11 Conditional discrete cumulative distribution If X and Y
are jointly discrete random variables, the conditional cumulative distribu-
tion of Y given X = x, denoted by Fy (- | x), is defined to be Fy;x(y|x) =

PlY < y| X = x] for fx(x) > 0. 111/
Remark FY|X(V|X)={_‘Z }fY|X(yj|x)' /1

EXAMPLE 9 Return to the experiment of tossing two tetrahedra. Let X
denote the number on the downturned face of the first and Y the larger
of the downturned numbers. What is the density of ¥ given that X = 27
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2
sl =5 14
fle(3|2)=fx—};%2=?;=%
fy|x(4|2)=fx—},:%‘”=§§=i.
Also,
o= ROTL

Definition 12 Conditional discrete density function Let (X,..., X}) be
a k-dimensional discrete random variable, and let X;,..., X; and
X;. ... X;, be two disjoint subsets of the random variables X, ..., Xj.
The conditional density of the r-dimensional random variable (X;,. ..., X;)
given the value (x;, ..., x;) of (X;,, ..., X, ) is defined to be

inl _____ Xi,.|Xj1,.__,st(xi1’ et xi,.llea L) xjs)

=fxi1’ "‘I‘Xir,le’ e st(xi,, seny xi,_, le’ . .-sxjs)

VLT L € TRRTEAE I8 ' /1

EXAMPLE 10 Let X,, ..., X5 be jointly discrete random variables. Take
¥y =85= 2., (Xil’ sz) - (Xla Xz), and (le., ij) = (X3, Xs), then

fxl, X2, X3, Xs(X1> X2, X3, Xs)

fxa,xs(xs » Xs) 11/

le.Xp_IXJ, Xs(x15 x2|x3 s x5) =

EXAMPLE 11 Suppose 12 cards are drawn without replacement from an

ordinary deck of playing cards. Let X, be the number of aces drawn,
X, be the number of 2s, X; be the number of 3s, and X, be the number
of 4s. The joint density of these four random variables is given by

fxl,X2.X3,X4(xl’ x2 b x3 ) x4)

OO )
B
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where x; =0, 1,2, 3, ordandi=1, ..., 4, subject to the restriction that
Y x;<12. There are a large number of conditional densities associated
with this density; an example is

fx;,x4|xl,xj(x2 y Xl X1, X3)

0100 [ P 1
(-2 )/ G2
[ [ ER

44
12 '—xl“x:;

where x; =0, 1,...,4and x; + x, < 12 — x; — x5. I

2

3.2 Conditional Distribution Functions
for Continuous Random Variables

Definition 13 Conditional probability density function Let X and Y
be jointly continuous random variables with joint probability density
function fx y(x, y). The conditional probability density function of Y
given X = x, denoted by fy,x(- | x), is defined to be

fY|x(y|x) — fX, y(x, y)

Sx(x)

if fx(x) > 0, where fy(x) is the marginal probability density of X, and is
undefined at points when fy(x) = 0.
Similarly,

(7)

leY(ny) = %}‘) if fy(y) >0, (8)

and is undefined if fy(y) =0 /1]

Srix(t ] %) is called a (conditional) probability density function and hence
should possess the properties of a probability density function. fy x(-|x) is
clearly nonnegative, and

J’w Frix(y1x)dy = fw j)%(igi—y) dy
hallv ¢ — X

1 @
_fx(x) f_wa,Y(xa »dy=

Jx(x) -1
Jx(x)
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The density fy x(* | x) is a density of the random variable Y given that x
is the value of the random variable X. In the conditional density Sy1xC %),
x 1s fixed and could be thought of as a parameter. Consider Srix(* | xo0) that is,

the density of Y given that X was observed to be x,. Now fx, y(x, y) plots as a
surface over the xy plane. A plane perpendicular to the xy plane which inter-
sects the xy plane on the line x = x, will intersect the surface in the curve

Sx.v(x0, ¥). The area under this curve is
f Ix, v(xo0> y)dy = fx(xo)-

Hence, if we divide fx y(xo. ¥) by fx(xo), we obtain a density which is precisely

/i Y|X(y |xo)-
Again, the conditional cumulative distribution can be defined in the
natural way.

Definition 14 Conditional continuous cumulative distribution If X and
Y are jointly continuous, then the conditional cumulative distribution of Y
given X = x is defined as

Fyx(y|x) = fj fYIX(Z| x) dz
for all x such that fy(x) > 0. /11!

EXAMPLE 12 Suppose fy, y(x, ) = (x + Mo, 1y(X) 0, 1y(»)-

(x + o, 1y 0,1y (¥)  x+y
1 = 1 I(o 1)()’)
(X + 2o, 1)(x) x+3

fY|x(.V|x) =

for 0 < x < 1. Note that
y
FY|X(}’|X) = f_ fylx(z|x) dz

x4z 1 y d

CJlox+3 hx+%~'~o(x+2)z

= ll(xy+y2/2) for0<y<l. /111
+ 2

Conditional probability density functions can be analogously defined for
k-dimensional continuous random variables. For instance,

le.Xz,X3,X4.X5(xl’ X2y X35 X4, X5)
fx3.X5(x3 » X5)

X1 X0, Xa1 %5, x5(X 15 X2 5 X4l X3, X5) =

for fx,, xs(x3,x5) > 0.
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3.3 More on Conditional Distribution Functions

We have defined the conditional cumulative distribution Fyx(y|x) for either
jointly continuous or jointly discrete random variables. If X is discrete and Y
is any random variable, then Fy x(y|x) can be defined as P[Y < y| X = x] if x
is a mass point of X. We would like to define P[Y < y| X = x] and more
generally P[A| X = x], where A4 is any event, for X either a discrete or continu-
ous random variable. Thus we seek to define the conditional probability of an
event A given a random variable X = x.

We start by assuming that the event 4 and the random variable X are
both defined on the same probability space. We want to define P[4| X = x].
If X is discrete, either x is a mass point of X, or it is not; and if x is a mass point
of X,

Pl4; X =
PlA| X = x] = L[:Y=x]x]

H

which is well defined; on the other hand, if x is not a mass point of X, we are
not interested in P[4| X = x]. Now if X is continuous, P[4| X = x] cannot be
analogously defined since P[X = x] = 0; however, if x is such that the events
{x — h < X < x + h} have positive probability for every & > 0, then P[4| X = x]
could be defined as

P[A| X =x]= lim Pl[A|x—h< X <x+h] (9)

0<h=0

provided that the limit exists. We will take Eq. (9) as our definition of
P[A4]| X = x] if the indicated limit exists, and leave P[A| X = x] undefined other-
wise. (Itis, in fact, possible to give P[4| X = x] meaning even if P[X = x] =0,
and such is done in advanced probability theory.)

We will seldom be interested in P[4| X = x] per se, but will be interested
in using it to calculate certain probabilities. We note the following formulas:

N0 Pl = Y PUIX=xlfxx) (1)

if X is discrete with mass points x;, X3, --.-
(ii) PlA)= [ PLA| X = x]/x(x) dx (11

if X is continuous.

(iii) PlA; XeBl= ), PlA|X=x]fx(x) (12)

{i: Xi € B}
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if X is discrete with mass points Xy, Xz, ... -

(iv) P[4; Xe B] = f PlA| X = x]fx(x) dx (13)
B
if X 1s continuous.

Al agh we will not prove the above formulas, we note that Eq. (10) is
just tl- ineorem of total probabilities given in Subsec. 3.6 of Chap. I and the
others are generalizations of the same. Some problems are of such a nature
that it is easy to find P[4| X = x] and difficult to find P[4]. If, however, fx(*)
is known, then P[A4] can be easily obtained using the appropriate one of the
above formulas.

Remark Fy y(x, y)= j"i oFy x(| x")fx(x") dx’ results from Eq. (13) by
taking 4 ={Y < y}and B = (— o0, x]; and Fy(y) = jiocoFYll’(ylx)fX(x) dx
is obtained from Eq. (11) by taking 4 ={Y < y}. /1]

We add one other formula, whose proof is also omitted. Suppose
A ={h(X, Y) <z}, where A(-, ) is some function of two variables; then

(v) Pl[A|X=x]=PIKX,Y)<z|X=x]=Plhx, Y)<z|X=x]
(14)

The following is a classical example that uses Eq. (11); another example
utilizing Eqs. (14) and (11) appears at the end of the next subsection.

EXAMPLE 13 Three points are selected randomly on the circumference of
a circle. What is the probability that there will be a semicircle on which
all three points will lie? By selecting a point * randomly,” we mean that
the point is equally likely to be any point on the circumference of the
circle; that is, the point is uniformly distributed over the circumference
of the circle. Let us use the first point to orient the circle; for example,
orient the circle (assumed centered at the origin) so that the first point
falls on the positive x axis. Let X denote the position of the second point,
and let 4 denote the event that all three points lie on the same half circle.
X is uniformly distributed over the interval (0, 2r). According to Eq. (11),
P[A] = | P[A| X = x]fx(x) dx. Note that for 0 < x < 7, P[4 | X =x] =
(m — x + m)/2n since, given X = x, event A occurs if and only if the
third point falls between x — 7 and r. Similarly, P[4|X = x] =
(x +n —m)/2n form < x <2n. Hence P[A] = (2"P[4| X = x)(1/2n) dx =
(1/2m){f512n — x)/2n) dx + [2%(x/2m) dx} = 3. m
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3.4 -Independence

When we defined the conditional probability of two events in Chap. I, we also
defined independence of events. We have now defined the conditional distri-
bution of random variables; so we should define independence of random
variables as well.

Definition 15 Stochastic independence Let (X,, X,, ..., X,) be a
k-dimensional random variable. X;, X,, ..., X, are defined to be
stochastically independent if and only if

k
FxppnxdXts -0 X = .[[lpxi(xi) (15)
for all X1y X2, 000y Xgo ////

Definition 16 Stochastic independence Let (X;, X,, ..., X)) be a
k-dimensional discrete random variable with joint discrete density func-
tion fx, . x(>...s ). X1, ..., Xy are stochastically independent if and
only if

k
Jxi, e x X1 ooy X)) = iljlfxi(xi) (16)
for all values (x;, ..., x) of (X1, ..., Xp). /1]

Definition 17 Stochastic independence Let (X, ..., X;) be a k-dimen-
sional continuous random variable with joint probability density function
Sxeixi (s ooos ) Xis .., Xy are stochastically independent if and only

if
k
le....,Xk(xl, rety xk) = .ljlef(xf) (17)
fOrall Xisoovs Xgo» ////
Remark Often the word “stochastically” will be omitted. 1]

We saw that independence of events was closely related to conditional
probability; likewise independence of random variables is closely related to
conditional distributions of random variables. For example, suppose X and
Y are two independent random variables; then fx y(x, y) = fx(x) fy(y) by defini-
tion of independence; however, fx y(x, ») = fy;x(y|x)fx(x) by definition of
conditional density, which implies that fy|x(y| x) = fy(y); that is, the conditional
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density of Y given x is the unconditional density of Y. So to show that two

random variables are not independent, it suffices to show that fyx(y|x) depends
on x.

EXAMPLE 14 Let X be the number on the downturned face of the first
tetrahedron and Y the larger of the two downturned numbers in the ex-
periment of tossing two tetrahedra. Are X and Y independent? Ob-
viously not, since fy x(2|3) = P[Y = 2| X = 3] = 0 # f,(2) = P[Y = 2] = 7%.

/i

EXAMPLE 15 Let fx y(x, y) = (x + 2o, 1y(XMo,1)(y). Are therefore X
and Y independent? No, since fy;x(y|x) = [(x + »)/(x + Do, 1)(») for
0 < x < 1, fy;x(»| x) depends on x and hence cannot equal fy(y). /1]

EXAMPLE 16 Let fyx y(x, ») = *PIo (Mo ay(y)- X and Y are
independent since '

Jx,v(x,y) = [e—xl(o, uo)(x)][e—yl(o, )] = fx(X)fy(y)
for all (x, y). /1]

Itcan be proved that if X;, ..., X are jointly continuous random variables,
then Definitions 15 and 17 are equivalent. Similarly, for jointly discrete
random variables, Definitions 15 and 16 are equivalent. It can also be proved

k
that Eq. (15) is equivalent to P[X; € By, ...; X, € B,] = [] PIX; € B] for sets
i=1

By, ..., B;. The following important result is easily derived using the above
equivalent notions of independence.

Theorem 3 If X, ..., X, are independent random variables and
91("), ..., gi(") are k functions such that ¥, =g(X)), j=1, ..., k are
random variables, then Y,, ..., Y, are independent.

PROOF Note that if g;'(B;)={z: gfz)e B;}, then the events
{Y,€ B;} and {X; € g; '(B;)} are equivalent; consequently, P[Y, € B;; ... ;

: k
Y. € B] = P[X; 691—1(31); . 1 ng—l(Bk)] = HP[Xj eyj—l(Bj)]
j=1

= jl;[lP[ Y;€ B)]. 1/
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For k = 2, the above theorem states that if two random variables, say
X and Y, are independent, then a function of X is independent of a function of
Y. Such a result is certainly intuitively plausible.

We will return to independence of random variables in Subsec. 4.5.

Equation (14) of the previous subsection states that P[A(X, Y) < z| X = x]
= Plh(x, Y)<z|X=x]. Now if X and Y are assumed to be independent,
then Plh(x, Y) < z| X = x] = P[h(x, Y) < z], which is a probability that may
be easy to calculate for certain problems.

EXAMPLE 17 Let a random variable Y represent the diameter of a shaft
and a random variable X represent the inside diameter of the housing
that is intended to support the shaft. By design the shaft is to have
diameter 99.5 units and the housing inside diameter 100 units. If the
manufacturing process of each of the items is imperfect, so that in fact Y
is uniformly distributed over the interval (98.5, 100.5) and X is uniformly
distributed over (99, 101), what is the probability that a particular shaft
can be successfully paired with a particular housing, when  successfully
paired” is taken to mean that X — 2 < Y < X for some small positive
quantity #? Assume that X and Y are independent; then

PIX—h<Y<X]=| PIX—h<Y<X|X=xlfxx)dx

101

= Plx —h < Y < x} dx.

99

Suppose now that 2z = 1; then

— 985
LE_" for 99 < x < 99.5
I
P[x—1<Y<x]=ﬁ for 99.5 < x < 100.5
100.5 — (x —
2(" D for100.5 < x < 101.

Hence,
101

P[X—1<Y<X]=f Plx —1 <Y< xBdx
99

= [ T3 — 985k dx
99
100.5 101
+ 13 dx + ($)(100.5 — x + D dx =%.
99.5 100.5 ¢

/7
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4 EXPECTATION

When we introduced the concept of expectation for univariate random variables
in Sec. 4 of Chap. II, we first defined the mean and variance as particular expec-
tations and then defined the expectation of a general function of a random vari-
able. Here, we will commence, in Subsec. 4.1, with the definition of the
expectation of a general function of a k-dimensional random variable. The
definition will be given for only those k-dimensional random variables which
have densities.

4.1 Definition

Definition 18 Expectation Let (X,,..., X,) be a k-dimensional ran-
dom variable with density Sxi, .. x5 ..., ). The expected value of a

function g(-, ..., ') of the k-dimensional random variable, denoted by
Elo(Xy, ..., Xy, is defined to be
g[g(Xla AL ] Xk)] = Zg(xla Tt xk)fxl, ey Xk(xlzv LIRS xk) (18)

if the random variable (X, ..., X;) is discrete where the summation is
over all possible values of (X, ..., X,), and

Elg(Xy, ..., X))
= f_ JL f_ 9(xX1> o Xfxy o x (X 5 X ) dxy L dx (19)

if the random variable (X,, ..., X,) is continuous. /1]

In order for the above to be defined, it is understood that the sum and
multiple integral, respectively, exist.

Theorem 4 In particular, if g(x,, ..., x) = x;, then

Elg(X1s - .., Xl = flxi] = Hx,- (20)

PROOF  Assume that (Xy, ..., X,) is continuous. [The proof for
(X1, ..., X;) discrete is similar.]

fs"[g(xl,...,X,,)]=fio f:o ...f_(:xith‘__,xk(xl, e X)Xy .. dx,

= f:oxzfxi(xr) dx; = 8[X|]
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using the fact that the marginal density fx (x;) is obtained from the joint
density by

f_ f_ SxiveoxXts oo X ) dxy ooodxo g dxyy Lo dxg. /i

Similarly, the following theorem can be proved.

Theorem 5 If g(xy, ..., x;) = (x; — &[X;])%, then
Elg(Xy, ..., X)] = (X, — [X.])*] = var [X,]. /1]

We might note that the *“ expectation” in the notation &[X;] of Eq. (20)
has two different interpretations; one is that the expectation is taken over the
joint distribution of X;, ..., X;, and the other is that the expectation is taken
over the marginal distribution of X,. What Theorem 4 really says is that
these two expectations are equivalent, and hence we are justified in using the
same notation for both.

EXAMPLE 18 Consider the experiment of tossing two tetrahedra. Let X
be the number on the first and Y the larger of the two numbers. We gave
the joint discrete density function of X and Y in Example 2.

ELXY] =} xyfx, v(x, y)
=1-1({e) + 1-2({9) + 1 " 3(7) + 1 4(7%)

+2- 2 + 23 + 2 419 + 3 3(7%)
+3-4(7%) + 4 4(1%) =47

X+ Y=+ +0+)5%+0+)s+0+Ds
+QR+)FH+C+HI)H+C+H)S+ 3+ 3%
+ B+ + @+ =1%

&[X]1=3, and £[Y]=3Y; hence &[X + Y] = &[X] + &[Y]. /1

EXAMPLE 19 Suppose fx. y(x, ¥) = (x + Mo, 1y(x) o, 1y()-
1 .1
e‘s"[XY]=f fxy(x +y)dxdy=1%.
0 Y0

1 1
S[X+Y]= fo fo(x + W(x + y)dxdy=1%.

E[X]=¢&[Y] =% 111
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EXAMPLE 20 Let the three-dimensional random variable (X, X5, X3) have

the density

fXI,Xz,X;s(xli' X2, X3) = 8X1X; X3 I(o, 1)(x1)1(0, 1)(x2)1(0, 1)(x3).

Suppose we want to find (i) &[3X; + 2X, + 6X;], (i) €[X,X,X;], and
(iii) &[X,X;]. For (i) we have g(x;, X2, X3)=3x; + 2x; + 6x; and
obtain

Elg( X, X2, X3)]1 = E[3X, +2X, + 6X5]
=8 [8 J8 (Bx; + 2x; + 6x3)8xyx, x5 dx( dxp dxs =32
For (ii), we get
ELX X2 X351 = |3 §b J6 8x1%x,% x3% dxy dx, dx; = 55,
and for (iii) we get £[ X X,] = 4. 11/

The following remark, the proof of which is left to the reader, displays a

property of joint expectation. It is a generalization of (i) in Theorem 3 of
Chap. II.

4.2

Remark é"[z ¢;9(X:, ..., Xk)] =Y ¢;€lg9{X,, ..., Xi)] for constants
1 i

C15Cayvrnsy Com- /11

Covariance and Correlation Coefficient

Definition 19  Covariance Let X and Y be any two random variables

defined on the same probability space. The covariance of X and Y,
denoted by cov [X, Y] or oy y, is defined as

cov [X, Y] = &[(X — u (Y — py)] (21)

provided that the indicated expectation exists. 11/

Definition 20 Correlation coefficient The correlation coefficient, de-
noted by p[X, Y] or px y, of random variables X and Y is defined to be

px, y = (LV[X’—Y] (22)

Gx Oy

provided that cov [X, Y], ox, and oy exist, and 65 > 0 and ay > 0. //JJ
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Both the covariance and the correlation coefficient of random variables
X and Y are measures of a linear relationship of X and Y in the following sense:
cov [X, Y] will be positive when X — uy and Y — uy tend to have the same sign
with high probability, and cov [X, Y] will be negative when X — uyand Y — puy
tend to have opposite signs with high probability. cov [X, Y] tends to measure
the linear relationship of X and Y; however, its actual magnitude does not have
much meaning since it depends on the variability of X and Y. The correlation
coefficient removes, in a sense, the individual variability of each X and Y by
dividing the covariance by the product of the standard deviations, and thus the
correlation coefficient is a better measure of the linear relationship of X and Y
than is the covariance. Also, the correlation coefficient is unitless and, as we
shall see in Subsec. 4.6 below, satisfies —1 < py y < 1.

Remark cov[X, Y] =&8l(X — u)(Y — puy)] = EIXY] — pxpy.

PROOF  &[(X — ux)(Y — py)] = (XY — pux Y— puy X + px py]
= E[XY] — ux Y] — py E[X] + pxpy
=8[XY]— pxpy. /11

EXAMPLE 21 Find py, y for X, the number on the first, and Y, the larger of
the two numbers, in the experiment of tossing two tetrahedra. We would
expect that py y is positive since when X is large, Y tends to be large too.
We calculated &[XY], &[X], and &[Y] in Example 18 and obtained
ElXY] =138, 6[X] =3, and [ Y] =42 Thuscov[X, Y] =135 —3 $9
=190 Now &£[Xx*]=22 and &[Y?*]=4Z"; hence var[X]=% and

var[Y] =33, So,

= /I

EXAMPLE 22 Find py,y for X and Y if fx y(x, ¥) = (x + yM(o, 1),(xM (0, 1)(»).
We saw that &[XY] =1 and &[X] = &[Y] = {5 in Example 19. " Now
&[X?*] = €[Y?] = {5 hence var [X] = var [Y] = {5 Finally

1 a9 1

_ 3 144

pX,Y_ 11 - ll
144

-

Does a negative correlation coefficient seem right? 11!
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4.3 Conditional Expectations

In the following chapters we shall have occasion to find the expected value
of random variables in conditional distributions, or the expected value of one
random variable given the value of another.

Definition 21 Conditional expectation Let(X, Y)be a two-dimensional
random variable and g(-,-), a function of two variables. The conditional
expectation of g(X,Y) given X = x, denoted by Slg(X, V)X =x] is
defined to be

SloxNIX=x1= [ g P0l0dy  (23)

if (X, Y) are jointly continuous, and

Ela( X, Y)| X=x]= Z g(x, yj)fYIX(yjlx) (24)

if (X, Y) are jointly discrete, where the summation is over all. possible
values of Y. 11/

In particular, if g(x, y) =y, we have defined &[Y|X = x] = &[Y|x].
&1Y | x] and &[g(X, Y)| x] are functions of x. Note that this definition can be
generalized to more than two dimensions. For example, let (X, ..., X,
Yi, ..., Y,) be a (k + m)-dimensional continuous random variable with density

FXts o Xies Yi oo Yo X1 o o5 Xps V1o v v os ¥m); then

Elg( Xy, s Xis Yoo s Yo Xgs ooy Xg)
‘=f_ f_ G(Xyy ooy Xk Visovvs Vi)

xfYI,...,Ym|X1,...,Xk(y15 ety ymlxla ey xk) dyl e dym ////

EXAMPLE 23 In the experiment of tossing two tetrahedra with X, the
number on the first, and Y, the larger of the two numbers, we found that

4 fory=2
rix([2)={4 fory=3
1 for y =4

inExample9. Hence&[Y|X =2] = ZJ’fr|x(}’| X=2=24+34+41%
11 ~
R /11
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x+y
x+ 3

fY|X(J’|x) = 1(0,1)(}’)

for 0 < x < | in Example 12. Hence

L' x+y 1 (x 1
LYiX =] foyx+% Y x+-}(2 3)

for0<x<1. /1]

As we stated above, &[g(¥)|x] is, in general, a function of x, Let us
denote it by A(x); that is, A(x) = &[g(Y)|x]. Now we can evaluate the expecta-
tion of A(X), a function of X, and will have &[A(X)] = &[&[g(Y)| X1).

This gives us

ST6T(¥)| X1 = A = | AC)fe(x) dx

~ a0

=" et 1xas ds
- J :O [Jtowg (Mfyrx(1x) dy]f w(x)dx
= f:o f_: I Sfr1x(¥] x)fx(x) dy dx

= f_: f:g(y)fx,y(x, y)dydx

= &[g(Y)].

Thus we have proved for jointly continuous random variables X and Y
(the proof for X and Y jointly discrete is similar) the following simple yet very
useful theorem.

Theorem 6 Let (X, Y) be a two-dimensional random variable; then
Elg(Y)] = &l819(Y)| X, (25)
and in particular
glY] = €le1Y| X1 (26)
/1

Definition 22 Regression curve &[Y|X = x] is called the regression
curve of Y on x. It is also denoted by py|x~.=py|x- /1]
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Definition 23 Conditional variance The variance of Y given X = x is
defined by var [Y| X = x] = &[Y?| X = x] — (8[ Y| X = x])*. /1]

Theorem 7 var [Y] = &[var [Y] X]] + var [6[ Y] X]].
PROOF ‘

Elvar [ Y| XT] = e[ &[ Y?| XT] — €1(E[Y]| XD)?]
= &[Y?] — (&[ Y] — &lE1Y| XD?] + (€[ Y]
= var [ Y] — EL(ELY| XD?] + (€€ Y| XID?
= var [ Y] — var [][ Y| X]]. /11

Let us note in words what the two theorems say. Equation (26) states
that the mean of Y is the mean or expectation of the conditional mean of ¥,
and Theorem 7 states that the variance of Y is the mean or expectation of the
conditional variance of Y, plus the variance of the conditional mean of Y.

We will conclude this subsection with one further theorem. The proof
can be routinely obtained from Definition 21 and is left as an exercise. Also,
the theorem can be generalized to more than two dimensions.

Theorem 8 Let (X, Y) be a two-dimensional random variable and
g:(*) and g,(-) functions of one variable. Then

@) €lg(Y) + g2 V)| X = x] = Slgi(YV)| X = x] + Elg,( V)| X = x].
(ii) &lag4( Y)gz()O| X=x]= gz(x)cb”[gl(Y) | X = x]. 1!

4.4 Joint Moment Generating Function and Moments

We will use our definition of the expectation of a function of several variables
to define joint moments and the joint moment generating function.

Definition 24 Joint moments The joint raw moments of X1 ovey X
are defined by &[XT X3 - Xi¥], where the r’s are 0 or any positive
integer; the joint moments about the means are defined by

CLXy — px,) o (X — py )], /1

Remark Ifr;=r;=1and all other r_’s are 0, then that particular joint
moment about the means becomes &[(x, — Ux)(X; — px,)], which is just
the covariance between X, and X ;- ’ /1]

h:

¥
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Definition 25 Joint moment generating function The joint moment
generating function of (X, ..., X;) is defined by

k
My, xlls oo L) = é’[epotj Xj], (27)
i=1

if the expectation exists for all values of #;, ..., #, such that —h < t; <h
forsome #>0,j=1,..., k. /1]

The rth moment of X; may be obtained from my, _ x(t, ..., &) by
differentiating it r times with respect to ¢; and then taking the limit as all the #’s
approach 0. Also £[X} X3j] can be obtained by differentiating the joint moment
generating function r times with respect to ¢, and s times with respect to ¢; and
then taking the limit as all the #’s approach 0. Similarly other joint raw
moments can be generated.

Remark myx(t)) = my y(t;,0) = limmy (2, 1), andmy(t,) = my (0, t,)

t2 50
= limmy y(t;, t;); that is, the marginal moment generating functions can
t1+0
be obtained from the joint moment generating function. /1]

An example of a joint moment generating function will appear in Sec. 5
of this chapter.

4.5 Independence and Expectation
We have already defined independence and expectation; in this section we will

relate the two concepts.

Theorem 9 If X and Y are independent and g,(:) and g,(*) are two
functions, each of a single argument, then

€19:(X)g92( V] = Elgi(X)] - E1g2( V)]

PROOF We will give the proof for jointly continuous random
variables.

810000 = [ [~ 0:(0g:0)x.1(x, 1) dx dy
= [ |7 0:e:0fxfr(v) dx dy
= 7 g dx- [ g:00) dy

— o0

= 6lg(X)] - Slg2(Y)]- /i
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Corollary If X and Y are independent, then cov [X, Y] =0.

PROOF Take g,(x) = x — ptx and gz(y) =y — ity; by Theorem 9,

cov [X, Y] = &[(X — ux)(Y — up)] = €lg1(X)g2( V)]

= &[9:(X))E1g2( V)]
= &[X — uy) - EIY — pyl =0 since S[X — ux] =0.  f//]

Definition 26 Uncorrelated random variables Random variables X and
Y are defined to be uncorrelated if and only if cov [X, Y] =0. /1]

Remark The converse of the above corollary is not always true; that is,
cov [X, Y] =0 does not always imply that X and Y are independent, as
the following example shows. /1]

EXAMPLE 25 Let U be a random variable which is uniformly distributed
over the interval (0, 1). Define X =sin 2zU and Y =cos 2rU. X and
Y are clearly not independent since if a value of X is known, then U is
one of two values, and so Y is also one of two values; hence the conditional
distribution of Y is not the same as the marginal distribution. &[Y] =
[0 cos 2nu du = 0, and £[X] = [§ sin 2rnudu = 0;s0cov [X, Y]= €[ XY] =
[0 sin 2mu cos 2nu du = 4 [§ sin 4nu du = 0. ]

Theorem 10 Two jointly distributed random variables X and Y are

independent if and only if my y(t;, t,) = my(t)my(t;) for all ¢, t, for
which —h<t;<h,i=1,2, for some & > 0.

PROOF [Recall that my(¢,) is the moment generating function of X.
Also note that my(t;) = mx y(t;, 0).] X and Y independent imply that
the joint moment generating function factors into the product of the
marginal moment generating functions by Theorem 9 by taking g,(x) = €"*
and g,(y) = €?>. The proof in the other direction will be omitted.

/1

Remark Both Theorems 9 and 10 can be generalized from two random
variables to k random variables. 111/
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4.6 Cauchy-Schwarz Inequality

Theorem 11 Cauchy-Schwarz inequality Let X and Y have finite
second moments; then (§[ X Y])? = | [ X Y]|? < £[X?)E[Y?], with equality
if and only if P[Y = ¢X] = 1 for some constant c.

PROOF The existence of expectations &[X], &[Y], and &[XY]
follows from the existence of expectations &[X?] and &[Y?]. Define
0 < k() = E[(tX — Y)?] = E[X2)2 — 2E[X Y]t + £[Y?]. Now h(t) is a
quadratic function in ¢ which is greater than or equal to 0. If A(t) >0,
then the roots of A(f) are not real; so #&E[XY]? — 4£[X21€[Y?] <0,
or (E[XY]D? < &[X2E[Y?]. If h(t)=0 for some t, say t,, then
&[(to X — Y)*] =0, which implies P[to X = Y] = 1. 1]

Corollary |py y| <1, with equality if and only if one random variable
is a linear function of the other with probability 1.

PROOF Rewrite the Cauchy-Schwarz inequality as |&[UV]| <
JEIU?1EIV?], and set U= X — pyand V=Y — py. /1l

5 BIVARIATE NORMAL DISTRIBUTION

One of the important multivariate densities is the multivariate normal
density, which is a generalization of the normal distribution for a unidimensional
random variable. In this section we shall discuss a special case, the case of the
bivariate normal. In our discussion we will include the joint density, marginal
densities, conditional densities, conditional means and variances, covariance,
and the moment generating function. This section, then, will give an example
of many of the concepts defined in the preceding sections of this chapter.

5.1 Density Function

Definition 27 Bivariate normal distribution Let the two-dimensional
random variable (X, Y) have the joint probability density function

1
2noy ay\/ 1"__;5

ol e () e

2(1"P2) Cx Ox Oy Oy

fX,Y x, ) =f(x, y)=
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z= f(x,y)forz >k

FIGURE 7 k

for —o0 < x < 00, —00 <y < o0, Where oy, oy, ux, fy, and p are con-
stants such that —l <p <1, 0<oy, 0<oy, —00 < puy< oo, and
— 00 < fiy < 00. Then the random variable (X, Y) is defined to have a
bivariate normal distribution. /1]

The density in Eq. (28) may be represented by a bell-shaped surface
z=f(x, y) as in Fig. 7. Any plane parallel to the xy plane which cuts the
surface will intersect it in an elliptic curve, while any plane perpendicular to the
xy plane will cut the surface in a curve of the normal form. The probability
that a point (X, Y) will lie in any region R of the xy plane is obtained by
integrating the density over that region:

P[(X, Y)is in R] = f f f(x, y) dy dx. (29)
R

The density might, for example, represent the distribution of hits on a vertical
target, where x and y represent the horizontal and vertical deviations from the
central lines. And in fact the distribution closely approximates the distribution
of this as well as many other bivariate populations encountered in practice.

We must first show that the function actually represents a density by
showing that its integral over the whole plane is |; that is,

f_w [ fxpydyax=1. (30)
The density is, of course, positive. To simplify the integral, we shall substitute

xX—pu -
u=-—"2 " and p =21 (31)
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so that it becomes

e~ 3/l = )2 = 2puv +v2) dv du.

—o Y mw 27 \/ 1 — pz
On completing the square on « in the exponent, we have

-J’w J’w B N e~ [H/U—p)N=p)2+ (=202 g, gy
2
-0 Y- 271?\/1 —p
and if we substitute
u— pv du

W= —— and dw = ——,
I —p? I - p?

the integral may be written as the product of two simple integrals

Jm ! e W12 dwf

w2
both of which are 1, as we have seen in studying the univariate normal distri-
bution. Egquation (30) is thus verified.

a0

1
— e
—w /27

=022 g, (32)

Remark The cumulative bivariate normal distribution

Fa)=[ ([ yax)ay

may be reduced to a form involving only the parameter p by making the
substitution in Eq. (31). 1/

5.2 Moment Generating Function and Moments

4

To obtain the moments of X and Y, we shall find their joint moment generating
function, which is given by

my y(ty, 1) = m(ty, tz) = E[¥7121] = J- f T (x, y) dy dx.

Theorem 12 The moment generating function of the bivariate normal
distribution is

m(ty, t,) = explt iy + t, py + 3(t{ck + 2pt t, 650y + 1 0%)]. (33)
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PROOF Let us again substitute for x and y in terms of u and v to
obtain
m(t,, t,)
|

- =2pwtvd) g gy
2n /1 — p

a0 a0
— t1ux+tzuy J‘ J- et1a'xu+rza',,v
(34
The combined exponents in the integrand may be written

1
T 21— pY)

and on completing the square first on v and then on v, we find this expres-
sion becomes

[u? — 2puv + v? — 2(1 — pDtioxu — 2(1 — p*)t, 0y 0],

2(1 - ){[u po—(1 - pz)tlaX]z +(1 _pz)(v_Ptlax_tzo'Y)z

— (1 — p*Ntick + 2pt t, 050y +1507)},

which, if we substitute

—pv — (1 — pHt o
W= p\/T(_Zp )l X and Z=U—ptlax—‘tzo'y,
—p

becomes
—3w? — §z% 4+ 3(t36d + 2pt,t, 065 0y + 13 62),
and the integral in Eq. (34) may be written

m(ty, t;) = e"'#xT'r exp[i(tioy + 2ptt, oy oy + t207)]

J- _f_ —e_”’2/2 212 dw dz

w 2T
= expltiux + tapty + 3(ti6% + 2pt,t, 056y + t262)]

since the double integral is equal to unity. /1]

Theorem 13 If (X, Y) has bivariate normal distribution, then

E[X] = py,
ELY]= uy,
var [X] = 0%,
var [ Y] = o3,

cov [X, Y] = pox oy,
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and
Px,y = P-

PROOF The moments may be obtained by evaluating the appro-
priate derivative of m(t, t,) att, =0, t, =0. Thus,

om .
E[X] = 2 -
atl t1112=0 ﬂx
0*m
EIX*]= — = §i + 0% -
atl t1,12=90

Hence the variance of X is
El(X — ux)’1 = 6[X?*] — i = o%.

Similarly, on differentiating with respect to t,, one finds the mean and
variance of Y to be uy and 65. We can also obtain joint moments

E[X"Y"]

by differentiating m(t,, t,) r times with respect to ¢, and s times with respect
to ¢, and then putting ¢, and ¢, equal to 0. The covariance of X and Yis

EUX — ux)(Y — uy)l = (XY — Xpy — Yux + pix pyl

=E[XY] — py uy
2
= ty t —
atl atz m( 1 2) =122 0 ﬂXﬂY
= pO'X o'y .
Hence, the parameter p is the correlation coefficient of X and Y. /1]

Theorem 14 If (X, Y) has a bivariate normal distribution, then X and Y
are independent if and only if X and Y are uncorrelated.

pROOF X and Y are uncorrelated if and only if cov [X, Y] =0 or,
equivalently, if and only if py y =p=0. It can be observed that if
p =0, the joint density f(x, y) becomes the product of two univariate
normal distributions; so that p =0 implies X and Y are independent.
We know that, in general, independence of X and Y implies that X and Y
are uncorrelated. /11
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5.3 Marginal and Conditional Densities

Theorem 15 If (X, Y) hasa bivariate normal distribution, then the mar-
ginal distributions of X and ¥ are univariate normal distributions; that is,
X i1s normally distributed with mean uy and variance o2, and Y is nor-
mally distributed with mean uy and variance o; .

PROOF The marginal density of one of the variables X, for example,
is by definition

£ =[" fenndy;

and again substituting

and completing the square on v, one finds that

00 1
Jx(x) = f_m dnoy \/ij_z

1 x-ﬂx)2 1 X — Wy 2
X exp| — = — —_— .
p[ 2 ( Oy 2(1 — Pz) (v P Oy ) }dv

Then the substitutions

v— p(x — uy)foy a dv

V-7 J1-¢

W =

show at once that

fx(x) = \/leax exp[- 3 ( ’;X“") ]

the univariate normal density. Similarly the marginal density of ¥ may
be found to be

K= \/ =71 (52) ] i

Theorem 16 1f (X, Y) has a bivariate normal distribution, then the
conditional distribution of X given y = ¥y is normal with mean
ux + (pox/oy)(y — py) and variance o¥(1 — p?). Also, the conditional

distribution of Y given X = x is normal with mean uy + (poy/ox)(x — py)
and variance o3(1 — p?),
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PROOF The conditional distributions are obtained from the joint
and marginal distributions. Thus, the conditional density of X for fixed
values of Y is

f(x,»)
)

and, after substituting, the expression may be put in the form

fX|Y(x|y)

fxly(x|J/) =

_ 1 1 pox 2
" Jrerd i CXP{— 3021 — p7) [x . (y— uy)] } (35)

which is a univariate normal density with mean uy + (poy/oy)(y — uy)
and with variance ¢2(1 — p?). The conditional distribution of Y may be
obtained by interchanging x and y throughout Eq. (35) to get

fY|X(y|x)

_ I I S I PN
o /1= o\~ P o] | oo
i

As we already noted, the mean value of a random variable in a conditional
distribution is called a regression curve when regarded as a function of the fixed
variable in the conditional distribution. Thus the regression for X on Y =y in
Eq. (35) is uy + (pox/0y)(y — py), which is a linear function of y in the present
case. For bivariate distributions in general, the mean of X in the conditional
density of X given Y =y will be some function of y, say g(), and the equation

x=9()

when plotted in the xy plane gives the regression curve for X. It is simply a
curve which gives the location of the mean of X for various values of Y in the
conditional density of X given Y = y.

For the bivariate normal distribution, the regression curve is the straight
line obtained by plotting

po
x=ux+—&—x(y—uy),
Y

as shown in Fig. 8. The conditional density of X given Y =y, fy;y(x|y), is
also plotted in Fig. 8 for two particular values y, and y, of Y.
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[T,

x = px + pox(y — pyloy

FIGURE 8

PROBLEMS

1

Prove or disprove:

(@) If P[X > Y]=1, then &[X] > &[Y].

(b) If &[X]> E[Y], then P[X > Y] =1.

(o) If &[X] > €[Y], then P[X > Y] > 0.

Prove or disprove:

(a) If Fx(2) > Fy(2) for all z, then &[Y] > &[X].

(b) If E[Y]> E[X], then Fx(z) > Fy(2) for all z.

() If &[Y]> E[X], then Fx(z) > Fy(z) for some z.

(d) 1If Fx(z) = Fy(2) for all z, then P[X = Y]=1.

(e) If Fx(z) > Fy(z) for all z, then P{X < Y] > 0.

(f) f Y=X+1, then Fx(z) = Fy(z + 1) for all z.

If X; and X, are independent random variables with distribution given by
P[X;= —1]=P[X,=1] =L fori= 1,2, then are X, and X,.X, independent?

A penny and dime are tossed. Let X denote the number of heads up. Then
the penny is tossed again. Let Y denote the number of heads up on the dime
(from the first toss) and the penny from the second toss.

(a) Find the conditional distribution of Y given X = I.

(b) Find the covariance of X and Y.

If X and Y have joint distribution given by

Sx, «(x, ) = 2L0, (XM 0. 1)(3).
(@) Find cov[X, Y]
(b) Find the conditional distribution of Y given X — x.
Consider a sample of size 2 drawn without replacement from an urn containing
three balls, numbered 1, 2, and 3. Let X be the number on the first ball drawn
and Y the larger of the two numbers drawn.

(a) Find the joint discrete density function of X and Y.
(b)) Find PIX =1|Y =3].
(¢) Find cov [X, Y.
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7 Consider two random variables X and Y having a joint probability density

10

11

12

13

14

15

function
[x, ¥(x, ¥) = Bx¥li0,/()] o, 2)(x).

(@) Find the marginal distributions of X and Y.

(b) Are X and Y independent?

If X has a Bernoulli distribution with parameter p (that is, PIX=1]=p=1
— P[X=0], S1Y|X=0]=1, and &[Y| X =1] =2, what is £[Y]?

Consider a sample of size 2 drawn without replacement from an urn containing
three balls, numbered 1, 2, and 3. Let X be the smaller of the two numbers
drawn and Y the larger.

(a) Find the joint discrete density function of X and Y.

(b) Find the conditional distribution of Y given X =1.

(¢) Find cov[X, Y]

Let X and Y be independent random variables, each having the same geometric
distribution. Find P{X = Y].

If F(-) is a cumulative distribution function:

(@) Is F(x, y) = F(x) + F(») a joint cumulative distribution function ?

(b) Is F(x, y) = F(x)F(y) a joint cumulative distribution function?

(¢) Is F(x, y) =max [F(x), F(»)] a joint cumulative distribution function?

(d) Is F(x, y) =min [F(x), F(»)] a joint cumulative distribution function?

Prove

Fx(x) + Fy(y) — 1 < Fx, (x, y) <V Fx(x)Fy(y) for all x, y.

Three fair coins are tossed. Let X denote the number of heads on the first two

coins, and let ¥ denote the number of tails on the last two coins. '

(@) Find the joint distribution of X and Y.

(b) Find the conditional distribution of Y given that X =1.

(¢) Find cov[X, Y1

Let random variable X have a density function f(-), cumulative distribution

function F(-), mean p, and variance 0. Define ¥ = a+ SX, where « and 8 are

constants satisfying — o0 < a < o and §>0.

(@) Select « and B so that ¥ has mean O and variance 1.

(b)) What is the correlation coefficient between X and Y?

(0 Find the cumulative distribution function of Y in terms of «, B, and F(-).

(d) If X is symmetrically distributed about p, is Y necessarily symmetrically
distributed about its mean? (HINT: Z is symmetrically distributed about
constant C if Z — C and —(Z — C) have the same distribution.)

Suppose that random variable X is uniformly distributed over the interval (0, 1);

that is, fx(x) = I0.1,(*¥). Assume that the conditional distribution of Y given

X = x has a binomial distribution with parameters n and p = x; i.e,,

P[Y=y[X=x]=(:)x’(l—x)"" fory=0,1,...,n
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(@) Find &[Y]
() Find the distribution of Y.
16 Suppose that the joint probability density function of (X, Y) is given by

fr.v(x, )= —ol — 2x)(1 — 2o, (XM o. (),

where the parameter « satisfies —1 <ea <1.
(@) Prove or disprove: X and Y are independent if and only if X and Y are un-
correlated.

(X,7)

2X

An isosceles triangle is formed as indicated in the sketch.
(b) If (X, Y) has the joint density given above, pick « to maximize the expected
area of the triangle.
(¢) What is the probability that the triangle falls within the unit square with
corners at (0, 0), (1, 0), (1, 1), and (0, 1)?
*(d) Find the expected length of the perimeter of the triangle.
17 Consider tossing two tetrahedra with sides numbered 1 to 4. Let Y; denote the
smaller of the two downturned numbers and Y, the larger.
(a) Find the joint density function of ¥; and Y,.
() Find P[Y,>2, Y, >2].
(¢) Find the mean and variance of Y: and Y,.
(d) Find the conditional distribution of Y, given ¥, for each of the possible
values of Y.
(e) Find the correlation coefficient of ¥; and Y,.
18 Let fx, y(x, ) = e~ (o, w)(X) (0. 0)(»)
(@) Find P[X > 1]. () Find P[1 < X+ Y <2).
(¢) Find IX<Y|X<2Y] (d) Find msuch that P[X + ¥ <m] = 4.
() FindPO0<X<1|Y=2]. (f) Find thecorrelation coefficient of X and Y.
*19 Let fx, v(x,¥) = e>(1 — e Mo, yi(XM10, () + € (1 — e~ (o, d() 1o, »)(X).
(@) Show that f%, y(-, -) is a probability density function.
() Find the marginal distributions of X and Y.
(¢) Find £[Y|X = x] for 0 < x.
(d) Find P[X <2, Y <2].
(e) Find the correlation coefficient of X and Y.
(f) Find another joint probability density function having the same marginals.
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*20 Suppose X and Y are independent and identically distributed random variables

*21

22

23

24

25

26

27

with probability density function £(+) that is symmetrical about O.

(@) Provethat P[| X+ Y| <2|X|]1> &

(b) Select some symmetrical probability density function f(-), and evaluate
Pl X+ Y| <£2|X]|]

Prove or disprove: If &[Y| X]= X, &[X| Y] = Y, and both £[X?] and &[Y?] are
finite, then P[X = Y] =1. (Possible HINT: P[X = Y]=1if var [X — Y] = 0.)
A multivariate Chebyshev inequality: Let (X4, ..., X,) be jointly distributed with
E[X;] =p;and var [X;] =0} forj=1, ..., m. Define 4, = {| X; — p,| <V 'mtoy}.
Show that P[ ( 4,]>1— 1-2, for 1>0.

J=1
Let fx(*) be a probability density function with corresponding cumulative dis-
tribution function Fx(-). In terms of fx(-) and/or Fx(-):
(@) Find P[X > xo + A x| X >xo0].
(b) Find Plxo < X <xo0+ Ax| X > xol.
(¢) Find the limit of the above divided by Ax as Ax goes to 0.
(d) Evaluate the quantities in parts (a) to (c¢) for fx(x) = Ae=**L (0, ) (x).
Let N equal the number of times a certain device may be used before it breaks.
The probability is p that it will break on any one try given that it did not break
on any of the previous tries.
(a) Express this in terms of conditional probabilities.
(b) Express it in terms of a density function, and find the density function.
Player 4 tosses a coin with sides numbered 1 and 2, B spins a spinner evenly
graduated from O to 3. B’s spinner is fair, but 4’s coin is not; it comes up 1
with a probability p, not necessarily equal to 4. The payoff X of this game is the
difference in their numbers (A4’s number minus B’s). Find the cumulative dis-
tribution function of X.
An urn contains four balls; two of the balls are numbered with a 1, and the other
two are numbered with a 2. Two balls are drawn from the urn without replace-
ment. Let X denote the smaller of the numbers on the drawn balls and Y the
larger.
(@) Find the joint density of X and Y.
(b) Find the marginal distribution of Y.
(¢) Find the cov [X, Y]
The joint probability density function of X and Y is given by

Sx. (%, ) = 3(x + W0, 1{x + o, (o, (D).

(Note the symmetry in x and y.)

(@) Find the marginal density of X.
() Find P[X 4 Y <.5].

(¢) Find &[Y| X = x].

(d) Find cov [X, Y].



28

29

30

31

32

33

34

35
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The discrete density of X is given by fx(x) = x/3 for x =1, 2, and fy, x(¥|x) is
binomial with parameters x and %; that is,

x| x)=P[Y=y|X=x]= (;) )

fory=0,...,xand x=1, 2.

(a) Find £[X]and var [X].

() Find &[Y).

(¢) Find the joint distribution of X and Y.

Let the joint density function of X and Y be given by fx. v(x, ¥) =8xy for 0 <x
<y <1 and be O elsewhere.

(@) Find &[Y| X = x].

() Find &[XY|X =x].

(¢) Find var[Y| X = x].

Let Y be a random variable having a Poisson distribution with parameter A.
Assume that the conditional distribution of X given Y = y is binomially distrib-
uted with parameters y and p. Find the distribution of X, if X =0when Y =0.
Assume that X and Y are independent random variables and X (Y) has binomial
distribution with parameters 3 and 4 (2 and }). Find P[X=Y].

Let X and Y have bivariate normal distribution with parameters pux =5, py =10,
o =1, and o7 =25.

(a) If p=>0, find p when P[4 < Y < 16| X = 5] = .954.
*b) If p=0, find P[X+ Y <16]

Two dice are cast 10 times. Let X be the number of times no 1s appear, and let

Y be the number of times two 1s appear,

(@) What is the probability that X and Y will each be less than 3?

(b) What is the probability that X+ Y will be 4?

Three coins are tossed » times.

(a) Find the joint density of X, the number of times no heads appear; Y, the num-

ber of times one head appears; and Z, the number of times two heads appear.

(b) Find the conditional density of X and Z given Y.

Six cards are drawn without replacement from an ordinary deck.

(@) Find the joint density of the number of aces X and the number of kings Y.
() Find the conditional density of X given Y.

Let the two-dimensional random variable (X, Y) have the joint density

Sx. (%, ¥) = 36 — x — W0, 2, () (2.4)(¥).
(@) Find &[Y| X = x]. () Find &[Y?| X = x].
(¢) Find var[Y| X = x]. (@) Show that &[Y] = &£[£[Y| X]I.
(e) Find &[XY|X =x].
The trinomial distribution (multinomial with & + 1 = 3) of two random variables
X and Y is given by

n!
SN = o —w =i P —p—ar

forx,y=0,1,....,nand x +y <n,where 0 <p, 0 <g,and p + g < 1.



174 JOINT AND CONDITIONAL DISTRIBUTIONS, STOCHASTIC INDEPENDENCE v

38

39

40

41

42
43

44

45

(@) Find the marginal distribution of Y.

(b)) Find the conditional distribution of X given Y, and obtain its expected
value,

(¢) Find p[X, Y].

Let (X, Y) have probability density function fx, ,(x, »), and let u(X) and v(Y) be

functions of X and Y, respectively. Show that

Elu(XN(Y)| X = x] = u(x)EM V)| X = x].

If X and Y are two random variables and &[Y| X = x] = u, where u does not

depend on x, show that var [Y] = &[var [ Y| X]].

If X and Y are two independent random variables, does &[Y|X = x] depend

on x?

If the joint moment generating function of (X, Y) is given by my, y(t1, £2) =

exp[3(¢Z+ ¢%)] what is the distribution of Y?

Define the moment generating function of Y| X = x. Does m,(t) = &lmy,; x(1)]?

Toss three coins. Let X denote the number of heads on the first two and Y

denote the number of heads on the last two.

(@) Find the joint distribution of X and Y.

(b) Find &[Y|X =1].

(c) Find px,y.

(d) Give a joint distribution that is not the joint distribution given in part (a)
yet has the same marginal distributions as the joint distribution given in
part (a).

Suppose that X and Y are jointly continuous random variables, fy,x(¥|x) =

Ix, x4+ 1y(¥), and fx(x) = I (o, 1)(X)-

(a) Find &[Y] (6) Find cov [X, Y]

(¢) Find PIX+ Y <1]. (d) Find fx, (x| ).

Let (X, Y) have a joint discrete density function

fx. Y(xs y)
=pi(1 — p)' P31 — p2)* (1 + a(x —p )y —p2)Meo. 1) (XM 0, 1:(1),

where 0 <p; <1, 0<p, <1, and —1 <« <1. Prove or disprove: X and Y
are independent if and only if they are uncorrelated.

*46 Let (X, Y) be jointly discrete random variables such that each X and Y have at

most two mass points. Prove or disprove: X and Y are independent if and only
if they are uncorrelated.
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DISTRIBUTIONS OF FUNCTIONS OF
RANDOM VARIABLES

1 INTRODUCTION AND SUMMARY

As the title of this chapter indicates, we are interested in finding the distribu-
tions of functions of random variables. More precisely, for given random
variables,say X;, X,,..., X, ,and given functions of the n given random variables,
say gi( s --vs )y G2(*s ooy *)y oo G5 - .-, *), we want, in general, to find the
joint distribution of Yy, Y,, ..., ¥, where ¥; = 9i( Xy, s X)), j=1,2,... k.
If the joint density of the random variables X, X,, ..., X, is given, then theo-
retically at least, we can find the joint distribution of Y;, Y,, ..., Y;. This
follows since the joint cumulative distribution function of Yy, ..., Y, satisfies
the following:

Fy, vl - 0 =PlYy <15 Yo 0]
=Plg,(X1,.... X)) <yi5.. 59Xy, o 0, X)) <34

for fixed y,, ..., yi, which is the probability of an event described in terms of
Xy, ..., X,, and theoretically such a probability can be determined by integrat-
ing or summing the joint density over the region corresponding to the event.
The problem is that in general one cannot easily evaluate the desired probability
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for each y;, ..., . One of the important problems of statistical inference, the
estimation of parameters, provides us with an example of a problem in which
it is useful to be able to find the distribution of a function of joint random
variables.

In this chapter three techniques for finding the distribution of functions of
random variables will be presented. These three techniques are called (i) the
cumulative-distribution-function technique, alluded to above and discussed in
Sec. 3, (i) the moment-generating-function technique, considered in Sec. 4, and
(iii) the transformation technique, considered in Secs. 5 and 6. A number of
important examples are given, including the distribution of sums of independent
random variables (in Subsec. 4.2) and the distribution of the minimum and
maximum (inSubsec. 3.2). Presentation of other important derived distributions
is deferred until later chapters. For instance, the distributions of chi-square,
Student’s t, and F, all derived from sampling from a normal distribution, are
given in Sec. 4 of the next chapter.

Preceding the presentation of the techniques for finding the distribution
of functions of random variables is a discussion, given in Sec. 2, of expectations
of functions of random variables. As one might suspect, an expectation, for
example, the mean or the variance, of a function of given random variables can
sometimes be expressed in terms of expectations of the given random variables.
If such is the case and one is only interested in certain expectations, then it is not
necessary to solve the problem of finding the distribution of the function of the
given random variables. One important function of given random variables
is their sum, and in Subsec. 2.2 the mean and variance of a sum of given random
variables are derived,

We have remarked several times in past chapters that our intermediate
objective was the understanding of distribution theory. This chapter provides
us with a presentation of distribution theory at a level that is deemed adequate
for the understanding of the statistical concepts that are given in the remainder
of this book.

2 EXPECTATIONS OF FUNCTIONS
OF RANDOM VARIABLES

2.1 Expectation Two Ways

An expectation of a function of a set of random variables can be obtained two
different ways. To illustrate, consider a function of just one random variable,
say X. Let g(-) be the function, and set ¥ =g(X). Since Y is a random
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variable, £[ Y] is defined (if it exists), and &[g(X)] is defined (if it exists). For
instance, if X and Y = g(X) are continuous random variables, then by definition

s(¥1= [ o), (1)
and '
g0l = [ g dxs @

but Y = ¢g(X), so it seems reasonable that £[Y] = &[g(X)]. This can, in fact,
be proved; although we will not bother to do it. Thus we have two ways of
calculating the expectation of ¥ = g(X); one is to average Y with respect to the
density of Y, and the other is to average g(X) with respect to the density of X.

In general, for given random variables Xy, ..., X,, let Y = g(X,, ..., X,);
then &[Y] = &[g(X4, ..., X,)], where (for jointly continuous random variables)

sn=[ wmndy 3

and ‘
Elg(Xy,. .., X,)]:f_ f_ g(xg,s-.05 X fx, X, (X100 X)) dxy ... dX,.

(4)

In practice, one would naturally select that method which makes the

calculations easier. One might suspect that Eq. (3) gives the better method of

the two since it involves only a single integral whereas Eq. (4) involves a multiple

integral. On the other hand, Eq. (3) involves the density of Y, a density that
may have to be obtained before integration can proceed.

EXAMPLE 1 Let X be a standard normal random variable, and let g(x) = x2.
For Y = g(X) = X?,

Q0

E1Y1= [ »fx(y) dy,

and

Slg0) = 61X = [ x¥fy(x) d.

Now

I

2

e ¥ dx=1

é»[Xz]=J'jo x2
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v
and
&[Y]= 2ty tet gy =
(Y] foyl"(l/Z)(/) y=1,
using the fact that ¥ has a gamma distribution with parameters = } and
A=1%. (See Example 2 in Subsec. 3.1 below.) /1]

2.2 Sums of Random Variables

A simple, yet important, function of several random variables is their sum,

Theorem 1 For random variables X, ..., X

n

cg’[; X,.J = ; E[X,], (5)

and

var[iX,-] Zvar[X]+ZZZcov[X,,X] (6)

I<J

PROOF That & [Z X ,.] =Y &[X,] follows from a property of expec-
1 1
tation (see the last Remark in Subsec. 4.1 of Chap. IV).

ol ool x])] -l on- ana)

30— eI, - 61x,))|

Il
—_
M: WM: M“
b

S1(X; — SIXX; — €1X;])]

||M;. EM:
5

var[X 1+23Y Y covlX;, X;). /111

i<jy

-

Corollary If X, ..., X, are uncorrelated random variables, then
var[z X,-] = ¥ varlX,] i
1 1

The following theorem gives a result that is somewhat related to the above
theorem inasmuch as its proof, which is left as an exercise, is similar,
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Theorem 2 Let X,,..., X, and Y,, ..., Y, be two sets of random vari-
ables, and let a,, ..., a, and by, ..., b,, be two sets of constants; then

a; b; cov[X;, Y,]. 7
/1]

I
Ma

m
i=1j=1

COV[Z aiX,-, Z bj Y_,:l
1 1

Corollary If X,, ..., X, are random variables and a4, ..., g, are
constants, then
Varl:z aiX,-:I = Z aiajCOV[Xi, XJ]
1 i=

n
i=1j=1

(8)

|
M:

a? var[X;1+ Y. Y a;a; cov[X;, X;].

i=1 i*j

In particular, if X,, ..., X, are independent and identically distributed
random variables with mean uy and variance 6% and if X, =(1/n) ) X,
1

then

2

81X, =py, and  var[X,] =2, ©)

PROOF Letm=mn, Y;,=X,,and b;=a;,i=1, ..., n in the above
theorem then i

var[z aiXi] =cov[z a; X, b; Y,-],
1 1 1

and Eq. (8) follows from Eq. (7). To obtain the variance part of Eq. (9)
from Eq. (8), set a; = I/n and 6% = var [X;]. The mean part of Eq. (9)
is routinely derived as

axd- e[S x] = T Suemne

Corollary If X, and X, are two random variables, then
var [X; + X,] = var [X;] + var [X,] + 2 cov [X,, X,]. (10)
11

Equation (10) gives the variance of the sum or the difference of two ran-
dom variables. Clearly

E[X, inlzg[Xllig[le- (11)
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2.3 Product and Quotient

In the above subsection the mean and variance of the sum and difference of two
random variables were obtained. It was found that the mean and variance of
the sum or difference of random variables X and Y could be expressed in terms
of the means, variances, and covariance of X and Y. We consider now the
problem of finding the first two moments of the product and quotient of X and Y.

Theorem 3 Let X and Y be two random variables for which var [X Y]
exists; then

EIXY) = puypy +cov [X, Y], (12
and
var [X Y]
= p2 var [X] + u var [Y] + 2uy uy cov [X, Y]
— (cov [X, Y])? + E[(X — u)* (Y — py)’] + (13)
2uyE[(X — px)* (Y — py)] + 205 E[(X — py (Y — 1y)*1.
PROOF
XY = pypy + (X — pdpty + (Y — pyp)px + (X — px)(Y — py).
Calculate £[X Y] and £[(X Y)?] to get the desired results. /1]

Corollary If X andY are independent, &[X Y] = pyuy, and var [X Y] =
u3 var [X] + p2 var [Y] + var [X] var [Y].

prOOF If X and Y are independent,
EMX — 1)’ (Y — uy)’1 = EUX — )’ (Y — 1y)*]
= var [X] var [ Y],
EX — 1) (Y — )] = E[(X — py)*1€1Y — py] =0,
and
E[(X — p)Y — puy)*1=0. /1

Note that the mean of the product can be expressed in terms of the means
and covariance of X and Y but the variance of the product requires higher-order
moments.

In general, there are no simple exact formulas for the mean and variance
of the quotient of two random variables in terms of moments of the two random
variables; however, there are approximate formulas which are sometimes useful.
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Theorem 4

Xl o1 14
g[y] oo, Y]+” var{ Y], (14)

and

] 2 0 2

PROOF To find the approximate formula for &[X/Y]), consider the
Taylor series expansion of x/y expanded about (g, uy); drop all terms of
order higher than 2, and then take the expectation of both sides. The
approximate formula for var [X/Y] is similarly obtained by expanding in
a Taylor series and retaining only second-order terms. /111

Two comments are in order: First, it is not unusual that the mean and
variance of the quotient X/Y do not exist even though the moments of X and Y
do exist. (See Examples 5, 23, and 24.) Second, the method of proof of
Theorem 4 can be used to find approximate formulas for the mean and variance
of functions of X and Y other than the quotient. For example,

2

Elg(X, V1~ gux> uy) + = ! var[X ] i P g(x, y)

BX,HY
vl Zgee )| 4 oolX 1120 g 16
v X,y covlA, — g(x, s
2 .V BX, By dy axg Y BX, By (16)
and
a 2
varlg%, D1~ varlX1{ g )| | varntf 2 geen| ]
X BX, By BX, By
+ 2 cov[X Y]{ 9 (x, ¥) g ) } 17
> T gdx, y e X,
Ox ux,uy OY g% y BX, By {17
3 CUMULATIVE-DISTRIBUTION-FUNCTION
TECHNIQUE
3.1 Description of Technique
If the joint distribution of random variables X, .. » X, is given, then, theoreti-
cally, the joint distribution of random varlablcs of Yl, ..., Y, can bedetermined,

where Y;=g4Xy, ..., X,), j=1, ..., k for given functions gi(s s ) e

*e
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g(*» ..., *). By definition, the joint cumulative distribution function of
Yy, oos iis Fy ooy y (V-5 Y =PlYy <yy5...5 Y, <y.]. But for each
Yi> --+» Y the event {Y; <yy; .5 Y, <py={g(Xy, ..., XD <y ..
g(Xy, ..., X)) <y} This latter event is an event described in terms of the
given functions g,(-, ..., *), ..., g(*, ..., *) and the given random variables
Xy, ..., X,. Since the joint distribution of Xj, ..., X, is assumed given, presum-
ably the probability of event {g,(X;, ..., X)) <y;; ...; gu( X1, ..., X)) <y}
can be calculated and consequently Fy,  y.(-,..., ') determined. The above
described technique for deriving the joint distribution of Y, ..., Y, will be
called the cumulative-distribution-function technique.

An important special case arises if k = 1; then there is only one function,
say g(Xy, ..., X,), of the given random variables for which one needs to derive
the distribution.

EXAMPLE 2 Let there be only one given random variable, say X, which has a
standard normal distribution. Suppose the distribution of Y = g(X) = X?
is desired.

Fy(y) .
=P[Y <y]=PIX* <yl =P[—/y < X < /¥y1=0(/y) — ®(—/7)

vy v 1 s
=2J.0 4~'.!5(u)du=2j0 ﬁe  du

r 1 1
= e_i'zdzzj‘ ————e ¥ 4z, fory>0,

oI \/ 2z
which can be recognized as the cumulative distribution function of a
gamma distribution with parameters r = 4 and 1 = 1. /1]

Other applications of the cumulative-distribution-function technique
expounded above are given in the following three subsections. *

3.2 Distribution of Minimum and Maximum

Let Xy, ..., X, be n given random variables. Define Y; = min [X;, ..., X,]
and Y, =max [X;, ..., X,]. To be certain to understand the meaning of
Y, =max [X,, ..., X,], recall that each X, is a function with domain Q, the
sample space of a random experiment. For each w e Q, X(w) is some real
number. Now Y, is to be a random variable; that is, for each w, Y,(w) is to be
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some real number. As defined, Y, () = max [X,(®), ..., X, (w)]; that is, for
a given w, Y,(w) is the largest of the real numbers X;(®), ..., X, (@)

The distributions of ¥, and Y, are desired. Fy (y)=P[Y,<y]=
P[X, <y;...; X, < y] since the largest of the X’s is less than or equal to y if
and only if all the X s are less than or equal to y. Now, if the X’s are assumed
independent, then

PIX,<y;...; X, <yl=[]P[X;<yl= _HIin(y);
i=1 i=

so the distribution of Y, = max [X,, ..., X,] can be expressed in terms of the
marginal distributions of X, ..., X,. If in addition it is assumed that all the
Xy, ..., X, have the same cumulative distribution, say Fy(-), then

1T Fx () = (BT

We have proved Theorem 5.

1 Theorem 5 If X,, ..., X, are independent random variables and Y, =
max [X;, ..., X,], then

P =T F0): (9)

If X, ..., X, are independent and identically distributed with common
cumulative distribution function Fy(-), then

Fy (y) = [Fx(0)]" (19)
(i

Corollary If X, ..., X, are independent identically distributed con-
tinuous random variables with common probability density function fy(-)
and cumulative distribution function Fy(-), then

Fo®) =B ). (0)

PROOF
1) = 5 B0 =B S0 )

Similarly,

Fy () =PlY, <yl=1-P[Y, >y]=1 —PlX,>y; ...; X,>V¥]
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since. Y, is greater than y if and only if every X; >y. And if X,, ..., X, are
independent, then
L=PLX, > y5. 5 X, >yl =1 = J[PIX; >yl =1 =[] [1 = Fx )]

i=1

If further it is assumed that X,, ..., X, are identically distributed with common
cumulative distribution function,Fy(-), then

I - [Il[l —Fx W1 =1-11 - F,»WT",
and we have proved Theorem 6.

Theorem 6 If X,, ..., X, are independent random variables and Y, =
min [X,, ..., X,], then

Fyl(y)=1~i1j1 - Fml @D

And if X,, ..., X, are independent and identically distributed with com-
mon cumulative distribution function Fy(*), then

Fy(y)=1—[1 — Fx(y)]". (22)
11/
Corollary If X,, ..., X, are independent identically distributed con-

tinuous random variables with common probability density f,(:) and
cumulative distribution Fy(+), then

fri(n) =nll = Fx(D1" 'fx(y). 23)

PROOF

fo ) = %Fyl(y)w[l _ F O ). I,

EXAMPLE 3 Suppose that the life of a certain light bulb is exponentially
distributed with mean 100 hours. If 10 such light bulbs are installed
simultaneously, what is the distribution of the life of the light bulb that
fails first, and what is its expected life? Let X, denote the life of the ith
light bulb; then Y, =min [X,, ..., X,,] is the life of the light bulb that
fails first. Assume that the X’s are independent.
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NOW fxi(x) =T%‘6‘e_-‘_‘l’ﬁxl(o’ w)(X), and
Fy,(x) =(1 — &™) 5, )(¥);
sO

Sy, () = lo(e_‘—‘t’ﬁy)lo_l(ﬂl)_oe_ﬁay)l(o, o))

-_10_
1o0e Lo, )(¥)s

which is an exponential distributionwith parameter 4 = +5; hence £[Y,] =

1/4 = 10. /11

Distribution of Sum and Difference of Two Random Variables

Theorem 7 Let X and Y be jointly distributed continuous random
variables with density fy y(x, y), and let Z=X + Y and V=X — Y.
.Then,

D= formz—nde=[ foz-p0dy, Q9

and

O= [ firmx-vdi=[ fotynd. @)

PROOF  We will prove only the first part of Eq. (24); the others are
proved in an analogous manner.

FAD)=PIZ<z]1=PIX + Y <zl= ([ fio(x, y)dxdy

xty<z

= f: U_:fx r(*, ¥) dy] dx

- f : Uj Iy u = x) du] dx

by making the substitution y = u — x.
Now

1oy = 22D ;z—-{ I [ | feorteu— ) | du)

= j_wfx, v(*, z — x) dx. i
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Corollary If X and Y are independent continuous random variables
and Z = X + Y, then

1D =fxr) = [ Sz =@ dx=[ Sz A0y )

ProOF Equation (26) follows immediately from independence and
Eq. (24); however, we will give a direct proof using a conditional distribu-
tion formula. [See Eq. (11) of Chap. IV.]

P[Z <z]=P[X + YSz]=Jm PIX + ¥ <z| X = x1fy(x) dx

—

:jm Plx + Y < z]f4(x) dx

= Jm Fy(z — x) fx(x) dx.

Hence,
dF, d [
f(2) = dZ(Z) = dz [j_wFY(z — X)fx(x) dx]
© dFyz — x)
= | i dx
= [ e =0 dx. I

Remark The formula given in Eq. (26) is often called the convolution
formula. In mathematical analysis, the function f,(:) is called the

convolution of the functions f,(*} and f, (). /1]

EXAMPLE 4 Suppose that X and Y are independent and identically dis-
tributed with density fy(x) = fy(x) = I ¢ ;)(x). Note that since both X
and Y assume values between 0 and 1, Z = X + Y assumes values between

0 and 2.
D= [ e 0f@dx= [ Tz — Do, 1) dx
= J.io U, z)(x)I(O, (2) + Iy, HM, 2)(2)} dx

z 1
= J0,1)(2) jo dx + Iy, 5)(2) J;_l dx

=zl (o, 1(2) + (2 — DIy, 2(2). /i
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FIGURE 1|

3.4 Distribution of Product and Quotient

Theorem 8 Let X and Y be jointly distributed continuous random vari-
ables with density fy y(x, y), and let Z = XY and U = X/Y; then

o 1 4 o 1 z
1%(2)=: ___jk,Y X, — dx:= ___fk}Y -5 Y dya (27)
—o | X] x —w || y
and :
o) = | |ylfx, y(uy, y) dy. (28)

— a0

PROOF Again, only the first part of Eq. (27) will be proved. (See
Fig. | for z>0.)

Fyz) =PIZ<zl= ([ fuo(x y) dx dy

Xysz

0 w© @ z{x
=1, [ frsteyydy| dx+ | L Joxtx pydy| dx,
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which on making the substitution u = xy

_( ;L—wfx,y(x,x) ]dx+j [f fxr( )d:]dx
- J;wjé;fgy( )dg]du4-j [ jky( )dx]du

[ () e e
- xl X,Y 5x X U,

hence
dF
ey = 22
© 1 z
=) mf,m,(x, )—C) dx. /1]

EXAMPLE 5 Suppose X and Y are independent random variables, each
uniformly distributed over the interval (0, 1). LetZ = XY and U= X/Y.

fA2) = Jw —I-fo,y(x, 2) dx

-

= Io, 1)(Z)j = Iz, (%) dx

4
’“"“I(o l)(x)I(O 1)( ) dx

= I(o' 1)(2) J; ; dx = —log Z I(O, l)(Z).
Sou) = [_ |y fx, (uy, y) dy
= J_ I}’II(O, 1)(")’)1(0, 1)(}’) dy (see Fig. 2)
= J_ |}’|{I(0, 1)(”)1(0, 1)(}’) + I[l, oo)(u)I(O, 1/u)(}’)} dy
I 1 d f ) JJ/u d
= Lo, l)(u) ’[Oy y+ Iy, co)(u o yay

1 1 /1\?
=EI(0,1)(1‘)+5(;) I[l,oo)(u)'

Note that &[X/Y]= U] =14 [Sudu+ 4 [T(1/u)du=co, quite dif-
ferent from &[X]/€[Y]=1. 1]/
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FIGURE 2

4 MOMENT-GENERATING-FUNCTION TECHNIQUE

4.1 Description of Technique

There is another method of determining the distribution of functions of random
variables which we shall find to be particularly useful in certain instances. This
method is built around the concept of the moment generating function and will
be called the moment-generating-function technique.

The statement of the problem remains the same. For given random vari-
ables X, ..., X, with given density fy ., ..., x,(x;, ..., X,) and given functions
Gy s ), g, ..., ), find the joint distribution of Y, = g,(X,, ..., X,),

s Ye=gu(X,, ..., X,). Now the joint moment generating function of
Yi,..., Y, if it exists, is

mYl,-.., Yk(tl, s ay tk) = éa[etlrl"'"""'thk]

— J. . fef191(xl,...,xn}+"°+tkgk(x1, very Xn)

X fx,,...,x,.(xn vy x,.)l_[ dx;. (29)
i=1

If after the integration of Eq. (29) is performed, the resulting function of
ti, ..., t; can be recognized as the joint moment generating function of some
known joint distribution, it will follow that ¥, ... ¥, has that joint distribu-
tion by virtue of the fact that a moment generating function, when it exists, is
unique and uniquely determines its distribution function.

For k > 1, this method will be of limited use to us because we can recog-
nize only a few joint moment generating functions. For k = 1, the moment
generating function is a function of a single argument, and we should have a
better chance of recognizing the resulting moment generating function.
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This method is quite powerful in connection with certain techniques of
advanced mathematics (the theory of transforms) which, in many instances,
enable one to determine the distribution associated with the derived moment
generating function.

The most useful application of the moment-generating-function technique

will be given in Subsec. 4.2. There it will be used to find the distribution of
sums of independent random variables.

EXAMPLE 6 Suppose X has a normal distribution with mean 0 and variancel.
Let Y = X2, and find the distribution of Y.

my(t) = &[e*] = fw e’ -

1
e~ 3 gy
- 2r

© 2
e~ tx21-20 g,

1
-

-1 o
- G L
T - — o0
_ 1 )* 1
= —_ i'= ——— f —
(1-2p (&—t or t<2,

which we recognize as the moment generating function of a gamma with
parameters r =4 and A =4. (It is also called a chi-square distribution
with one degree of freedom. See Subsec. 4.3 of Chap. VI.) !

EXAMPLE 7 Let X; and X, be two independent standard normal random
X, — X,. Find the joint distribution of Y; and Y,.

my. Yz(tl’ tz) — g[eY1t1+erz]
— g[e(XﬁXz)nHXz—xmz]
— éa[exl(tl—tz)+X2(t1+t2)]
— éa[ex1(n—tz)](gl[e)ﬁ(nﬂz)]
= mxl(tl - t2)sz(t1 + t2)
(t; —t2)° exp (t; + t,)°
2 2
2t 215

= exp(t + t3) = exp 5 P

= exp

= mYl(tl)mYz(tZ)'
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We note that Y, and Y, are independent random variables (by Theorem 10
of Chap. IV) and each has a normal distribution with mean 0 and variance

2. . /1]

In the above example we were able to manipulate expectations and avoid
performing an integration to find the desired joint moment generating function.
In the following example the integration will have to be performed.

EXAMPLE 8 Let X, and X, be two independent standard normal random
variables. Let Y =(X, — X;)?/2, and find the distribution of Y.

2
my(t) = €fexp Yt] = & [exp (X2+X') t]

2 2 2
~ +
= j f_ 7 cxp[(xz—xl) t— *1 xz] dx, dx,

2 2

= f_w f_w 2 CXP{— S[xH1 — ) + 2x,x,t + x3(1 — t)]} dx, dx,

r

= I exp - % x3(1 — t)]

[ 11—t 2x1x,t
x{f exp ——2—(xf+ lii)}dxl}dxz

- |

x3(1 — t)] x3 t?

=fm\/%exp[_ .
G o e ) e
\/1“1‘} Ji)#cxp[—% (1 —t— lt_zt)xg_] dx,

1 J1-t J1-2 ©
“Ji-t Ji-a \/1—:\/271[—«» (

(-2t (%_)i for t < 1/2,

which is the moment generating function of 3 gamma distribution with
parameters r = and 1 = %; hence,

K = WHT@ly 44, (y). 1
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4.2 Distribution of Sums of Independent Random Variables

In this subsection we employ the moment-generating-function technique to find
the distribution of the sum of independent random variables.

Theorem 9 If X,, ..., X, are independent random variables and the
moment generating function of each exists for all —/4 <t <k for some

h>0,let Y=>) X,;then
1

my(t) = &[exp Y X;t] = I_"—[ my(t) for —h<t<h.

PROOF
my(t) = &[exp Y x;t] = g[ﬁ ex.-z]
=1
- 'lfllév[eXit] = .I_ﬂ-[lmxi(t)
using Theorem 9 of Chap. IV. i

The power and utility of Theorem 9 becomes apparent if we recall Theorem
7 of Chap. II, which says that a moment generating function, when it exists,
determines the distribution function. Thus, if we can recognize ﬁ my (t) as
the moment generating function corresponding to a particular ’c;i;tribution,
then we have found the distribution of i X;. In the following examples, we

will be able to do just that.

EXAMPLE 9 Suppose that X;, ..., X, are independent Bernoulli random
variables; that is, P[X;=1]=p, and P[X;=0]=1 —p. Now

mxi(t) =pet + q. X

5 my x () = lj1 myx () = (pe + q)",

the moment generating function of a binomial random variable; hence

Y X; has a binomial distribution with parameters » and p. /1]
1



4 MOMENT-GENERATING-FUNCTION TECHNIQUE 193

EXAMPLE 10 Suppose that X, ..., X, are indcpendent Poisson distributed
random variables, X; having parameter 4;. Then

my (1) = E[e'*] = exp 1(e' — 1),

apd hence

my x (1) = f[ my(t) = ﬁlcxp A(e — 1) =exp ) Al — 1),
i=1 i=

which is again the moment generating function of a Poisson distributed
random variable having parameter Y ;. So the distribution of a sum of
independent Poisson distributed random variables is again a Poisson
distributed random variable with a parameter equal to the sum of the
individual parameters. /1]

EXAMPLE 11 Assume that X,, ..., X, are independent and identically dis-

tributed exponential random variables; then
A
i—t

my () =

So

n l n
my x(t) = 'l=_'[1mXi(t) = (ﬁ) ,

which is the moment generating function of a gamma distribution with
parameters » and A; hence,

[(n)

the density of a gamma distribution with parameters » and A. 11/

fz x,(x) =

x"_le""l(o, w}(x),

EXAMPLE 12 Assume that X,, ..., X, are independent random variables

and
X; ~ Ny, o});

then
a;X; ~ N(a; u;, a}a}),

and

ma.x(t) = exp (a; p;t + Yale?t?).
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Hence
myax(t) = |1 max (1) = expl(X ai)t + 3 afod)r’],
which is the moment generating function of a normal random variable; so

> a4X; NN(Z ait, Y a,-zcr,-z).
1 1 1

The above says that any linear combination (that is, } a; X;) of inde-
pendent normal random variables is itself a normally distributed random
variable. (Actually, any linear combination of jointly normally distri-
buted random variables is normally distributed. Independence is not
required.) In particular, if
X ~ N(uy, 6%), Y ~ N(uy, %),

and X and Y are independent, then

X+ Y~ Nux + sy, 0% + 03),
and

X—Y~ N(”X — Hy, 0'; + 0;)'

If X,, ..., X, are independent and identically distributed random vari-
ables distributed N(u, 62), then

] o?
X =-Y X;~N{un—|;
n nz i (N n)

that is, the sample mean has a (not approximate) normal distribution.  ////

In the above examples we found the exact distribution of the sums of
certain independent random variables. Other examples, including the impor-
tant result that the sum of independent identically distributed geometric random
variables has a negative binomial distribution, are given in the Problems. One

is often more interested in the average, that is, (1/n) Y, X,, than in the sum.
1

Note, however, that if the distribution of the sum is known, then the distribution
of the average is readily derivable since

1
Fams x(2) = P[;Z X, < z] =P X; < nz] = Fy x,(nz). (30)

In Examples 9 to 12 above, where we derived the distribution of a sum, we have
in essence also derived the distribution of the corresponding average. One of
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the most important theorems of all probability theory, thecentral-limit theorem,
gives an approximate distribution of an average. We will state this theorem
next and then again in our discussion of sampling in Chap. VI, where we will
outline its proof.

Theorem 10 Central-limit theorem If for each positive integer n,
X,, ..., X, are independent and identically distributed random variables

with mean yu, and variance ¢%, then for each z

F (z) converges to ®(z) as n approaches co, 3D

where
7 = (Xn—'éa[yn])___yn _#X.
’ Jvar [X,] ax/\/r'z

We have made use of Eq. (9), which stated that &[X,] = yy and var [X,] =
63/n. Equation (31) states that for each fixed argument z the value of the

cumulative distribution function of Z,, forn =1, 2, ..., converges to the value
®(z). [Recall that ®(-) is the cumulative distribution function of the standard
normal distribution. ]

Note what the central-limit theorem says: If you have independent random
variables X, ..., X, , ..., each with the same distribution which has a mean and
variance, then X, = (l/n)} X, “standardized” by subtracting its mean and
then dividing by its standard deviation has a distribution that approaches a
standard normal distribution. The key thing to note is that it does not make
any difference what common distribution the X, ..., X,, ... have, as long as
they have a mean and variance. A number of useful approximations can be
garnered from the central-limit theorem, and they are listed as a corollary.

/1

Corollary If X,, ..., X, are independent and identically distributed
random variables with common mean py and variance 62, then

‘_X—n“ﬂx
P = < b| =~ ®(b) —
[a < .y \/n < ] (b) — ®(a), (32)
o d — px c—H
Plc<X,<d]l~ ® Z) — o —), 33
€ (0'5(/\/”) (O'X/\/n) -

or

PP<$X&U]%¢CZZj_¢(J£T) (34)

/11
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Equations (32) to (34) give approximate values for the probabilities of
certain events described in terms of averages or sums. The practical utility
of the central-limit theorem is inherent in these approximations.

At this stage we can conveniently discuss and contrast two terms that are a
vital part of a statistician’s vocabulary. These two terms are limiting distribution
and asymptotic distribution. A distribution is called a limiting distribution
function if it is the limit distribution function of a sequence of distribution
functions. Equation (31) provides us with an example; ®(z) is the limiting
distribution function of the sequence of distribution functions F, (-), Fz,(*), ...,
Fz. (), .... Also ®(z) is called the limiting distribution of the sequence of random
variables Z,, Z,, ..., Z On the other hand, an asymptotic distribution

of a random variable, say Y, ,inasequence of randomvariables Y3, Y,,... Y,, ..
is any distribution that is approximately equal to the actual distribution of Y,
for large n. As an example [see Eq. (33)], we say that X, has an asymptotic
distribution that is a normal distribution with mean u, and variance 63/n. Note
that an asymptotic distribution may depend on » whereas a limiting distribution
does not (for a limiting distribution the dependence on n was removed in taking
the limit). Yet the two terms are closely related since it was precisely the fact
that the sequence Z,, Z,, ..., Z,, ... had limiting standard normal distribu-
tionthat allowed us tosay that X, hadanasymptotic normal distribution with mean
ix and variance o3/n. The idea is that if the distribution of Z, is converging
to @(z), then for large » the distribution of Z, must be approximately distributed
N, 1). But if Z, = (X, — ux)/(cx//n) is approximately distributed N(0, 1),
then X, is approximately distributed N(uy, o3/n).

In concluding this section we give two further examples concerning sums.
The first shows how expressing one random variable as a sum of other simpler
random variables is often a useful ploy. The second shows how the distribution
of a sum can be obtained even though the number of terms in the sum is also a

random variable, something that occasionally occurs in practice.

EXAMPLE 13 Consider n repeated independent trials, each of which has
possible outcomes 4, ..., 5.,,. Let p; denote the probability of outcome
s;ona particular trial, and let X ;denote the number of the » trials resulting
in outcome 4;, j=1,..., k + 1. We saw that (X;, ..., X;) had a multi-
nomial distribution. Now let

7 = 1 if ath trial results in outcome 4;
20 otherwise;
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then X;= ) Z;,. Now suppose we want to find cov[X;, X;]. In-
a=1

tuitively, we might suspect that such covariance is negative since when one
of the random variables is large another tends to be small.

cov (X, X =cov] 52,3 Zu| = 3 T cov[Zy. 2,
=1 a=1 =1 a=
by Theorem 2. Now if & # f, then Z,,; and Z;, are independent since they
correspond to different trials, which are independent. Hence

EZCOV[ZW’2%1:= EZCOV[ZM5ZaJ'
p=1la=1 a=1
But cov [Zia’ Zja] = éa[ZiaZja] - éa[Z,-a]é”[Zja], and é”[Z,-aZja] =0 Sincc
at least one of Z;, and Z;, must be 0. Now &[Z;,] = p;, and €[Z;,] = p;;
50 cov [ X, Xj]= —np;p;- /111

EXAMPLE 14 Let X;,..., X,, ... be asequence of independent and identi-

cally distributed random variables with mean py and variance 63. Let N
N

be an integer-valued random variable, and define Sy = Z X;; that is, Sy
i=1

is the sum of the first N X,’s, where N is a random variable as are the
X;’s. Thus Syis asum of a random number of random variables. Let us
assume that N is independent of the X;’s. Then &[Sy] = &[&[Sy| NI
by Eq. (26) of Chap. IV. But &[Sy|N =n]l=8&[X, + - - + X,] = nuy;
0 &[Sy|N] =Ny, and E[E[Sy| N1] = E[Nuy] = ux E[N1 = py pix. Sim-
ilarly, using Theorem 7 of Chap. IV,

var [Sy] = &[var [Sy| N1] + var [€[Sy| N]]
= &[NoZ] + var [Nuy]
= 03 E[N] + p var [N]
=iy’ Ox + 0} -y}
Suppose now that N has a geometric distribution [see Eq. (14) of Chap. III]
with parameter p, X; has an exponential distribution with parameter 2,

and we are interested in the distribution of S,. Further assume inde-
pendence of ¥ and the X;’s. Now, for z > 0,

P[Sy <z] = iP[SN < z|N =n]P[N = n]
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(by using the fact that a sum of independent and identically distributed
exponential random variables has a gamma distribution)

z

=z [ _I-(_nh)‘ln u" 1 Zudu]p(l __p)n—l

-y (1= p”!
”J.'l i\:l TR T

= f Ape~ Al =P gy Apf e P du =1 — e %7,
0 0

That is, Sy has an exponential distribution with parameter pA. Recall
that [see Eq. (14) of Chap. III] §[N] = 1/p and var [N] = (1 — p)/p?; also,
&[X] = 1/4, and var [X] = 1/A%. So, as a check of the formulas for the
mean and variance derived above, note that

1

1
E[SN]l = unux = /‘1 A

=T =N

and

1 1 L1=p 1-p1 1

P22 P B )

which are the mean and variance, respectively, of an exponential distribu-
tion with parameter pA. /1]

var [Sy]l = uno% + on sy =

5 THE TRANSFORMATION Y =g(X)

The last of our three techniques for finding the distribution of functions of
given random variables is the transformation technique. 1t is discussed in this
section for the special case of finding the distribution of a function of a uni-
dimensional random variable. That is, for a given random variable X we seek
the distribution of Y = g(X) for some function g(-). Discussion of the general
case is deferred until Sec. 6 below. Both thenotation Y = g(X) and the notation
y = g(x) will appear in the ensuing paragraphs; y = g(x) is the usual notation
for the function or transformation specified by g(-), and Y = g(X) defines the
random variable Y as the function g(-) of the random variable X.

5.1 Distribution of Y = g(X)

A random variable X may be transformed by some function g(-) to define a
new random variable Y. The density of Y, fy(y), will be determined by the
transformation g(-) together with the density fy(x) of X.
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First, if X is a discrete random variable with mass points x;, X3, ..->
then the distribution of Y = g(X) is determined directly by the laws of prob-
ability. If X takes on the values x,, X, , - - - with probabilities Fa(x)s [ x(X2)s - - -
then the possible values of Y are determined by substituting the successive
values of X in g(-). It may be that several values of X give rise to the same
value of Y. The probability that Y takes on a given value, say y;, is

=2  fx(x) (35)

{irg(x)=»1)

EXAMPLE 15 Suppose X takes on the values 0, 1, 2, 3, 4, 5 with prob-
abilities £x(0), fy(1), fx(2), [x(3), fx(®), and fx(5). If Y = g(X) = (X —2)?%,
note that Y can take on values 0, I, 4, and 9; then fy(0)=/,(2),

S(D) = fx(1) +fx(3), fy(4) = fx(0) + fx(4), and f(9) = f(5). /1

Second, if X is a continuous random variable, then the cumulative dis-
tribution function of ¥ = g(X) can be found by integrating f,(x) over the appro-
priate region; that is,

B =PIY<yl=PlgX)<yl=|  fux)dx (36)

{x:g(x)<y}

This is just the cumulative-distribution-function technique.

EXAMPLE 16 Let X be arandom variable with uniform distribution over the
interval (0, 1) and let ¥ =g(X)= X2 The density of Y is desired.
Now

Fy(y)=P[Y <yl = P[X* < y] =f

{x:x2<y)

vy _
fx(x)dx=f dx:\/y

0
forO0<y<1I;so

Fy(y) = \/371(0,1)()’) + Iy, o)(¥)s -
and therefore

11

Application of the cumulative-distribution-function technique to find the
density of ¥ =g(X), as in the above example, produces the transformation
technique, the result of which is given in the following theorem.

11
H(y) = 5 E Io.1)(»).
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Theorem 11 Suppose X is a continuous random variable with prob-
ability density function /(). Set X = {x:f,(x) >0}. Assume that:

(i) y = g(x) defines a one-to-one transformation of X onto 9).

(i) The derivative of x = g~'(y) with respect to y is continuous and
~ nonzero for ye 9, where g~'(y) is the inverse function of g(x); that is,

g~ () is that x for which g(x) = y.

Then Y = g(X) is a continuous random variable with density

Flg™ ' NIg(y).

d
fH(y) = ’2}—) 9 ')

PROOF The above is a standard theorem fromcalculus on thechange
of variable in a definite integral; so we will only sketch the proof. Consider
the case when X is an interval. Let us suppose that g(x) is a monotone
increasing function over X; that is, g’(x) > 0, which is true if and only if
(dldy)g™'(y)>0 over Y. For ye®, Fy)=PlgX)<yl=PIX <
9 '] =Fx(g"'(y), and hence fy(y) = (d/dy)Fy(y) = [(dldy)g~ ()]
fx(¢~1(»)) by chain rule of differentiation. On the other hand, if g(x)
is a monotone decreasing function over X, so that g'(x) <0 and
(djdy)g~'(y) <0, then Fy(y)=Plg(X)<yl=P[X>g '(D]=1-Fy
(9 '(»))-andtherefore fy(y) = — [(d/dy)g ™' (M1fx(g~ ') = |(dldy)g~ ()
fx(g™'(y)) for ye 9. /111

EXAMPLE 17 Suppose X has a beta distribution. 'What is the distribution of
Y=—log,X? X={x:f,(x)>0={x:10<x<1}. y=g(x)= —log,x
defines a one-to-one transformation of X onto P ={y: y>0}. x=
g~ '(y) =e %, so (d/dy)g”'(y) = —e~?, which is continuous and nonzero
for ye 9. By Theorem [1I,

d
fr(y) = ‘d—yg“(y) L9~ M g(y)

, |
B(a, b)

e ) (1 — 7)o, w)(¥)

“Ban® (- ™) o, wy(¥)-

In particular, if b =1, then B(a, b) = l/a; so fy(y) = ae” I »)(y), an
exponential distribution with parameter a. /1]
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EXAMPLE 18 Suppose X has the Pareto density fy(x) = 0x 7 'I}; | ,)(x) and
the distribution of Y = log, X is desired.

filg™ NIg(y)

d
fr(y) = \3;9"(}')
= e”ﬂ(e’?_o_ll[l, oo)(ey) = Be_ayl[(), oo)(y)' ////

The condition that g(x) be a one-to-one transformation of X onto 9 is
unnecessarily restrictive. For the transformation y = g(x), each point in X
will correspond to just one point in 9 ; but to a point in 9 there may correspond
more than one point in X, which says that the transformation is not one-to-one,
and consequently Theorem 11 is not directly applicable. If, however, X can be
decomposed into a finite (or even countable) number of disjoint sets, say X,, ...,
X, , so that y = g(x) defines a one-to-one transformation of each X; into 9),
then the joint density of Y = g(X) can be found. Let x =g; !(y) denote the
inverse of y = g(x) for x e X;. Then the density of Y = g(X) is given by

d
fr(y) = Z ‘;gz 1(}’) fxlg: 1()’))1‘9(}’) (37)

where the summation is over those values of i for which g(x) = y for some value
of x in X;.

EXAMPLE 19 Let X be a continuous random variable with density f,(-),
and let ¥ =g(X) = X% Note that if X is an interval containing both
negative and positive points, then y = g(x) = x? is not one-to-one. How-
ever, if X is decomposed into X, = {x: x& X, x <0} and X, = {x: x € ¥,
x > 0}, then y = g(x) defines a one-to-one transformation on each X;.

Note that g7 '(y) = —/y and g5 '» =+/y. ByEq. (37),

AO)= |3 VD 45 Tt

In particular, if

Sx(x) = (e,
then

W) =z —e Vg o

f



202 DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARIABLES v

or, if

2
Sx(x) = §(x + I)I(_1, 2)(x),

then

@IN

1 _
\7— 1+ \/.V)]I(o, Hly)

1
Jy

Nl'—‘

) = [5%5 -y + D+

\Oll\)
—~

1+ \/})] It o (3. m,

N =

|

5.2 Probability Integral Transform

If X is a random variable with cumulative distribution Fy(-), then Fy(-) is a
candidate for g(-) in the transformation Y = g(X). The following theorem
gives the distribution of Y = Fy(X) if Fy(-) is continuous. Since Fy(‘) is a
nondecreasing function, the inverse function Fy'(-) may be defined for any
value of y between 0 and 1 as: Fy 1(y) is the smallest x satisfying F,(x) > y.

Theorem 12 If X'is a random variable with continuous cumulative dis-
tribution function Fy(x), then U = F,(X) is uniformly distributed over the
interval (0, 1). Conversely, if U is uniformly distributed over the interval
(0, 1), then X = Fx!(U) has cumulative distribution function Fy(-).

prOOF  P[U < ul = PFy(X) < ul = PLX < Fy'@)] = Fy(Fy () =
ufor0 <u < 1. Conversely, P[X < x] = P[Fx'(U) <x] = P[U < Fy(x)]
= Fy(x). 11/

In various statistical applications, particularly in simulation studies, it is
oftendesired to generate values of somerandom variable X. To generate a value
of a random variable X having continuous cumulative distribution function
F,(+), it suffices to generate a value of a random variable U that is uniformly dis-
tributed over the interval (0, 1). This follows from Theorem 12 since if Uis a
random variable with a uniform distribution over the interval (0, 1), then X =
Fy!(U) is a random variable having distribution Fy(-). So to get a value,
say x, of a random variable X, obtain a value, say u, of a random variable U,
compute Fj'(u), and setit equal to x. A value uofarandom variable U is called
a random number. Many computer-oriented random-number generators are

available.
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EXAMPLE 20 Fy(x) = (1 — e ), o)x). Fx'(y)= —(1/3) log, (I — y);s0
—(1/4) log, (1 — U) is a random variable having distribution (1 — e™*%)
I, «)(X) if U is a random variable uniformly distributed over the interval

(0, 1). I/

The transformation Y = F,(X) is called the probability integral trans-
formation. 1t plays an important role in the theory of distribution-free statistics
and goodness-of-fit tests.

6 TRANSFORMATIONS

In Sec. 5 we considered the problem of obtaining the distribution of a function
of a given random variable. It is natural to consider next the problem of
obtaining the joint distribution of several random variables which are functions
of a given set of random variables.

6.1 Discrete Random Variables

Suppose that the discrete density function fy . .. x (x5, ..., x,) of the -
dimensional discrete random variable (X, ..., X,) is given. Let X denote
the mass points of (X,, ..., X,); that is,

x = {(xl, i ey xn):th_“’x”(xl, PP xn) >0}.

Suppose that the joint density of ¥; = g,(X;, ..., X)), ..., Yy =g.(Xy, ..., X,)
is desired. It can be observed that Y;, ..., Y, are jointly discrete and
PIYy =y s Ye=wl=fr,.. . vy ) =) fx, . x(%,...,x,), where
the summation is over those (x;, ..., x,) belonging to X for which D1y oo os ) =
(G1(X1s = s Xp)s oo oy Gil(Xps « o5 X))

EXAMPLE 21 Let (X,, X,, X;) have a joint discrete density function given
by

(%15 X2 5 X3) | (0, 0, 0)|(0, 0, l)’ O, 1,1 (1,0, |(1, 1,0)’(1, 1, 1)

Sx1.x2, (%15 X25 X3) | ] l ] I % ¥ l 3 ‘ %
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Find the joint density of Y, =g¢,(X;, X,, X;)=X; + X, + X, and
Y, =9:(X1, X5, X3) = |X; — X,|.
X¥=1{0,0,0),(0,0,1),(0,1,1),(1,0,1),(1,1,0), (1, 1, 1)}.
Ty, v2(0,0) = fx,, x,,x,(0,0,0) = &
Jri, (L 1) = fx, x5, %0, 0, 1) =
Jriva(2,0) =fy, x,,x,0, 1, 1) =
Jrin(2,1) = fx, %0, x,(L 0, D) + fxy x5, x,(1, 1,0) = 4,

and

Jri,1:3,0) = fx x5, x5(1, 1, 1) = 5. /1

]

J=  oojuw

-]
-

6.2 Continuous Random Variables

Suppose now that we are given the joint probability density function
Sxiox (%15 ..., x,) of the n-dimensional continuous random variable
(Xy5 +ov5 X,). Let

X= {0 %) Sy G %) >0 (38)

Again assume that the joint density of the random variables ¥, = ¢,(X,,..., X,),
, Y, =gu(X,, ..., X,)is desired, where k is some integer satisfying | <k < n.
If kx <n, we will introduce additional, new random variables Y,,, =
Gei1(X1s ooey X)), oon, Yo=9uXy, ..., X,) for judiciously selected functions
Jit1s -+ > gn; then we will find the joint distribution of Y}, ..., Y,, and finally
we will find the desired marginal distribution of Y;, ..., Y, from the joint dis-
tribution of Yy, ..., Y,. This use of possibly introducing additional random
variables makes the transformation y; = g,(x1, .«-s X)), +++5 Yo = Go(X15 - <5 X,)
a transformation from an n-dimensional space to an n-dimensional space.
Henceforth we will assume that we are seeking the joint distribution of Y, =
g1(Xys ooos Xp)y ooy Y, =g4(Xy, ..., X,) (rather than the joint distribution of
Yy, ..., Y;) when we have given the joint probability density of X, ..., X,.
We will state our results first for # = 2 and later generalize to n > 2.
Let fy, x (X1, X2) be given. Set X ={(x1, x2): fx,, x(¥1> X2) > 0}. We want to
find the joint distribution of Y, = g,(X;, X,) and Y, = ¢g,(X,, X,) for known
functions g;(+, *) and g,(+, ). Now suppose that y; = g,(x;, x;) and y, =
g,(x1, x;) defines a one-to-one transformation which maps X onto, say, 9.
x, and x, can be expressed in terms of y; and y,; so we can write, say, x; =
g1 (y1, y2) and x, = g3 '(y1, y2). Note that X is a subset of the x,x, plane and
9) is a subset of the y,y, plane. The determinant
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axl axl
Oy, 0ya (39
ox; dx,
dy; 0y,

will be called the Jacobian of the transformation and will be denoted by J.
The above discussion permits us to state Theorem 13.

Theorem 13 Let X, and X, be jointly continuous random variables
with density function fy, x,(x1, x2). Set X ={(x1, x5): fx,, x,(*1, X2) > 0}.
Assume that:

(i) »y1 = gi(x1, x,) and y, = g,(x;, x,) defines a one-to-one transformation

(ii)

(iif)

of X onto 9.

The first partial derivatives of x, = g7 (y1, ¥2) and x, = g3 (¥, ¥2)
are continuous over 9.

The Jacobian of the transformation is nonzero for (y,, y,) € 9.

Then the joint density of Y, = ¢,(X,, X,) and Y, = g,(X,, X,) is given
by

Sy, v2V1s y2) = |J|fX1,Xz(gI1(y13 Y2) g?()’n Y2 ll9(¥15 y2)- (40)

PROOF We omit the proof; it is essentially the same as the derivation
of the formulas for transforming variables in double integrals, which may
be found in many advanced calculus textbooks. 9 is that subset of the
1Y, plane consisting of points (¥, y,) for which there exists a (x;, x;) e X

such that (y;, y,) = (91(x1, X2), g2(X1> X2)).
Iy(y1, V) = Ix(gl_l()’n Y2)» 92 '(¥15 y2))- /1]

EXAMPLE 22 Suppose that X; and X, are independent random variables,

each uniformly distributed over the interval (0, 1). Then fy, x,(x;, Xx;) =
To,1y(¥1)(0,1(X2). X ={(x, x3): 0<x; < and O0<x, <1} Let
Y1 =061(x1, X2)=x +x; and y, =g,(x;, X;)=x,—x;; then x; =
3 —»2) =971, y2)s and x, =304 + ¥2) = g7 (01, ¥2).

ox, Ox, .

v o |F T
J= 1 2 = = -,

% 0x3 3 1 2

dy, 0y,
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FIGURE 3

X and 9) are sketched in Fig. 3. Note that the boundary x; = 0 of X goes
into the boundary 4(y; — y,) = 0 of 9, the boundary x, = 0 of X goes into
the boundary 4(y; + y,) = 0 of ), the boundary x, = | of X goes into the
boundary 4(y; — y,) =1 of 9, and the boundary x, =1 of X goes into
theboundary i(y, + y,) = lof 9). Now the transformation is one-to-one,
the first partial derivatives of g; ! and g, ! are continuous, and the Jacobian
1S NoONzero; so

fY;,Yz(yD y2) = |J|fx,,xz(.91_1(}’1, Y2), g?()’n 23).

Yi— Y2 Y1+,
= %I(o,l)(_'z_)l(o,l)(—“z_“)

_ {% for (y1,y2)e?
0  otherwise. i

EXAMPLE 23 Let X, and X, be two independent standard normal random
variables. Let Y, = X, + X, and ¥, = X,/X,. Then

-1 ylyZ -1 yl
= ) = nd X, = s = .
X1 =91 (V1> y2) 1+ v, a 2=92 (Y15 ¥2) i+,
Y2 Y1
J = 1+ y,; A4y yya+1) Vi1
= A \° & 2 Bl S .
1 _ Y, (1+ .V2)3 (1+y2)
1+y, (A+y,)
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fn,yz()"n y2)

2
_ |l 1 :__1_[(}’1}’2)2_'_ Y1 ]}
Aty T2 04 A+
__1_ | y:l x[ 1(1+YZ)Y1]
" 2n(1 +y,) 2 (1+y5)°

To find the marginal distribution of, say, Y,, we must integrate out y;;
that is

fr,(¥2) = fjo Sy, v20015 y2) dy,

1 J‘ |y [ 1(1+}’2)J’1] dy,
2n(1+ ¥2)? ! 2 (14y,)°
Let
I (1 +J’§) 2.
U=s—""—5D¥1;
2(1 +y,)?
then
(1 +}’2)
(1 + 2)
and so
1 (1+J’2) — 1
2 Ydu=-+——,
sz(yZ) 27'C (1+y2)2 1+y ( )f u= 7'[ 1+y§

a Cauchy density. That is, the ratio of two independent standard normal
random variables has a Cauchy distribution. i

EXAMPLE 24 Let X; have a gamma density with parameters #; and A for
i=1,2. Assume that X, and X, are independent. Again, we seek the
joint distribution of ¥; = X, + X, and Y, = X,/X,.

yiy _ y
-2 and X, =49 1()’1» ya) = :

Xy = -1 N = .
1=91 (Y1, ¥2) 1+y, 1+y,
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hence

Y1

J =—.
M (1+y,)?

fyl,}'z(y19 yZ)

Y1 1 1 yiva \" Y oy, \m!
= ’ ' ]."‘-""2(-—————) ( ! ) e~ R
A+y) Ty T \i+y) \i+y, o1 ¥2)

— A +n2—1,-2 y2 !
STty T T gy e e.m0)
lm +n» . . A
—_  —  yMTh2— — A1
[r(nl + nZ) Y1 e I(O. oo)(yl)]

x [ 1 y3» ! Lo {y2)
B(nl, nz) (1 + yz)"l+"2 0, 0\Y2J)]|-

We see that fy, v,(y1, ¥2) =fr,(y)fy(y2): s0 ¥; and Y, are independent.
Also, we see that the distribution of Y, = X; + X, is a gamma distribu-

tion with parameters n;, +n, and A. If n, =n, =1, then Y, is the ratio
of two independent exponentially distributed random variables and has
density

1
fyz(J’z) = W I(O,oo)(yZ)a

a density which has an infinite mean. il

EXAMPLE 25 Let X; have a gamma distribution with parameters n;
and Afori =1, 2, and assume X, and X, are independent. Suppose now
that the distribution of Y, = X,/(X; + X,) is desired. We have only
the one function y, = g,(x,, x,) = %,/(x; + x,); so we have to select the
other to use the transformation technique. Since x; and x, occur in the
exponent of their joint density as their sum, x, 4+ x, is a good choice.
Let y, = x; + x; then x; = y,y,, x, = ¥, — »,¥,, and

J=| B ) Y1

-y, 1 —)’1| — Yz
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Hence

fh,n(.‘/n y2)

1 1 +n n1—1 n2—1 "Z}'zI
=Y2 APy y,) (Y2 — y1y2) e 9(¥15 Ya)
L(ny) I(ny)
;Ln1+n2

— m-101 _ nz= 1y, a1 tny = 1,=Ay2f Yy )M ,oo(yZ)
I‘——(nl)l"(nz)yl (1—-y)”* y2 ©, Y1) (0, »)
1 -1 -1 ]
— —_ ni 1_ na2 I
[B(np n,) i & ©n0r)

[ e 3|
L(ny + n,) @

It turns out that Y; and Y, are independent and Y; has a beta distribu-
tion with parameters », and n,. /1]

Of the three conditions that are imposed on the transformation y, =
gi(x1, x,) and y; = g,(x;, X,), the sometimes restrictive condition that the
transformation be one-to-one can be relaxed. For the transformation y, =
g1(x1, x;) and y, = g,(x;, x,), each point in X will correspond to just one point
in 9 ; but to a point in 9 there may correspond more than one point in X, which
says that the transformation is not one-to-one and consequently Theorem 13 as
stated is not applicable. If, however, X can be decomposed into a finite number
of disjoint sets, say X,, ..., X,, so that y; =g,(x;, x;) and y, = g,(x;, x;,)
define a one-to-one transformation of each X; onto ) then the joint density of
Y; =gi(Xy, X;) and Y, =g,(X;, X,) can be found. Let x; = g5;'(y1, ¥2)

and x, = g;;' (y;, y,) denote the inverse transformation of 9 onto X;fori=1,
..., m, and set

591_i1 agl-il

0y, 2y,
"= gt agit|

dy, 0y,

Theorem 14 Let X; and X, be two jointly continuous random variables
with density function fy, y,(x;, x,). Assume that X can be decomposed
into sets X;, ..., X, such that the transformation y, = g,(x,, x,) and
Y2 = g2(xy, X;) is one-to-one from X; onto 9. Let x, = g1;'(y;, ¥,) and
X3 = ¢3;'(y1, ¥,) denote the inverse transformation of 9 onto X;, i =

I, ..., m. Assume that all first partial derivatives of g;;' and g5;' are
continuous on 9 and that J; does not vanishon9),i=1,..., m. Then
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Jr,, v.(Y1 y2) = ;f_,; |J:'|fX1,Xz(gl_i1(y19 y2) gz_il()’n )’2))12)(}’1’ Y2)- (41)
i

We illustrate this theorem with Example 26.

EXAMPLE 26 Assume that X, and X, are independent standard normal
random variables. Consider the transformation y, = x? + x2 and
y, = Xx,, which implies x, = -l_-\/y1 —~ y% and x, = y, so that the trans-
formation is not one-to-one. Here X ={(x;, x,): — 0 <x; < oo,
—00 <x; <00}, and Y ={(y;, y;): 0 <y, < o0, _\/}_’1 <)y, < \/)’1}-
If X is decomposed into X, and X,, where X, ={(x;, x;): 0 <x; < o0,
—0 < Xx; < oo} and X, = {(x;, x;): —0 <x; <0, —0 <x, < o0} (in
the terminology of Theorem 14, m = 2), then our transformation is one-
to-onefor X;onto Y, i=1,2. g1y (31, y2) =~/ 3 — y3,andgz( (y1,5,) =
Y25 95701 ¥2) = =/ — V3. and ¢33 (31, ¥2) = y25 50

0911

—_ yy £
J, = Yy — y2) dy, | = Iy, — y%)_*,
0 ]
and f'
_, 0977
-3y, — y%) ¥ 1 _
J, = 0y2 =—E(}’1_}’% *
0 1
Hence,

f}',.yz(.‘/n yy) = [|J1 |fX,, xz(91_11(}’1, Y2) .92_11()’1, }’2))
+ |2l fx x.(912 V15 Y2)s 922 (V15 h)?]&)()’n y2)
1 1

. e—&)’l

\/y _—.V% 2n _
for y, = 0 and —\/y1 <y, <\/y1. Now
Sri(¥1) = J‘w Sri v (V15 ¥2) dy,

V1
— i e_'i'yl ' 1

T —Jy—l\/}h_.}’z

1 y2 |Yn }

= — e‘*"{arc sin —=
(P T L
=—e M- +-)=eP for y >0,

2

2n V4
2

an exponential distribution. /11
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Theorems 13 and 14 can be generalized from n =2 to n>2. We will
state the generalization of Theorem 14. (Theorem 13 is a special case of Theorem
14.) '

Theorem 15 Let X,,X,,..., X, be jointly continuous random variables
with density function fy, . x.(x1s...,x,). Let X={(x, ..., x,):
Sxyox(®%y ..., x,) >0}. Assume that X can be decomposed into sets
Xy, ..., X, such that y; = g,(x1, ..., X,) Vs =G2(X1y eves X,)s oo vy Y, =
g.(X1, ..., X,) is a one-to-one transformation of X, onto 9,i=1,..., m.
Let x; =g1,' (P15 ««os Yuhs «oo» Xy =g;i'(V1, ..., ¥,) denote the inverse
transformfation of 9 onto X;, i=1, ..., m. Define

o9y’ dgn' . dgy
0y, 0y, dy,
095 909 | 0g3
Ji=| 0y, 0y, 0y,

-----------------------------

09" 09.' dgy'
dy, dy, oy,

fori=1,..., m.
Assume that all the partial derivatives in J;, are continuous over
9 and the determinant J; is nonzero, i=1, ..., m. Then

le,...,’Yn(yla e yn)

3

N

il S x5 D1 - V) - 85 s - V) (42)

I

i=1

for(yls-”’ yn) in ‘D ////

EXAMPLE 27 Let X, X,, and X; be independent standard normal random
variables, y; = x;, y, =(x; + x,)/2, and y, = (xy + x, + x3)/3. Then
X1 =Yy, X3 =2y, —y;, and x5 =3y, —2y,; so the transformation is
one-to-one. (m =1 in Theorem 15.)
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leng,Yg(yla Ya» y3)

= |J|fx1,x2,x3(x1s X3, X3)

1 3
_ 6(\—/;) exp{—1[y? + (2y; — y1)* + (ys — 292)°]

1 3
- 6(\—/2=) exp[— 4252 — 49,7, + 8y% — 12y, y5 + 9y2)].
T

The marginal distributions can be obtained from the joint distribution;
for instance,

Sy (y3)

Q0 an
= J‘ j fyl,yz,ys(yp}’z,}’a)dh dy,
-~ a0 - Q0

1 3 o0
_ 6(—:) [ expl—3(6y% — 12y, 3 + 9¥3)]
\/275

— Q0

X (J exp[—3(2y% — 4y,y, + 2y3)] dyl) dy,

e

[+

6 1 \2
-7 (72_;) [ _exp[~4(6y% — 12y y5 + 6y)lexpl — 43y dy

= (/3/\/2n) exp[ - 3y31;

that is, Y, is normally distributed with mean 0 and variance }. /1]

PROBLEMS

I (a) Let Xy, X.,and X; be uncorrelated random variables with common variance
o2, Find the correlation coefficient between X, -+ X, and X, + X;.
(b) Let X; and X, be uncorrelated random variables. Find the correlation
coefficient between X, + X, and X, — X, in terms of var [X,] and var [X:].
(¢) Let X, X,, and X be independently distributed random variables with
common mean ¢ and common variance ¢>.  Find the correlation coefficient
between X: — X; and X5 — X,.
2 Prove Theorem 2.
3 Let X have cd.f. Fx(-)= F(-). What in terms of F(-) is the distribution of
X0, «(X) = max [0, X]?
4 Consider drawing balls, one at a time, without replacement, from an urn containing
M balls, K of which are defective. Let the random variable X(Y) denote the
number of the draw on which the first defective (nondefective) ball is obtained.

Let Z denote the number of the draw on which the rth defective ball is obtained.
(a) Find the distribution of X.
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(b) Find the distribution of Z. (Such distribution is often called the regative
hypergeometric distribution.)

(©) Set M =5 and K = 2. Find the joint distribution of X and Y.

Let X,, ..., X, be independent and identically distributed with common density

fx(X) = X" 21(1, m)(X).

Set Y =min[Xy, ..., X,]. Does &[X1] exist? If so, find it. Does & Y] exist?

If so, find it,

Let X and Y be two random variables having finite means.

(@) Prove or disprove: &[max [X, Y11 > max [£[X], £[ Y]]

(b) Prove or disprove: &[max [X, Y1+ min [X, Y]l = &[X]+ &[Y].

The area of a rectangle is obtained by first measuring the length and width and

then multiplying the two measurements together. Let X denote the measured

length, Y the measured width. Assume that the measurements X and Y are

random variables with joint probability density function given by fx. v(x, ¥) =

kI or. 1.1 8w 1.2wi(¥), Where L and W are parameters satisfying L > W >0

and k is a constant which may depend on L and W.

(@) Find &[XY] and var [XY].

(b) Find the distribution of X'Y.

If X and Y are independent random variables with (negative) exponential dis-

tributions having respective parameters A; and A;, find &[max [X, Y]}

Projectiles are fired at the origin of an xy coordinate system. Assume that the

point which is hit, say (X, Y), consists of a pair of independent standard normal

random variables. For two projectiles fired independently of one another, let

(X1, Yy and (X2, Y.) represent the points which are hit, and let Z be the distance

between them. Find the distribution of Z2. HiNT: What is the distribution of

(X:— X1)2? Of (Y2— Y)2? 1Is (X2 — X1)? independent of (Y, — Y,)2?

A certain explosive device will detonate if any one of n short-lived fuses lasts

longer than .8 seconds. Let X, represent the life of the ith fuse. Tt can be as-

sumed that each X, is uniformly distributed over the interval 0 to 1 second. Fur-

thermore, it can be assumed that the X,’s are independent.

(a) How many fuses are needed (i.e., how large should » be) if one wants to be
95 percent certain that the device will detonate?

(b) If the device has nine fuses, what is the average life of the fuse that lasts the
longest ?

Suppose that random variable X, has a c.d.f. given by [(n — 1)/n] ©(x) + (1/n)F(x),

where @ () is the ¢.d.f. of a standard normal and for each n F,(-)isac.d.f. What

is the limiting distribution of X, ?

Let X and Y be independent random variables each having a geometric distribu-

tion. :

*(@) Find the distribution of X/(X + Y). [Define X/(X+ Y) to be zero if

X+ Y=0]

(b) Find the joint moment generating function of X and X + Y.
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Let X, and X, be independent standard normal random variables. Let ¥, = X,
+X:and Y, = X? + X?.

(@) Show that the joint moment generating function of Y, and Y, is

exp [¢3/(1 — 2t2)]
1—2¢
(b) Find the correlation coefficient of Y, and ¥,.
Let X and Y be independent standard normal random variables. Find the m.g.f.
of XY.
Suppose that X; and X are independent random variables, each having a standard
normal distribution.

(@) Find the joint distribution of (X; + X2)/V2 and (X; — X)/V2.
(b) Argue that 2X, X, and X? — X? have the same distribution. HINT:

X1+ Xz Xoa— X,y

VY

A dry-bean supplier fills bean bags with a machine that does not work very well,

and he advertises that each bag contains 1 pound of beans. In fact, the weight

of the beans that the machine puts into a bag is a random variable with mean

16 ounces and standard deviation 1 ounce. If a box contains 16 bags of beans:

(@) Find the mean and variance of the weight of the beans in a box.

(b) Find approximately the probability that the weight of the beans in a box
exceeds 250 ounces.

(¢) Find the probability that two or fewer underweight (less than 16 ounce) bags
are in the box if the weight of beans in a bag is assumed to be normally
distributed.

Numbers are selected at random from the interval (0, 1).

(a) If 10 numbers are selected, what is the probability that exactly 5 are less than
3?

(b) If 10 numbers are selected, on the average how many are less than 4?

(¢) 1If 100 numbers are selected, what is the probability that the average of the
numbers is less than ?

Let X, denote the number of meteors that collide with a test satellite during the

for — o<ty <wand —w <t < %,

X3 — X2 =2

n
ith orbit. Let S.=> X,; that is, S, is the total number of meteors that collides
i=1

with the satellite during » orbits. Assume that the X,’s are independent and
identically distributed Poisson random variables having mean A.

(@) Find &[S.] and var [S.].

(b) If n=100 and A = 4, find approximately P[S100 > 440].

How many light bulbs should you buy if you want to be 95 percent certain that
you will have 1000 hours of light if each of the bulbs is known to have a lifetime
that is (negative) exponentially distributed with an average life of 100 hours?

(@) Assume that all the bulbs are burning simultaneously.

(b) Assume that one bulb is used until it burns out and then it is replaced, etc.
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(@ If Xi, ..., X. are independent and identically distributed gamma random
variables, what is the distribution of X; + -+ Xi?

(» If Xy, ..., X, are independent gamma random variables and if X; has param-
eters r, and A, i = 1, ..., n, what is the distribution of X; + -+ + X,?

(@ If X., ..., X, are independent identically distributed geometric random
variables, what is the distribution of X; 4+ +X,?

) If X, ..., X. are independent identically distributed geometric random
variables with density 6(1 — 6)* 1. 2....,(x), what is the distribution of
X1+ + X7

(¢) If X,, ..., X, are independent identically distributed negative binomial
random variables, what is the distribution of X1 + -+ + X,?

(@) If X1, ..., X. are independent negative binomial random variables and if X;
has parameters r; and p, what is the distribution of X; 4---- + X,?

Kitty Qil Co. has decided to drill for oil in 10 different locations; the cost of
drilling at each location is $10,000. (Total cost is then $100,000.) The prob-
ability of finding oil in a given location is only 1, but if oil is found at a given
location, then the amount of money the company will get selling oil (excluding the
initial $10,000 drilling cost) from that location is an exponential random variable
with mean $50,000. Let Y be the random variable that denotes the number of
locations where 0il is found, and let Z denote the total amount of money received
from selling oil from all the locations.

(@) Find &[Z].

() Find P[Z > 100,000| Y = 1] and P[Z > 100,000 Y =2].

(¢) How would you find P[Z > 100,000]? Is P[Z > 100,000] > 3?

If Xi, ..., Xi are independent Poisson distributed random variables, show that

the conditional distribution of X, given X; + - + Xk, is binomial.

Assume that X, ..., X, are independent Poisson distributed random variables

with réspective parameters A;, ..., Avy:.  Show that the conditional distribution

of X1, ..., X, given that X; + :-- + Xiy:1 =n has a multinomial distribution
with parameters n, A fA, ..., A A, where A=Ay 4+« 4 Xy, -

If X has a uniform distribution over the interval (— /2, 7/2), find the distribution

of Y =tan X.

If X has a normal distribution with mean u and variance o2, find the distribution,

mean, and variance of Y = ¢~.

Suppose X has c.d.f. Fx(x)=exp[—e~""%/!], What is the distribution of

Y =exp [—(X — 0)/B]?

Let X have density

a—1

B(a, b) (1 4 x)+» Lo, »y(x),

fxxsa,b) =

where a >0 and b >0. (This density is often called a beta distribution of the
second kind.) Find the distribution of ¥ =1/(1 + X).

If X has a uniform distribution on the interval (0, 1), find the distribution of 1/X.
Does &[1/X] exist? If so, find it.
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(@) Give an example of a distribution of a random variable X for which &[1/X]
is not finite.

(b) Give an example of a distribution of a random variable X for which &{1/X]is
finite, and evaluate &[1/X].

If fx(x) = 2xe~**I0. »X(x), find the density of ¥ = X2.

If X has a beta distribution, what is the distribution of 1 — X?

If fx(x) = e~ *I 0. »(x), find the distribution of X/(1 + X).

If fx(x) = 1/7(1 + x?), find the distribution of 1/X.

If fx(x) =0 for x <0, find the density of Y =aX?2 + b in terms of fx(-) for a > 0.

If X has the Weibull distribution as given in Eq. (42) of Chap. 111, what is the

distribution of ¥ =aX*®?

(@ Let Y= X2 and fx(x) =(1/0)co, ef(x), 8 >0. Find the c.d.f, of X and Y.
Find the density of Y.

() Let Y= X2 and fx(x) = 3O -s. 6(x), 6 >0. Find the c.d.f. and density
of Y. .

If X and Y are independent random variables, each having the same geometric

distribution, find the distribution of ¥ — X.

If X and Y are independent random variables, each having the same negative

exponential distribution, find the distribution of ¥ — X.

If X, Y, and Z are independent random variables, each uniformly distributed over

(0, 1), what is the distribution of XY/Z?

Assume that X and Y are independent random variables, where X has a p.d.f,

given by fx(x) = 2xI,.1)(x) and Y has a p.d.f. given by f¥(») = 2(1 — )0, 1,(p).

Find the distribution of X + Y.

Let X and Y be independent Poisson distributed random variables. Find the

distribution of Y — X.

If fx(x) = 0. 1)(x), find the density of ¥ =3X+ 1.

Let X and Y be two independent beta-distributed random variables. Is XY always

beta-distributed? If not, find conditions on the parameters of X and Y that will

imply that XY is beta-distributed.

If fx. v(x, ¥) = e o, o X) 0. »)(), find the density of Z = (X + Y)/2.

If fx, v(x, ») =4xye—(x2+y2)1(o. (X0, «y(»), find the density of \/Xz + );2.
If fx. (x, ¥) = 4xyl 0, 1H(x) (0, 1)), find the joint density of X2 and Y2
If fx. yv(x, ¥) = 3xI 0. (V) o, 1)(x), find the density of Z = X — Y.
If fx(x) =[(1 + x)/2)_ 1, 1)(x), find the density of ¥ = X2
If fx. v(x, ¥) = Lo, 1,(x) (0, 1) (), find the density of Z, where
Z=(X+V o X+ +X+Y—Dla (X + Y).
If fx. y(x, ¥) = €=V, o) 0, =), find the joint density of X and X + Y.
If fx.v. 2(x, 3, 2) =" ****+D[ (D)o, o0, «(2), find the density of their
average (X + Y + Z)/3.
If X; and X, are independent and each has probability density given by
Ae~ . y(x), find the joint distribution of ¥; = X,/X; and Y, = X; + X, and
the marginal distributions of ¥; and Y,.
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Let X, and X, be independent random variables, each normally distributed with
parameters u =0 and o2 = 1. Find the joint distribution of ¥, — X2+ X% and
Y, = X:/X.. Find the marginal distribution of ¥; and of Y>. Are ¥, and Y-
independent ?

If the joint distribution of X and Y is given by

fx. 1(x, ¥) = 2e~ 1o 51(Xro, =) (),

find the joint distribution of X and X + Y. Find the marginal distributions of

Xand X | Y.

Let fx. v(x, ¥) = K(x + ) o. 1y(x) 0. W0, 1)(x + ).

(@) Find fx(*).

(b) Find the joint and marginal distributions of X+ Y and Y — X.

Suppose fix. n1 2(x, ¥|2) = [z + (1 — 2)(x + Mo, 1) (x) (o, 1y(¥) for 0 < z <2, and

f2(z) = ¥ro, 21(2).

(@) Find &[X + Y1

(b)) Are Xand Y independent? Verify.

(¢) Are Xand Z independent? Verify.

(d) Find the joint distribution of X and X + Y.

(e) Find the distribution of max [X, Y]|Z = z.

(/) Find the distribution of (X + Y)| Z = z.

A system will function as long as at least one of three components functions.

When all three components are functioning, the distribution of the life of each is

exponential with parameter $A. When only two are functioning, the distribution

of the life of each of the two is exponential with parameter 3A; and when only one

is functioning, the distribution of its life is exponential with parameter A,

(@) What is the distribution of the lifetime of the system ?

(b) Suppose now that only one component (Of the three components) is used at a
time and it is replaced when it fails. What is the distribution of the lifetime
of 'such a system?

The system in the sketch will function as long as component C, and at least one

of the components C, and C; functions. Let X, be the random variable denoting

the lifetime of component C;, i =1, 2, and 3. Let Y =max [X,, X3] and Z =
min [X;, ¥]. Assume that the X/s are independent (negative) exponential

random variables with mean 1.

(@) Find &[Z] and var [Z].

() Find the distribution of the lifetime of the system.
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A system, which is composed of two components, will function as long as at least
one of the two components functions. When both components are operating,
the lifetime distribution of each is exponential with mean 1. However, the dis-
tribution of the remaining lifetime of the good component, after one fails, is
exponential with mean 3. (The idea is that after one component fails the other
component carries twice the load and hence has only half the expected lifetime.)
Find the lifetime distribution of the system.
Suppose that (X, Y) has a bivariate normal distribution. Find the joint distribu-
tion of aX + bY and ¢ X + dY for constants a, b, ¢, and d satisfying ad— bc #0.
Find the distribution of aX + #Y. HiNT: Use the moment-generating-function
technique and see Example 7.
Let X, and X, be independent standard normal random variables. Let U be
independent of X; and X, and assume that U is uniformly distributed over(0, 1).
DefineZ=UX:+ (1 —-U)X,.
(@) Find the conditional distribution of Z given U = u.
(b) Find &[Z]and var [Z].

*(¢c) Find the distribution of Z.
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SAMPLING AND SAMPLING DISTRIBUTIONS

1 INTRODUCTION AND SUMMARY

The purpose of this chapter is to introduce the concept of sampling and to present
some distribution theoretical results that are engendered by sampling. Itis a
connecting chapter—it merges the distribution theory of the first five chapters
into the statistical theory of the last five chapters. The intent is to present
here in one location some of the laborious derivations of distributions that are
associated with sampling and that will be necessary in our future study of the
theory of statistics, especially estimation and testing hypotheses. Our thinking
is that by deriving these results now, our later presentation of the statistical
theory will not have to be interrupted by their derivations. The nature of the
material to be given here is such that it is not easily motivated.

Section 2 begins with a discussion of populations and samples. It ends
with the definitions of statistic and of sample moments. Sample moments are
important and useful statistics. Section 3 is devoted to the consideration of
various results associated with the sample mean. The law of large numbers
and the central-limit theorem are given, and then the exact distribution of the
sample means from several of the different parametric families of distributions



220 SAMPLING AND SAMPLING DISTRIBUTIONS VI

introduced in Chap. IIl is given. Sampling from the normal distribution is con-
sidered in Sec. 4, where the chi-square, F, and ¢ distributions are defined. Order
statistics are discussed in the final section; they, like sample moments, are impor-
tant and useful statistics.

2 SAMPLING

2.1 Inductive Inference

Up to now we have been concerned with certain aspects of the theory of prob-
ability, including distribution theory. Now the subject of sampling brings us
to the theory of statistics proper, and here we shall consider briefly one important
area of the theory of statistics and its relation to sampling.

Progress in science is often ascribed to experimentation. The research
worker performs an experiment and obtains some data. On the basis of the °
data, certain conclusions are drawn. The conclusions usually go beyond the
materials and operations of the particular experiment. In other words, the
scientist may generalize from a particular experiment to the class of all similar
experiments. This sort of extension from the particular to the general is called
inductive inference. It is one way in which new knowledge is found.

Inductive inference is well known to be a hazardous process. In fact, it
is a theorem of logic that in inductive inference uncertainty is present. One
simply cannot make absolutely certain generalizations. However, uncertain
inferences can be made, and the degree of uncertainty can be measured if the
experiment has been performed in accordance with certain principles. One
function of statistics is the provision of techniques for making inductive in-
ferences and for measuring the degree of uncertainty of such inferences. Un-
certainty is measured in terms of probability, and that is the reason we have
devoted so much time to the theory of probability.

Before proceeding further we shall say a few words about another kind of
inference—deductive inference. While conclusions which are reached by induc-
tive inference are only probable, those reached by deductive inference are con-
clusive. Toillustrate deductive inference, consider the following two statements:

(i) One of the interior angles of each right triangle equals 90°.
(1) Triangle A4 is a right triangle.

If we accept these two statements, then we are forced to the conclusion:

(ili) One of the angles of triangle A equals 90°.
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Persons ever 18 years old

FIGURE 1 West Point graduates

This is an example of deductive inference, which can be described as a
method of deriving information [statement (iii)] from accepted facts [statements
(i) and (ii)]. Statement (i) is called the major premise, statement (ii) the minor
premise, and statement (iii) the conclusion. For another example, consider the

following:

() Major premise: All West Point graduates are over 18 years of age.
(i) Minor premise: John is a West Point graduate.
(iii) Conclusion: John is over 18 years of age.

West Point graduates is a subset of all persons over 18 years old, and John
is an element in the subset of West Point graduates; hence John is also an element
in the set of persons who are over 18 years old.

While deductive inference is extremely important, much of the new knowl-
edge in the real world comes about by the process of inductive inference, In the
science of mathematics, for example, deductive inference is used to prove the-
‘orems, while in the empirical sciences inductive inference is used to find new
knowledge.

Let us illustrate inductive inference by a simple example. Suppose that
we have a storage bin which contains (let us say) 10 million flower seeds which
we know will each produce either white or red flowers. The information which
we want is: How many (or what percent) of these 10 million seeds will produce
white flowers? Now the only way in which we can be sure that this question
is answered correctly is to plant every seed and observe the number producing
white flowers. However, this is not feasible since we want to sell the seeds.
Even if we did not want to sell the seeds, we would prefer to obtain an answer
without expending so much effort. Of course, without planting each seed and
observing the color of flower that each produces we cannot be certain of the
number of seeds producing white flowers, Another thought which occurs is:
Can we plant a few of the seeds and, on the basis of the colors of these few
flowers, make a statement as to how many of the 10 million seeds will produce
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white flowers? The answer 1s that we cannot make an exact prediction as to
how many white flowers the seeds will produce but we can make a probabilistic
statement if we select the few seeds in a certain fashion. This is inductive
inference. We select a few of the 10 million seeds, plant them, observe the
number which produce white flowers, and on the basis of these few we make a
prediction as to how many of the 10 million will produce white flowers; from a
knowledge of the color of a few we generalize to the whole 10 million. We
cannot be certain of our answer, but we can have confidence in it in a frequency-
ratio-probability sense.

2.2 Populations and Samples

We have seen in the previous subsection that a central problem in discovering
new knowledge in the real world consists of observing a few of the elements
under discussion, and on the basis of these few we make a statement about the
totality of elements. We shall now investigate this procedure in more detail.

Definition 1 Target population The totality of elements which are under
discussion and about which information is desired will be called the target

population. /1

In the example in the previous subsection the 10 million seeds in the stor-
age bin form the target population. The target population may be all the dairy
cattle in Wisconsin on a certain date, the prices of bread in New York City on a
certain date, the hypothetical sequence of heads and tails obtained by tossing a
certain coin an infinite number of times, the hypothetical set of an infinite
number of measurements of the velocity of light, and so forth. The important
thing is that the target population must be capable of being quite well defined;
it may be real or hypothetical.

The problem of inductive inference is regarded as follows from the point
of view of statistics: The object of an investigation is to find out something about
a certain target population. It is generally impossible or impractical to examine
the entire population, but one may examine a part of it (a sample from it) and,
on the basis of this limited investigation, make inferences regarding the entire
target population.

The problem immediately arises as to how the sample of the population
should be selected. We stated in the previous section that we could make prob-
abilistic statements about the population if the sample is selected in a certain
fashion. Of particular importance is the case of a simple random sample,
usually called a random sample, which is defined in Definition 2 below for any
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population which has a density. That is, we assume that each element in our
population has some numerical value associated with it and the distribution of
these numerical values is given by a density. For such a population we define
a random sample.

Definition 2 Random sample Let the random variables X;, X3,..., X,
have a joint density fy, __ x.(‘, ..., -) that factors as follows:

Sxi Xz, o x.(X15 X25 <+ 15 x,) = f(x1) f(xz) - - f(x),

where () is the (common) density of each X;. Then X;, X;, ..., X, is
defined to be a random sample of size n from a population with density

S /1

In the example in the previous subsection the 10 million seeds in the stor-
age bin formed the population from which we propose to sample. Each seed is
an element of the population and will produce a white or red flower; so, strictly
speaking, there is not a numerical value associated with each element of the
population. However, if we, say, associate the number 1 with white and the
number 0 with red, then there is a numerical value associated with each element
of the population, and we can discuss whether or not a particular sample is
random. The random variable X; is then 1 or 0 depending on whether the ith
seed sampled produces a white or red flower, 7 =1, ..., n. Now if the sampling
of seeds is performed in such a way that the random variables X, ..., X, are
independent and have the same density, then, according to Definition 2, the
sample is called random.

An important part of the definition of a random sample is the meaning of
the random variables X, ..., X,,. The random variable X, is a representation
for the numerical value that the ith item (or element) sampled will assume. After
the sample is observed, the actual values of X, ..., X, are known, and as usual,
we denote these observed values by x;, ..., x,. Sometimes the observations
X, ... X, are called a random sample if x;, ..., x, are the values of X, ..., X,
where X, ..., X, i1s a random sample.

Often it is not possible to select a random sample from the target popula-
tion, but a random sample can be selected from some related population. To
distinguish the two populations, we define sampled population.

Definition 3  Sampled population Let X,, X,,..., X, be a random

sample from a population with density f(+); then this population is called
the sampled population. /1]
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Valid probability statements can be made about sampled populations on
the basis of random samples, but statements about the target populations are
not valid in a relative-frequency-probability sense unless the target population
is also the sampled population. We shall give some examples to bring out the
distinction between the sampled population and the target population.

EXAMPLE 1 Suppose that a sociologist desires to study the religious habits
of 20-year-old males in the United States. He draws a sample from the
20-year-old males of a large city to make his study. In this case the target
population is the 20-year-old males in the United States, and the sampled
population is the 20-year-old males in the city which he sampled. He can
draw valid relative-frequency-probabilistic conclusions about his sampled
population, but he must use his personal judgment to extrapolate to the
target population, and the reliability of the extrapolation cannot be
measured in relative-frequency-probability terms. /]

EXAMPLE 2 A wheat researcher is studying the yield of a certain variety of
wheat in the state of Colorado. He has at his disposal five farms scat-
tered throughout the state on which he can plant the wheat and observe
the yield. The sampled population consists of the yields on these five
farms, whereas the target population consists of the yields of wheat on
every farm in the state. 11

This book will be concerned with the problem of selecting (drawing) a
sample from a sampled population with density f(-), and on the basis of these
sample observations probability statements will be made about f(-), or infer-
ences about f(-) will be made.

Remark We shall sometimes use the statement “population ()’ to
mean ‘“‘ a population with density f().”” When we use the word *‘ popula-
tion”’ without an adjective ‘‘sampled’ or *‘target,” we shall always mean
sampled population. /1]

2.3 Distribution of Sample

Definition 4 Distribution of sample Let X, X,, ..., X, denote a sample
of size n. 'The distribution of the sample X, ..., X, is defined to be the
joint distribution of X, ..., X,,. /11!

Suppose that a random variable X has a density f(-) in some population,
and suppose a sample of two values of X, say x; and x,, is drawn at random.
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x, is called the first observation, and x, the second observation. The pair of
numbers (x,, x,) determines a point in a plane, and the collection of all such
pairs of numbers that might have been drawn forms a bivariate population.
We are interested in the distribution (bivariate) of this bivariate population in
terms of the original density f(-). The pair of numbers (x;, X2) is a value of the
joint random variable (X;, X,), and X;, X, is a random sample (of size 2)
from f(-). By definition of random sample, the joint distribution of X; and
X, , which we call the distribution of our random sample of size 2, is given by
Jxy, x.(%1> X2) = f(x) f(x5).

As a simple example, suppose that X can have only two values, 0 and 1,
with probabilities ¢ = I — p and p, respectively. That is, X is a discrete ran-
dom variable which has the Bernoulli distribution

f&x)=p*q ", 1y(x)- (1)
The joint density for a random sample of two values from f(-) is
JFxp, x,(%15 x2) = fx)f(xz) = le+xzqz—xl—x21{o, 1}(x1)I{o. 13(x2). (2

It is to be observed that this (bivariate) density is not what we obtain as the
distribution of the number of successes, say Y, in drawing two elements from a
Bernoulli population. The density of Y is given by

F10) = (i) P fory=0,1,2.

The single random variable Y equals X; + X,.

It should be noted that fy, x,(x;, x,) gives us the distribution of the sample
in the order drawn. For instance, in Eq. (2), fx, x,(0, 1) = pg refers to the
probability of drawing first a 0 and then a 1. _

Our comments for a random sample of size 2 generalize to a random sam-
ple of size n, and we -have the following remark.

Remark If X), X3, ..., X, is a random sample of size nfrom f(*), then
the distribution of the random sample X, ..., X, defined as the joint dis-

tribution of X, ..., X, is given by fy, x (x;, ..., x,) =f(%;) " f(x,).
111/

Note that again this gives the distribution of the sample in the order drawn.
Also, note that if X, ..., X, is arandom sample, then X, ..., X, are stochasti-
cally independent.

We might further note that our definition of random sampling has auto-

matically ruled out sampling from a finite population without replacement since,
then, the results of the drawings are not independent.
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2.4 Statistic and Sample Moments

One of the central problems in statistics is the following: It is desired to study a
population which has a density f(-; ), where. the form of the density is known
but it contains an unknown parameter 0 (if @ is known, then the density func-
tion is completely specified). The procedure is to take a random sample
Xi, X3, ..., X, of size n from this density and let the value of some function,
say #£(xy, Xz, ..., X,), represent or estimate the unknown parameter 6. The
problem is to determine which function will be the best one to estimate §. This
problem will be formulated in more detail in the next chapter. In this section
we shall examine certain functions, namely, the sample moments, of a random
sample. First, however, we shall define what we shall mean by a statistic.

Definition 5 Statistic A statistic is a function of observable random
variables, which is itself an observable random variable, which does not
contain any unknown parameters. 111}

The qualification imposed by the word ““ observable” is required because
of the way we intend to use a statistic. (* Observable” means that we can observe
the values of the random variables.) We intend to use a statistic to make in-
ferences about the density of the random variables, and if the random variables
were not observable, they would be of no use in making inferences.

For example, if the observable random variable X has the density },.52(%),
where u and 62 are unknown, then X — u is not a statistic; neither is X/o (since
they are not functions of the observable random variable X only—they contain
unknown parameters), but X, X + 3, and X + log X2 are statistics.

In the formulation above, one of the central problems in statistics is to
find a suitable statistic (function of the random variables X;, X,, ..., X,) to
represent 0.

EXAMPLE 3 If X, ..., X, is a random sample from a density f(-; 0), then
(provided Xj, ..., X, are observable)

Z‘)I'—‘

is a statistic, and
Hmin [X,, ..., X,] + max [X}, ..., X, ]}

is also a statistic. If f(x; 8) = ¢, ,(x) and 0 is unknown, X, — @isnota
statistic since it depends on 0, which is unknown. /1]
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Next we shall define and discuss some important statistics, the sample
moments.

Definition 6 Sample moments Let Xj, X3,..., X, be a random sample
from the density f(-). Then the rth sample moment about 0, denoted by

M., is defined to be

| ‘
M, =-> X]. (3)
H ;=1

In particular, if » = 1, we get the sample mean, which is usually denoted by
X or X,; that is,

5=13 x. @

Hi=1

Also, the rth sample moment about X,, denoted by M, , is defined to be

1 » -
M, =~ Y, (X — X, (5)
i=1
/111
Remark Note that sample moments are examples of statistics. /1]

We will consider in detail some properties of the sample mean in Sec. 3
below.

In Chap. Il we defined the rth moment of a random variable X, or the rth
moment of its corresponding density fy(-), to be &[X"] = u,. We could say
that &[X"] is the rth population moment of the population with density f(x) =
Sfx(x). We shall now show that the sample moments reflect the population
moments in the sense that the expected value of a sample moment (about 0)
equals the corresponding popufation moment. Also, the variance of a sample
moment will be shown to be (1/n) times some function of population moments.
The implication is that for a given population the values that the sample moment
assume will tend to be more concentrated about the corresponding population
moment for large sample size » than for small sample size.‘ Thus a sample
moment can be used to estimate its corresponding population moment (provided
the population ‘'moment exists).

Theorem 1 Let X, X2, ..., X, be a random sample from a population

with a density f(*). The expected value of the rth sample moment (about
0) is equal to the rth population moment; that is,

EIM1=p,  (if p exists). (6)
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Also,

1
varlM;] = 5 (IX"] = BIXDY) = s, — )] (i exists). (7

PROOF

S[M'] = g[’% ¥ X;] --¢

1 2 n
- ;) S - @ - | e - exny

1
= ~ 12, = ()1
In particular, if r = 1, we get the following corollary. /1]

Corollary Let X, X,, ..., X, bearandom sample from a density ("),

_ 1
and let X, = - Z X; be the sample mean; then
ni=

E[X)=p and var[X,]= % o2, (8)

where p and o? are, respectively, the mean and variance of f(+). /]

As we mentioned earlier, properties of the sample mean will be studied
in detail in the next section.

Theorem 1 gives the mean and variance in terms of population moments of
the rth sample moment about 0; a similar, though more complicated, result
can be derived for the mean and variance of the rth sample moment about the
sample mean. We will be content with looking only at the particular case

r =2, that is, at M, =(1/n) Y. (X; ~ X)*>. M, is sometimes called the sample
i=1

variance; although we will take Definition 7 as our definition of the sample
variance.
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Definition 7 Sample variance Let X;, X,, ..., X, be a random sample
_ from a density f(-); then

1 Z(X — X)? for n>1 (9)

82=82
" n_].],l

is defined to be the sample variance. /11

The reason for taking 82 rather than M, as our definition of the sample
variance (both measure dispersion in the sample) is that the expected value of

82 equals the population variance.
The proof of the following remark is left as an exercise.

1
2 Z (X: — X)) i

Remark §2=82=_—
2n(n — 1) ;57 ;<

Theorem 2 Let X, X,, ..., X, be a random sample from a density
f(), and let

§2

Z(X—X)

T n—1 is
Then

n-—3
n-—1

] .
€[8*]1=0*> and  var[§8?]= E(,u,; — cr"') forn>1. (10)

PROOF (Only the first part will be proved.) Recall that o2
= S[(X — w?land y, = &[(X — p)']. We commence by noting and prov-
ing an identity that is quite useful.

'[VJ=

-
Il
[

(X; — )’ = Z(X X)? + n(X — p)? (11)
since

Y= 0P =Y (K= X F— P =T (X = B) 4 (X — )P
=2 [(Xi = X +2(X; — X)(X - p) + (X — )]
=X (X = DR +2X =) Y. (X, — B) 4 n(X—
=2 (X; — X)? + n(X — )2
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Using the identity of Eq. (11), we obtain

1571 - g[% £ 0 - 1]

|—\

[Z X; — )’ —n(X - u)z]

i=1

—~ {io@[(x 7] - n8T(X - 7))

i=1

3

Although the derivation of the formula for the variance of $? can
be accomplished by utilizing the above identity [Eq. (11)] and

- 1 1

X—u='—IZX,-—'—1nu

1 1 1
=;ZX:-—;ZH=;Z(X;-—#)

such derivation is lengthy and is omitted here only to be relegated to
the Problems. /1]

Sample moments are examples of statistics that can be used to estimate
their population counterparts; for example, M estimates y,, X estimates p,
and 87 estimates 6. In each case, we are taking some function of the sample,
which we can observe, and using the value of that function of the sample to
estimate the unknown population parameter.

3 SAMPLE MEAN

The first sample moment is the sample mean defined to be

1 &
A_, = Xn = - Z X is
ni=1
where X;, X,, ..., X,is a random sample from a density f(+). Xis a function
of the random variables X, ..., X,, and hence theoretically the distribution of
X can be found. In general, one would suspect that the distribution of X
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depends on the density f(+) from which the random sample was selected, and
indeed it does. Two characteristics of the distribution of X, its mean and
variance, do not depend on the density f(+) per se but depend only on two charac-
teristics of the density f(+). This idea is reviewed in the following subsection,
while succeeding subsections consider other results involving the sample mean.
The exact distribution of X will be given for certain specific densities f(-)- -

It might be helpful in reading this section to think of the sample mean X
as an estimate of the mean pu of the density f(+) from which the sample was
selected. We might think that one purpose in taking the sample is to estimate
i with X.

3.1 Mean and Variance

Theorem 3 Let X, X, ..., X, be arandom sample from a density f(-).

which has mean p and finite variance 62, and let X =(1/n) ) X;. Then
i<1

4

ElX]=ux=un and Var[)-(-]=0'§(=%0‘2. (12)
/11

Theorem 3 is just a restatement of the corollary of Theorem 1. In light
of using a value of X to estimate g, let us note what Theorem 3 says. &[X] = u
says that on the average X is equal to the parameter u being estimated or that
the distribution of X is centered about p. var [X] = (I/n)o? says that the
spread of the values of X about g is small for a large sample size as compared to
a small sample size. For instance, the variance of the distribution of X for a
sample of §17¢ 20 is one-half the variance of the distribution of X for a sample of
size 10. So for a large sample size the values of X (which are used to estimate
1) tend to be more concentrated about y than for a small sample size. This
notion is further exemplified by the law of large numbers considered in the next
subsection.

3.2 Law of Large Numbers

Let f(-; 0) be the density of a random variable X. We have discussed the fact
that one way to get some information about the density function f(-; 0) is to
observe a random sample and make an inference from the sample to the popula-
tion. If 6 were known, the density functions would be completely specified,
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S /
and no inference from the sample to the population would be necessary. There-
fore, it seems that we would like to have the random sample tell us something
about the unknown parameter §. This problem will be discussed in detail in
the next chapter. In this subsection we shall discuss a related particular
problem.
Let &£[X] be denoted by u in the density f(-). The problem is to estimate

p. In a loose sense, &[X] is the average of an infinite number of values of the
random variable X. In any real-world problem we can observe only a finite
number of values of the random variable X. A very crucial question then is:
Using only a finite number of values of X (a random sample of size n, say), can
any reliable inferences be made about £[X], the average of an infinite number of
values of X? The answer is *““ yes’’; reliable inferences about &[ X] can be made
by using only a finite sample, and we shall demonstrate this by proving what is
called the weak law of large numbers. In words, the law states the following: A
positive integer n can be determined such that if a random sample of size n or
larger is taken from a population with the density f(-) (with &[X] = 1), the
probability can be made to be as close to | as desired that the sample mean X
will deviate from u by less than any arbitrarily specified small quantity. More
precisely, the weak law of large numbers states that for any two chosen small
numbers ¢ and 8, where ¢ > 0 and 0 < é < 1, there exists an integer n such that
if a random sample of size n or larger is obtained from f(-) and the sample
mean, denoted by X,, computed, then the probability is greater than | — ¢
(i.e., as close to 1 as desired) that X, deviates from u by less than ¢ (i.e., is ar-
bitrarily close to ). In symbols this is written: For any e >0and 0 < < 1
there exists an integer n such that for all integers m > n

Pl| X, — | <¢e]=1-24.

The weak law of large numbers is proved using the Chebyshev inequality given
in Chap. IL

Theorem 4 Weak law of large numbers Let () be a density with mean
1 and finite variance ¢?, and let X, be the sample mean of a random
sample of size n from f(+). Let ¢ and é be any two specified numbers
satisfying ¢ >0 and 0 <& < 1. If n is any integer greater than a?/e? 6,
then

Pl—e< X,—u<eg]l=1-06. (13)
prOOF Theorem 5 in Subsec. 4.4 of Chap. Il stated that Plg(X) > k]

< &[g(X)Vk for every k > 0, random variable X, and nonnegative func-
tion g(-). Equivalently, Plg(X) < k] > 1 — &[g(X)]/k.
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Letg(X) =(X, — p)* and k = £°; then

Pl-e< X, —p<e]l=P[| X, — u| <¢]

El(X, — n)?
P K-l <ot > 1 - ST
2
PR
&
for 6 > a2/ne? or n > a?/e? 6. /111

Below are two examples to illustrate how the weak law of large numbers
can be used.

EXAMPLE 4 Suppose that some distribution with an unknown mean has
variance equal to 1. How large a sample must be taken in order that the
probability will be at least .95 that the sample mean X, will lie within .5
of the population mean? We have 62 =1, ¢ =.5, and é = .05; therefore

a? I
6er  .05(.5)%

n>

80. /11

EXAMPLE 5 How large a sample must be taken in order that you are 99
percent certain that X, is within .5¢ of ©? We have ¢ = .5¢ and 6 = .01.
Thus

o.2 0,2

6 01(5)%a>  0I(5)°

400. /1]

n>

We have shown that by use of a random sample inductive inferences to
populations can be made and the reliability of the inferences can be measured in
terms of probability. For instance, in Example 4 above, the probability that
the sample mean will be within one-half unit of the unknown population mean
is at least .95 if a sample of size greater than 80 is taken.

3.3 Central-limit Theorem

Although we have already stated the central-limit theorem in our study of
distribu_tion theory in Chap. V, we will repeat it here in our study of the sample
mean X because it gives the asymptotic distribution of X. At the outset of this
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section we indicated that we were interested in the distribution of X. The
central-limit theorem, which is one of the most important theorems in all of
probability and statistics, tells us approximately how X is distributed.

Theorem 5 Central-limit theorem Let f(-) be a density with mean g and
finite variance ¢®>. Let X, be the sample mean of a random sample of
size n from (). Let the random variable Z, be defined by
X, - &[X, —
z, =% Kz gy
\/ var [X,] o/\/n

Then, the distribution of Z, approaches the standard normal distribution
as n approaches infinity. 1/

Theorem 5 tells us that the limiting distribution of Z, (which is X, stand-
ardized) 1s a standard normal distribution, or it tells us that X, itself is ap-
proximately, or asymptotically, distributed as a normal distribution with mean
p and variance o?/n. ~

The astonishing thing about Theorem 5 is the fact that nothing is said
about the form of the original density function. Whatever the distribution
function, provided only that it has a finite variance, the sample mean will have
approximately the normal distribution for large samples. The condition that
the variance be finite is not a critical restriction so far as applied statistics is
concerned because in almost any practical situation the range of the random
variable will be finite, in which case the variance must necessarily be finite.

The importance of Theorem 5, as far as practical applications are con-
cerned, is the fact that the mean X, of a random sample from any distribution
with finite variance ¢® and mean p is approximately distributed as a normal
random variable with mean p and variance ¢*/n.

We shall not be able to prove Theorem 5 because it requires rather ad-
vanced mathematical techniques. However, in order to make the theorem
plausible, we shall outline a proof for the more restricted situation in which
the distribution has a moment generating function. The argument will be
essentially a matter of showing that the moment generating function for the
sample mean approaches the moment generating function for the normal
distribution.

Recall that the moment generating function of a standard normal dis-
tribution is given by e**". (See Subsec. 3.2 of Chap. IIL) Let m(f) = ¢
Let my (#) denote the moment generating function of Z,. It is our purpose to
show that m; (f) must approach m(f) when n, the sample size, becomes large.
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Now
mz () = &[e%] = &lexp tZ,] = & [exp (t f/\_/g)] =& [CXP £ 2 i;\_/;)]

=& ex = || |exp|—"
[;1;11 P (n o‘/\/ n .-Ul \/ n o /]
using the independence of X, ..., X,. Now if we let ¥; = (X; — p)/o, then

my,(t), the moment generating function of Y;, is independent of / since all ¥;
have the same distribution. Let m,(f) denote m, (f); then

felew (55 2579)] = felew (G5 ) ,

Hence,

e, = |my (:/’—)] (15)

The rth derivative of my(t/\/ 1;) evaluated at t = 0 gives us the rth moment about
the mean of the density () divided by (a\/ n)", so we may write

’"(ﬁ) 1 ?ﬁ*zl'gz(Jn)z+;v53(\/n)3 o U9

and since p; =0 and p, = 6%, this may be written

t 1 /1 | T | T )
— =14+t +—=1+—=r 17
(v R VL T Y S

Now lim (1 + u/n)" = €', where u represents the expression within the paren-

n-* o

theses in Eq. (17). We have lim m, (#) = e*", so that in the limit, Z, has the

n— oo
same moment generating function as a standard normal and, by a theorem
similar to Theorem 7 in Chap. II, has the same distribution.

The degree of approximation depends, of course, on the sample size and
on the particular density f(-). The approach to normality is illustrated in
Fig. 2 for the particular function defined by f(x) =e™* I4 ,,(x). The soiid
curves give the actual distributions, while the dashed curves give the normal
approxXimations. Figure 2a gives the original distribution which corresponds to
samples of 1; Fig. 2b shows the distribution of sample means for n = 3; Fig. 2¢
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\——4
15— n=1 1.5 n=3
1.0
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0 1 2 x 0 1 2
(a) (b) (c)
FIGURE 2

gives the distribution of sample means for n = 10. The curves rather exaggerate
the approach to normality because they cannot show what happens on the tails
of the distribution. Ordinarily distributions of sample means approach
normality fairly rapidly with the sample size in the region of the mean, but more
slowly at points distant from the mean; usually the greater the distance of a
point from the mean, the more slowly the normal approximation approaches the
actual distribution.

In the following subsections we will give the exact distribution of the
sample mean for some specific densities f(-).

3.4 Bernoulli and Poisson Distributions

If X;, X,, ..., X, is a random sample from a Bernoulli distribution, we can
find the exact distribution of X,. (We know that X, is approximately normally
distributed.) The density from which we are sampling is

fx)=p*(1 — P)l_xl{o, 1;(%)-

We know (see Example 9 of Chap. V) that ) X; has a binomial distribution;
1

that is,
n n ~
P [Z X; =k]= (k)qun kI{o,1,---,n}(k);

hence, the distribution of X, is given by

_ k
P[Xn =;] = (Z)p"q""" fork=0,1,...,n (18)
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So X, the sample mean of a random sample from a Bernoulli density, takes on
the values 0, 1/n, 2/n, ..., 1 with respective binomial probabilities

n n B n . ny ,
(0)p°q", (l)plq" ! (2)p2q 2y (n)p q°.

If Xy, ..., X, is a random sample from a Poisson distribution with mean
4, then )’ X; also has a Poisson distribution with parameter 74 (see Example 10
of Chap. V), and hence

n —ni k
P[X"=§]=P[2Xi=k]=f—k('n—l) for k=0,1,2,..., (19)
i=1 .

which gives the exact distribution of the sample mean for a sample from a
Poisson density.

3.5 Exponential Distribution

Let X}, X5, ..., X, be a random sample from the exponential density

J(x) = Be™ %I, 0)(x).

According to Example 11 of Chap. V, } X , has a gamma distribution with
1

parameters # and 8; that is,

ff Xi(z) = mﬁ Zn—lgne—ez[(o’ oo)(Z)a
§

or

P[ZXiSy]=f mz" '0"¢~%dz  for y> 0,
and so
e 4 y _ Y ]' n—1an 0z

P[X,,s;]—foi:@z "¢~ % dz for y>0.

Or,

n—inn_ -0z
PIX,<x]= f ——r( )z 0"e %" dz

— n—1an_—nbu .
J I )(nu) 0" " "n du;

that is, X, has a gamma distribution with parameters # and #f.



238 SAMPLING AND SAMPLING DISTRIBUTIONS VI

3.6 Uniform Distribution

Let Xy, ..., X, be a random sample from a uniform distribution on the interval
(0, 1]). The exact density of X, is given by

fr(%) = k);:: o f 1 [(nx)"_1 = (T)(nx -+ (Z)(nx )

() 0x= 0 hag g @O

The derivation of the above (using mathematical induction and the convolution
formula) is rather tedious and is omitted. Instead let us look at the particular
casesn=1, 2, 3.

F36) = 09 = Ko 1),
I2,(x) = 2Q2x) o 11(%) + 2[2x — 2(2x — 1) ][ },1;(x)
_ f4x for0<x<1
_{4(1—x) fori<x<l,
and
3 3., (3 )
119 = 3 800,59 + 3| @02 = () @x = D215

+3] @07 - () ex -7+ ()% = 22| 16.100

L1 x? for0<x<i
= {27[{% — (x — $)?] fort<x<4%
27(] — x)? for(<x<l.

fx,(%), fx,(x), and fx,(x) are sketched in Fig. 3, and an approach to normality
can be observed. (In fact, the inflection points of fy,(x) and of the normal
approximation occur at the same points!)

We have given the distribution of the sample mean from a uniform distri-
bution on the interval (0, 1]; the distribution of the sample mean from a uniform
distribution over an arbitrary interval (a, b] can be found by transformation.

3.7 Cauchy Distribution

Let Xy, ..., X, be a random sample from the Cauchy density

1
IO = B+ i
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wip —
Wk
[—

FIGURE 3 0

then X has this same Cauchy distribution for any n. That is, the sample mean
has the same distribution as one of its components. We are unable to easily
verify this result. The moment-generating-function technique fails us since the
moment generating function of a Cauchy distribution does not exist. Mathe-
matical induction in conjunction with the convolution formula produces
integrations that are apt to be difficult for a nonadvanced calculus student to
perform. The result, however, is easily obtained using complex-variable
analysis. In fact, if we had defined the characteristic function of a random
variable, which is a generalization of a moment generating function, then the
above result would follow immediately from the fact that the product of the
characteristic functions of independent and identically distributed random
variables is the characteristic function of their sum. A major advantage of
characteristic functions over moment generating functions is that they always
exist. "

4 SAMPLING FROM THE NORMAL DISTRIBUTIONS

4.1 Role of the Normal Distribution in Statistics

It will be found in the ensuing chapters that the normal distribution plays a very
predominant role in statistics. Of course, the central-limit theorem alone

ensures that this will be the case, but there are other almost equally important
Teasons.
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In the first place, many populations encountered in the course of research
in many fields seem to have a normal distribution to a good degree of approxima-
tion. It has often been argued that this phenomenon is quite reasonable in
view of the central-limit theorem. We may consider the firing of a shot at a
target as an illustration. The course of the projectile is affected by a great
many factors, all admittedly with small effect. The net deviation is the net
effect of all these factors. Suppose that the effect of each factor is an observa-
tion from some population; then the total effect is essentially the mean of a set
of observations from a set of populations. Being of the nature of means, the
actual observed deviations might therefore be expected to be approximately
normally distributed. We do not intend to imply here that most distributions
encountered in practice are normal, for such is not the case at all, but nearly
normal distributions are encountered quite frequently.

Another consideration which favors the normal distribution is the fact
that sampling distributions based on a parent normal distribution are fairly
manageable analytically. In making inferences about populations from
samples, it is necessary to have the distributions for various functions of the
sample observations. The mathematical problem of obtaining these distribu-
tions is often easier for samples from a normal population than from any other,
and the remaining subsections of this section will be devoted to the problem of
finding the distributions of several different functions of a random sample from
a normally distributed population.

In applying statistical methods based on the normal distribution, the
experimenter must know, at least approximately, the general form of the distri-
bution function which his data follow. If it is normal, he may use the methods
directly; if it is not, he may sometimes transform his data so that the transformed
observations follow a normal distribution. When the experimenter does not
know the form of his population distribution, then he may use other more
general but usually less powerful methods of analysis called nonparametric
methods. Some of these methods will be presented in the final chapter of this
book.

4.2 Sample Mean

One of the simplest of all the possible functions of a random sample is the
sample mean, and for a random sample from a normal distribution the dis-
tribution (exact) of the sample mean is also normal. This result first appeared
as a special case of Example 12 in Chap. V. It is repeated here.
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Theorem 6 Let X, denote the sample mean of a random sample of size n
from a normal distribution with mean g and variance ¢>. Then X, has
a normal distribution with mean p and variance o*/n.

PROOF To prove this theorem we shall use the moment-generating-
function technique.

- tY X;
my (1) = E[exp tX,] = e?[exp " ]

i=1 n = n
P AN ut 1(0‘!)2]
N iljlmx‘(n) - ,=1CXP[n 2\n
1 t 2
= exp[yt + 7(‘;) ],

which is the moment generating function of a normal distribution with
mean p and variance o?/n. I/

Since we have the exact distribution of X,, in considering estimating g
with X,, we will be able to calculate, for instance, the (exact) probability that
our “estimator” X, is within any fixed amount of the unknown parameter pu.

4.3 The Chi-Square Distribution

The normal distribution has two unknown parameters i and 6. In the previous
subsection we found the distribution of X,, which ““estimates’’ the unknown p.
In this subsection, we seek the distribution of

8§ =

1 n

>, (X; — X,

which ““estimates ” the unknown o®. A density function which plays a central
role in the derivation of the distribution of 82 is the chi-square distribution.

Definition 8 Chi-square distribution If X is a random variable with
density

1 1

169 = 775

k/2
I'(k/2) 2) X427 1e™ g, o)(X), @21
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then X is defined to have a chi-square distribution with k degrees of freedom
or the density given in Eq. (21) is called a chi-square density with k degrees
of freedom, where the parameter k, called the degrees of freedom, is a posi-
tive integer. _ /1]

Remark We note that a chi-square density is a particular case of a ‘
gamma density with gamma parameters r and 4 equal, respectively, to
k/2 and 3. Hence, if a random variable X has a chi-square distribution,

k/2
F[X] = ;
E3
k(2
X]= = 2k, 22
var [X] = @2
and
% k/2 1 k/2
= =] = 1/2. 23
mo =] -l=m - e @
' /11
Theorem 7 If the random variables X;,i=1,2,..., k, are normally and

independently distributed with means p; and variances o7, then

has a chi-square distribution with k degrees of freedom.

PROOF Write Z;, = (X; — u;)/o;; then Z; has a standard normal
distribution. Now

my(t) = [exp tU] = é’[exp(t WA
- g[neXp tz,.z] _ T]6lexp 1271,
i=1 i=1
But .
w© 1 ,
Efexp tZ%] = e’zz(—:)e‘*z dz
[exp f L\
Y
_ 1 J‘ \/1 — 2t ——}(1 21)z2 dz

~ o \/211:
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the latter integral being unity since it represents the area under a normal
curve with variance 1/(1 — 2f). Hence,

1 k/2 1
) for t<§,

k k 1
& tZH] = =( _
i1=_[1 [exp 1Z;] il=_[1,/1_2¢ 1— 2t

the moment generating function of a chi-square distribution with &

degrees of freedom. /11

Corollary If X,,..., X, is a random sample from a normal distribution

with mean g and variance 62, then U= Y (X; — p)*/o” has a chi-square
=1

distribution with n degrees of freedom. /1]
We might note that if either p or 62 is unknown, the U in the above
corollary is not a statistic. On the other hand, if y is known and ¢ is unknown,

we could estimate o2 with (1/n) ) (X; — p)? {note that & [(l/n) Y (X — u)z] =
=1 i=1
(1/n) i ElX;—wl=00/m) ¢ = az}, and find the distribution of
i=1 ' i=1

(1/n) ¥ (X; — w)* by using the corollary.
i=1

Remark In words, Theorem 7 says, ‘“the sum of the squares of inde-
pendent standard normal random variables has a chi-square distribution
with degrees of freedom equal to the number of terms in the sum.”  ////

Theorem 8 If Z,, Z,, ..., Z, is a random sample from a standard
normal distribution, then:

(i) Z has a normal distribution with mean 0 and variance 1/n.

(i) Zand Y (Z; — Z)* are independent.
' i=1
(i) ) (Z; — Z)* has a chi-square distribution with n — 1 degrees
i=1

of freedom.

PROOF (Our proof will be incomplete.) (i) is a special case of
N ..
Theorem 6. We will prove (ii) for the case n =2. Ifn=2,

Z, + 2,

Z= 5
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and

- Z, + Z,\? Z, + Z,\?
5227 = (2, - 252) 4+ (2,- 255

— (Zl - Zz)z + (Zz - Zl)z
4 4

_2Z,-z)

2 b

so Z is a function of Z; + Z,, and }_ (Z; — Z)* is a function of Z, — Z;;
so to prove Z and ¥ (Z; — Z)* are independent, it suffices to show that
Z, +7Z, and Z, — Z, are independent. Now
Mz, 2,(1) = B16" 5] = B[] = B[P )6Te ]
= exp 7 exp 41§ =exp #{,
and, similarly,
mZ;—Z;(tz) = exp t% .
Also,
Mz, +25,2,-2,(t1> 12) = gl 1+ Zn+naZamin)
— g[e(ta“tz)zae(tl +12)ZZ] = éa[e(ta “tz)za]éa[e(n +12)Zz]
— e'k(ti“tZ)ze*(tl +12)2 f— exp t% exp t%
= mz,+z,(t1)Mz,-z,(12);

and since the joint moment generating function factors into the product!
of the marginal moment generating functions, Z, + Z, and Z, — Z, are
independent.

To prove (iii), we accept the independence of Z and Y’ (Z; — Z)* for
1

arbitrary n. Let us note that Y Z7 =Y (Z, - Z+ Z)* =Y (Z, - Z)* +
2ZY(Z, - Z)+ Y. Z* =% (Z; — Z)* + nZ?; also ) (Z; — Z)* and nZ?
are independent; hence

mgz,:(1) = mg z,—z(m,z:(2).

So,

2(1 1/(1 = 2D)/? 1 (n—1)/2
mm_i)z(t)=mz,()=(/( ) =(1 \b\ Ci<1p

m,z:(t) (1)1 —20))* —2
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noting that \/ nZ has a standard normal distribution implying that nZ>
has a chi-square distribution with one degree of freedom. We have
shown that the moment generating function of ) (Z; — Z)? is that of a
chi-square distribution with n — 1 degrees of freedom, which completes
the proof. /1!

Theorem 8 was stated for a random sample from a standard normal dis-
tribution, whereas if we wish to make inferences about y and o2, our sample
is from a normal distribution with mean p and variance ¢2. Let X, ..., X,
denote the sample from the normal distribution with mean p and variance ¢?;
then the Z; of Theorem 8 could be taken equal to (X; — u)/o.

(i) of Theorem 8 becomes:

(i Z=(/n) (X;— /e =(X — /o has a normal distribution with

mean 0 and variance 1/n.

(i) of Theorem 8 becomes:

(i) Z=(X—-pwjo and Y (Z;— Z)* =Y [(X; — w)jo — (X — w)/s]* =
2 [(X; — X)*/o?] are independent, which implies Xand ¥ (X; — X)? are
independent.

(iii) of Theorem 8 becomes:
(iii') ). (Z;— Z)* =Y [(X; — X)*/6?] has a chi-square distribution with
n — 1 degrees of freedom.

Corollary If 8% = [I/(n — 1)] ¥ (X; — X)? is the sample variance of a
=1

random sample from a normal distribution with mean y and variance o2,
then

noa

v= =Dy

)

has a chi-square distribution with n — 1 degrees of freedom.

PROOF  This is just (iii"). /11

Remark Since 8 is a linear function of U in Eq. (24), the density of §?
can bg obtained from the density of U. Itis

— 1\ (=12 1 5
J5:00) = (22-?_) I(n — 1)/2] yoT I Rem T IY  o)(). (25)
/11
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Remark The phrase *degrees of freedom”™ can refer to the number of
independent squares in the sum, For example, the sum of Theorem 7 has
k independent squares, but the sum in (iii) of Theorem 8 has only n — 1
independent terms since the relation ) (Z; — Z) = 0 enables one to com-
pute any one of the deviations Z, — Z, given the other n — 1 of them. ////

All the results of this section apply only to normal populations. In fact,
it can be proved that for no other distributions (i) are the sample mean and
sample variance independently distributed or (ii) is the sample mean exactly
normally distributed.

4.4 The F Distribution

A distribution, the F distribution, which we shall later find to be of considerable
practical interest, is the distribution of the ratio of two independent chi-square
random variables divided by their respective degrees of freedom. We suppose
that U and V are independently distributed with chi-square distributions with
m and n degrees of freedom, respectively. Their joint density is then [see

Eq. 21)]

1 - n— —4(utv
Jo.(,0) = [ (m/2)[(n/2)2m+m12 umT BT DE T o o)) 0, ().
(26)
We shall find the distribution of the quantity
27)

which is sometimes referred to as the variance ratio. To find the distribution
of X, we make the transformation X = (U/m)/(V/n) and Y = V, obtain the

joint distribution of X and Y, and then get the marginal distribution of X by
integrating out the y variable. The Jacobian of the transformation is (m/n)y; so

fr y(x ¥) = n y 1 (T xy)("'_2)/2y(n—2)/2e-ﬂ(m/n)xy+y]
X, 1A n~ T(m/2)[(nf2)2"*"/2 \ n >
and
@) = forx ) dy
1 m m/2 a0 B
= — (mn—2)/2 (m+n—2)/2 %[(m/")x+1]yd
L(m[2)[(n[2)2"+ ™/ (n) * fo Y ¢ Y
_ I(m + n)2] (g)’“’ g x(m=2)/2 Lo 59 8)
T Tm2T(n) \n)]  [1 + (mjn)x]m+miz DO R
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Definition 9 F distribution If X is a random variable having density
given by Eq. (28), then X is defined to be an F-distributed random variable
with degrees of freedom m and n. /11

The order in which the degrees of freedom are given is important since the

density of the F distribution is not symmetrical in m and n. The number of
degrees of freedom of the numerator of the ratio m/n that appears in Eq. (28)
is always quoted first. Or if the F-distributed random variable is a ratio of two
independent chi-square-distributed random variables divided by their respective
degrees of freedom, as in the derivation above, then the degrees of freedom of the
chi-square random variable that appears in the numerator are always quoted

first.

We have proved the following theorem.

Theorem 9 Let U be a chi-square random variable with m degrees of
freedom; let V be a chi-square random variable with n degrees of freedom,
and let U and V be independent. Then the random variable

_Um
"~ Vin

is distributed as an F distribution with m and n degrees of freedom. The
density of X is given in Eq. (28). /1]

The following corollary shows how the result of Theorem 9 can be useful

in sampling.

Corollary If X,, ..., X,,+, is a random sample of size m + 1 from a
normal population with mean p, and variance o2, if Yy, ..., Y, is a

random sample of size n + 1 from a normal population with mean y, and
2

variance ¢, and if the two samples are independent, then it follows
m+1
that (1/6®) ¥ (X; — X)? is chi-square distributed with m degrees of
1
n+1

freedom, and (1/6%) Y. (¥; —Y)? is chi-square-distributed with n degrees
1
of freedom ; so that the statistic
Z (X; — X)*/m
2 (Y- Y)*/n

has an F distribution with m and n degrees of freedom. 1]




248 SAMPLING AND SAMPLING DISTRIBUTIONS Vi

We close this subsection with several further remarks about the F dis-
tribution.

Remark If X is an F-distributed random variable with m and n degrees
of freedom, then

é"[)\f]:L2 forn > 2

and

2n*(m +n — 2)

var [X] = m(n — 2)*(n — 4)

for n > 4. (29)

PROOF At first it might be surprising that the mean depends only
on the degrees of freedom of the denominator. Write X as in Eq. (27);
that is,

_Um

X - ’
Vin

then
_g|Ym_n 1
E[X]=& [V—/n] =~ é”[U]é”[V] .
But £[U] = m by Eq. (22), and
1 1 (1\*2
‘g[r‘f} ~T(2) 8

1 (1)"/2 '|‘°°U(n—4)/2e-%v dv
0

© 1
J‘ = . = 2)/2= 40 gy,
o VU

T T(n2) \2
_Ti(n—2))2] (1)"/2(1)“0'-2”2 1
T I 2] \2 T n=27
and so
& "gug[l]—ﬁ =2
LX]= (;) LUl vl mn—-2 n-=-2
The variance formula is similarly derived. /1!

Remark If X has an F distribution with m and n degrees of freedom,
then 1/X has an F distribution with n and m degrees of freedom. This
result allows one to table the F distribution for the upper tail only. For
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example, if the quantile £ o5 is given for an F distribution with m and n
degrees of freedom, then the quantile &o5 for an F distribution with n and
m degrees of freedom is given by 1/¢.os- In general, if X has an F dis-
tribution with m and n degrees of freedom and Y has an F distribution
with # and m degrees of freedom, then the pth quantile point of X, &,,
is the reciprocal of the (1 — p)th quantile point of ¥, &, as the following
shows:

p=P[XS¢p]=p[1221:] =P[Y2E1—-| =1—P[Ys El;]

X ;
but
1 —p=PlY<E _l;
SO
1
§i-p= z I
Remark If Xisan F-distributed random variable with m and n degrees
of freedom, then
_ mXn
] 1 + mXin
has a beta density with parameters @ = m/2 and b = n/2. /1]

N

4.5 Student’s ¢ Distribution

Another distribution of considerable practical importance is that of the ratio of
a standard normally distributed random variable to the square root of an in-
dependently distributed chi-square random variable divided by its degrees of
freedom. That is, if Z has a standard normal distribution, if U has a chi-
square distribution with k degrees of freedom, and if Z and U are independent,
we seek the distribution of

Z
X  eeme—e————
JUIk
The joint density of Z and U is given by
T 1 M2 2
Sz, (2, u) = NG (5) T A R R T ()} (30)



G AND SAMPLING DISTRIBUTIONS Vi
250 SAMPLIN

If we make the transformation X =Z/\/ F/E and Y = U, the Jacobian is
\/ ylk, and so

y 1 1 12 (*k/2)~1,— 4, — $x2p/k
Sx, v(x, y) = 'I;ﬁm (‘) y e e 0, 0)(¥)

2
K= fertx ) dy

ki2 Lo
1 1 (1) J'O yk/2—1+4}e—4}(1+x2/k)y dy

~ J2kn T(k/2) \2
CTk+1j2] 1 1 Al
 TkD)  Jkn (U + X[V -

Definition 10 Student’s ¢ distribution If X is a random variable having
density given by Eq. (31), then X is defined to have a Student’s t distribu-
tion, or the density given in Eq. (31) is called a Student’s t distribution
with k degrees of freedom. /1]

We have derived the following result.

Theorem 10 If Z has a standard normal distribution, if U has a chi-
square distribution with k degrees of freedom, and if Z and U are inde-

pendent, then Z/\/ Ulk has a Student’s ¢ distribution with k degrees of
freedom. !

The following corollary shows how the result of Theorem 10 is applicable
to sampling from a normal population.

Corollary If X;,..., X, is a random sample from a normal distribution

with mean g and variance o2, then Z = (X — u)/(a/\/r-z) has a standard
normal distribution and U = (1/6?) ¥ (X; — X)* has a chi-square distribu-
tion with n — 1 degrees of freedom. Furthermore, Z and U are inde-
pendent (see Theorem 8); hence

(X = w)/(o/y/n) _Jnln— XX = p)
VW) Y K- -1 TG B

has a Student’s ¢ distribution with n — 1 degrees of freedom. /1]
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We might note that for one degree of freedom the Student’s ¢ distribution
reduces to a Cauchy distribution; and as the number of degrees of freedom
increases, the Student’s ¢ distribution approaches the standard normal distribu-
tion. Also, the square of a Student’s t-distributed random variable with k
degrees of freedom has an F distribution with 1 and k degrees of freedom.

Remark If X is a random variable having a Student’s ¢ distribution with
k degrees of freedom, then

E[X]=0 ifk>1 and var [X]=k/(k — 2) ifk>2 (32

PROOF The first two moments of X can be found by writing

X = Z/\/ Ulk as in Theorem 10 and using the independence of Z and U.
The actual derivation is left as an exercise. /1]

This completes Sec. 4 on sampling from the normal distribution. Note
that we considered the distribution of functions of only two different statistics,
namely, the sample mean and sample variance. In the next chapter we will find
that these two statistics are the only ones of interest in sampling from a normal
distribution; they will turn out to be sufficient statistics.

S ORDER STATISTICS

5.1 Definition and Distributions

In Subsec. 2.4 we defined what we meant by statistic and then gave the sample
moments as examples of easy-to-understand statistics. In this section the
concept of order statistics will be defined, and some of their properties will be
investigated. Order statistics, like sample: moments, play an important role
in statistical inference. Order statistics are to population quantiles as sample
moments are to population moments.

Definition 11 Order statistics Let X, X,, ..., X, denote a random
sample of size n from a cumulative distribution function F(-). Then
Y;<Y,<---<Y,, where Y, are the X, arranged in order of increasing

magnitudes and are defined to be the order statistics corresponding to
the random sample X, ..., X,. 1!
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We note that the Y, are statistics (they are functions of the random sample

X1, X3, ..., X,) and are in order. Unlike the random sample itself, the order
statistics are clearly not independent, for if ¥; > y, then Yoy =y

We seck the distribution, both marginal and joint, of the order statistics.

We have already found the marginal distributions of ¥; = min [X,, ..., X,] and

Y,=max [X,,..., X,]in Chap. V. Now we will find the marginal cumulative
distribution of an arbitrary order statistic.

Theorem 11 LetY, <Y, <--- < Y, represent the order statistics from
a cumulative distribution function F(-). The marginal cumulative distri-
bution function of ¥,, a =1, 2, ..., n, is given by

n

Fro)= 3 (’J’.)[F(y)]fu _FO) (33)

ji=a
PROOF For fixed y, let
Zi = I(—oo,y](Xi);
then

_ZIZ ; = the number of X; < y.

Note that ) Z; has a binomial distribution with parameters n and F(y).
i=1

t

Now

Fr(0) = PV, <31 = PR 2 o] = ¥, ()IFOIPLL - FOX™

J=z

The key step in the proof is the equivalence of the two events {Y, < y}
and {)_ Z, > a}. If the ath order statistic is less than or equal to y, then
surely the number of X, less than or equal to y is greater than or equal to
o, and conversely. {11/

n

Corollary  Fr,)= ¥, (})IFOIPL ~ FOII™/ = [FOIT

j=n

and

P = ¥ (JFoVn-FOr=t-0-For.

Jj=1
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Theorem 11 gives the marginal distribution of an individual order statistic |
in terms of the cumulative distribution function F(:). For the remainder of
this subsection, we will assume that our random sample Xj, ..., X, came from a
probability density function f(-); that is, we assume that the random variables
X; are continuous. We seek the density of Y., which, of course, could be
obtained from Eq. (33) by differentiation of Fy (y). Note that

Sr.(v)

Fy(y +4Ay) — Fy.(y) _ Ply< Y. <y+ Ay]

= lim lim

Ay—+0 Ay Ay—0 Ay

lim P[(x — 1)of the X; < y; one X, in(y,y + Ay];(n — «) of the X; > y + Ay]
=1

Ay—0 Ay

’ n! [FO)F™'[F(y + Ay) — F(»)I[1 — F(y + Ay)]"‘“}
= lim

Ay-0 (a—-1ﬂ1!01—-a)! Ay

n! a—1 n—a
- T PO I = FOIP 0,

We have made sensible use of the multinomial distribution. Similarly, we can
* - derive the joint density of Yz and Ygfor 1 <a < f <n.

Srov,(6 ) AxAy = Plx < Y, <x+Ax;y < Yg <y + Ay]
~ P[(a — 1) of the X, < x; one X, in (x, x + Ax];
(B —a—1) of the X; in (x + Ax, yl;
one X;in(y,y + Ay]; (n — B) of the X, > y + Ay]
n!
E-DPB —a—1)(n—p)
X [F)TTEQY) — Fix + AP 71 — F(y + Ap)I"*/(x) Ax f(y) Ay;

hence

J1a, Yp(xa y) =

n!

G e Tyt ST FW) - FOP T — FOP 1 10)

for x < y, and

fre v, ) =0 forx=y.
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In general, fy, ... ya(Vis---5>¥,)

=Alim0 I <Yy +AYG Y < Y.<y, + Ay,]
v il;[lAJ’i
= Alirilo —1— Plone X;in (yy, yy + Ay;1; ... ; one X;in (y,, y, + Ay,
" l_l;[lAyi
- lim, ﬁ";y [FG1 + Ayy) — FODI - [F(3, + Ay,) — F(y,)]
i
i=1

=nif(y) - f(y) for y, <y, < <y,,

and fy,, .. v,(V1> --+» ¥») = 0, otherwise.
We have derived the following theorem.

Theorem 12 Let X, X,, ..., X, be a random sample from the prob-
ability density function f(-) with cumulative distribution function F(-).
Let Y, < Y, <--- <Y, denote the corresponding order statistics; then

n!
(¢ — D! (n — )!
n!
c—D(PF—a—D'n-pH!
x [FO)T U F(y) — Fx)PP~*!
X [1 — FO) 21 () f(DMx, o)(»); (35)

fr.(¥) = [FWF1 = FOI () (34)

fra, Yp(x: y) =

Srrs e 0 V15 <5 )

={n!f(y1)°"‘ SfOw)  fory <y, < <y, (36)
0 otherwise. 1

Any set of marginal densities can be obtained from the joint density
Sy, .. v.(Y1> -+ -» ¥s) by simply integrating out the unwanted variables.

5.2 Distribution of Functions of Order Statistics

In the previous subsection we derived the joint and marginal distributions of the
order statistics themselves. In this subsection we will find the distribution of
certain functions of the order statistics. One possible function of the order
statistics is their arithmetic mean, equal to
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. n n )
Note, however, that (1/n) ¥ ¥;=(1/n) . X,, the sample mean, which was the

subject of Sec. 3 of this chapter. We define now some other functions of the
order statistics.

Definition 12 Sample median, sample range, sample midrange Let
Y, <.+ < Y, denote the order statistics of a random sample X, ..., X,
from a density f(:). The sample median is defined to be the middle order
statistic if n is odd and the average of the middle two order statistics if n
is even. The sample range is defined to be Y, — Y;, and the sample mid-
range is defined to be (Y, + Y,)/2. /1]

s e
If the sample size is odd, then the distribution of the sample median is

given by Eq. (34); for example, if n = 2k + 1, where k is some positive integer,
then Y, ., is the sample median whose distribution is given by Eq. (34). If the
sample size is even, say n = 2k, then the sample medianis (¥, + Y.4,)/2, the
distribution of which can be obtained by a transformation starting with the
joint density of Y, and Y,,,, which is given by Eq. (35).

We derive now the joint distribution of the sample range and midrange,
from which the marginals can be obtained.

By Eq. (35), we have

Sy vx ¥) =nln — DIFQ) — FOI ™Y (x)f() forx<y. (37)
Make the transformation R= Y, — Y, and T=(Y; + Y,)/2 orr =y — x and
t=(x+y)/2. Nowx=t—r/2,and y =1t + r/2; hence

ox 0
J = or 6t=‘—% H_:_l’

oy oy |2

or Ot

and we obtain Theorem 13,
Theorem 13 If R is the sample range and T the sample midrange from
a probability density function, then their joint distribution is given by
fR, T(r: t) =
n(n — D)[F(t + r/2)— Ft — /DT 72t — r/2)f(t + 1/2) forr >0, (38)

and the marginal distributions are given by

Sr(r) = fjowfR, «(r, 1) dt and  fi(1) = f: Sr,o(r, ) dr. (39)
/1
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EXAMPLE 6 Let i\/ 1 ---» X, be a random sample from a uniform distribu-
tion on (u — \/ 30, u + \/ 30). Here u is the mean, and o is the variance

of the sampled population.
1
f(x)=—_TI——a 30\ X)s
2\/30_ (=30, pt+3 )( )
and

1 U — \/Z—’»a
F(x) = (2\/50 X — 2\/50_ )I(u~J§a,u+J§a](x) + I(u+J§o, w)(x)‘

n(n—1) -2
(2\/30)

So0) = [fu,2(r, 1y dt =

fR, T(ra t) -

(u—¢§a+r/2,u+¢§a—r/2)(t)1(0, 2430)(7)- (40)

(2\/;) " 2(2/30 — Mo, 2730(7)- (41)

We note that fx(r) is independent of the parameter u.
F1()) = [fa o, ) dr

nn — 1 min[2t—2 (g~ v30), 2(z ++/30)— 2¢]
= ( = ) R LI PR VR N ()}
(2\/30)" 0 i

which simplifies to

n (t—u n—1 t—p
- = ]. I -1 —_—
f(1) 2\/50 (\/30' * ) ( ’0)(\/30) *
—_— 1 —_ [ 1 —1.
2./30 ( \/30) e ’(\/30) (42)
From Eq. (41), we can derive &[R]=2./30(n — 1)/(n + 1). i

Certain functions of the order statistics are againstatistics and may be used
to make statistical inferences. For example, both the sample median and the
midrange can be used to estimate g, the mean of the population. For the uni-
form density given in the above example, the variances of the sample mean, the
sample median, and the sample midrange are compared in Problem 33.

5.3 Asymptotic Distributions

In Subsec. 3.3, we discussed the asymptotic distribution of the sample mean
X_. We saw that X, was asymptotically normally distributed with mean y and
variance ¢?/n. We now consider the question: Is there an asymptotic dis-
tribution for the sample median? We will state (without proof) a more general
result.
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Since for asymptotic results the sample size n increases, we let Y™ <
Y™ < ... < Y™ denote the order statistics for a sample of size n. The super-
script denotes the sample size. We will give the asymptotic distribution of that
order statistic which is approximately the (#p)th order statistic for a sample of
size n for any 0 <p< 1. We say ¢ approximatcly” the (np)th OI.'dCI' s.tatistic
because np may not be an integer. Define p, to be such that np, 1s an Integer
and p, is approximately equal to p; then Y5 is the (np,)th order statistic for a
sample of size n. (If X, ..., X, are independent for each positive integer n, we
will say X,,..., X,, ... are independent.)

n>

Theorem 14 Let X;, ..., X,, ... beindependent identically distributed
random variables with common probability density f(-) and cumulative
distribution function F(-). Assume that F(x) is strictly monotone for
0 < F(x) < 1. Let &, be the unique solution in x of F(x) = p for some
0<p<l1. (&, isthepth quantile.) Let p, be such that np, is an integer
and n|p, — p| is bounded. Finally, let Y’ denote the (np,)th order
statistic for a random sample of size n. Then Y, is asymptotically
distributed as a normal distribution with mean &, and variance

p(1 — p)/nlfEN)>. 111

EXAMPLE 7 Let p =1; then £, is the population median, and Theorem 14
states that the sample median is asymptotically distributed as a normal
distribution with mean the population median and variance 1/4n[ f(¢,,2)]>.
In particular, if f(*) is a normal density with mean g and variance o2,
then the sample median is asymptotically normally distributed with
mean g and variance 1/4n[f(1)]* = n6®/2n. Recall that the sample mean
is normally distributed with mean g and variance ¢%/n. 1

In Theorem 14 above we considered a certain kind of asymptotic distribu-
tion of order statistics. We will now consider yet another kind. In the above
we looked at the asymptotic distribution of that order statistic which was
approximately the (np)th order statistic for a sample of size n. Such an order
statistic had (approximately) 100p percent of the n observations to its left.
That is, its relative position remained unchanged as n, the sample size, in-
creased; it always had (approximately) the same percentage of the n observations
to its left. We will now consider the asymptotic distribution of that order
statistic whose absolute position remains unchanged. That is, we con-
sider the asymptotic distribution of, say, Y{ for fixed k and increasing n.
Y™ is the kth smallest order statistic for a sample size n > k, and k remains
fixed. In order to make the presentation somewhat simpler, we will take k = 1,
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in which case Y{® is the smallest of the n observations. We note that we could
just as well consider the kth largest order statistic, namely ) +1, which for
k =1 specializes to Y™, the largest order statistic for a sample of size n. Either
Y{" or Y™ is often referred to as an extreme-value statistic.

Practical applications of extreme-value statistics are many. The old
adage that a chain is no stronger than its weakest link provides a simple example.
If X; denotes the ‘“ strength”” of the ith link of a chain with » similar links, then
Y = min [X,, ..., X,]is the ““strength” of the chain. Also, in measuring the
results of certain physical phenomena such as floods, droughts, earthquakes,
winds, temperatures, etc., it can be seen that under certain circumstances one is
more interested in extreme values than in average values. For instance, it is
the extreme earthquake or flood, and not the average earthquake or flood, that
is more damaging. We can see that results, whether exact or asymptotic, for
extreme-value statistics can be just as important as results for averages.

For the most part we will concentrate on finding the asymptotic distribu-
tion of Y. One might wonder why we should be interested in an asymptotic
distribution of Y™ when the exact distribution, which is given by Fy w(y) =
[F()T", where F(-) is the c.d.f. sampled from, is known. The hope is that we
will find an asymptotic distribution which does not depend on the sampled
c.d.f. F(*). We recall that the central-limit theorem gave an asymptotic dis-
tribution for X, which did not depend on the sampled distribution even though
the exact distribution of X, could be found. :

In searching for the asymptotic distribution of Y, let us pattern our
development after what was done in deriving the asymptotic distribution of X_.
According to the law of large numbers, X, has a degenerate limiting distribution;
that is, the limiting c.d.f. of X, is the cumulative distribution that assigns all its
mass to the point g. Such a limiting distribution is not useful if one intends to
use the limiting distribution to approximate probabilities of events since it
assigns each event a probability of either 0 or 1. To circumvent such difficulty,
we first ““centered ” the values of X, by subtracting y, and then we “inflated ”’
the values of X, — p by multiplying them by \/ nfo, and, consequently, we were
able to get a nondegenerate limiting distribution; that is, accordingto thecentral-
limit theorem, \/ n( X, — w)/o had a standard normal distribution as its limiting
distribution. A general procedure, when one is looking for a limiting distribu-
tion of, say, Z,, is to first “ center >” the Z, by subtracting a constant, say g, , and
to then ‘““scale” Z, — a, by dividing by another constant, say b,. In the case of
the central-limit theorem, Z, = X,, a, =y, and b, = 0'/\/ n. In the case of
Theorem 14 above, Z, = Y2, a,=¢&,,and b, = \/p(1 — p)/n[f(E))?. For both
of these two cases the sequence of constants {g,} did not depend on n. In the
case at hand, namely when Z, = Y™, the sequence of constants {a,} is likely to
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depend on n since Y™ tends to increase with n. Let us look at a couple of

examples.

EXAMPLE 8 Consider sampling from the logistic distribution; that is,

F(x) =(1 + e 7. Find the limiting distribution of (YW —a)/b,.
There are two problems: First, what should we take the sequences of
constants {a,} and {4} to be? And, second, what is the limiting distribu-
tion of (Y™ — g)/b, for the selected constants {a,} and {b,}7 It seems
reasonable that the ““ centering” constants {a,} should be close to £[Y™];
so we seek an approximation to £[Y™]. Now F(X;), ..., F(X,) is a
random sample from the uniform distribution over (0, 1); hence F(Y™)
is the largest of a sample of size n from a uniform distribution over (0, 1).
ThatE[F(Y™M)] = nj(n + 1)canthenbe routinely derived. Now F(£[Y"]) ~

E[F(Y™)] or
FELYP) ={1 + exp (—&[YD} !
=1—{l +exp (s[Y"]} !
~1—-(n+1)"!
n
=n+1
= SIF(Y{M)),

which implies that

n xexp (£ Y]
or that

E[Y™] ~ log, n.

Finally, since &[Y{”] ~logn (from here on we use log n for log, n), a
reasonable choice for the sequence of “centering” constants {a,} seems
to be the sequence {logn}. We are seeking

.Y - ) _

n-* o0 n n-o b"
=lmP[Y™ <b y + log n]

=1lim[F(b,y + log )]’

=lim(1 + e bny~logm)—n

n—ao0

= lim (1 + (1/m)e=)

=exp(—e™?) for b,=1.
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Hence, if {a,} and {b,} are selected so that {a,} = {log n} and {b,} = {1},
respectively, then the limiting distribution of (Y — a,)/b, = Y —log n
is exp (—e™?). i

EXAMPLE 9 Consider sampling from the exponential distribution so that
F(x) = (1 — e )5, o(x). Again, let us find the limiting distribution of
(Y —a,)/b,. Asin Example 8, S[F(Y™)] =n/(n+1)=1—1/(n+ 1).

Now
FEIYPD) =1 — exp{—486[Y™]},
and
FELYP) ~ SIFYM)];
SO
N —_ (n)
— ~exp {— 15[,
or

1 1
ElYM ~ 7 log(n+ 1) ~ 7 log n.

Hence, it seems reasonable to use a, = (1/4) log n.

Y, - . 1
limP[ "b a"sy] =11mP[Yn—110gnSb,,y]

, 1 "
= lim [F(b,,y + 2 log n)]
— lirn(l _ e—-ﬂ.b,.y'-logn)n

' 1 n
=1lim (1 — - e“’"’"”)
s o n

=exp (—e?) for b, =

EIN

Hence the limiting distribution of (Y™ — a,)/b, = [ Y — (1/4) log n]/(1/2)
is exp (—e™?). We note that we obtained the same limiting distribution
here as in Example 8. Here we were sampling from an exponential
distribution, and there we were sampling from a logistic distribution.

/1
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In each of the above two examples we were able to obtain the limiting
distribution of (Y™ — a,)/b, by using the exact distribution of ¥, and ordinary
algebraic manipulation. There are some rather powerful theoretical re.SL.ﬂts
concerning extreme-value statistics that tell us, among other things, what limiting
distributions we can expect. We can only sketch such results here. The
interested reader is referred to Refs. 13, 30, and 35.

Theorem 15 Let X,, ..., X,, ... be independent and identically dis-
tributed random variables with c.d.f. F(*). If (Y™ — a )/b, has a limiting
distribution, then that limiting distribution must be one of the following
three types:

Gi(y; 7Y) = €77 Lo, 0)(y),  where y>0.

Gy(y; y) = e—lyl"[(_w'o)(y) + Jio, )(¥)s where y > 0.
Gy(y) =exp(—e™’). 1

Theorem 15 states what types of limiting distributions can be expected.
The following theorem gives conditions on the sampled F(-) that enable us to
determine which of the three types of limiting distributions correspond to the
sampled F(°).

Theorem 16 Let X;, ..., X,, ... be independent and identically dis-
tributed random variables with c.d.f. F(*). Assume that (Y™ — a,)/b,
has a limiting distribution. The limiting distribution is:

(1) G,(-; y)if and only if

lim —I—_L(x)— =17’ for every 7 > 0.
x=0 1 — F(TX)

(i) G,(-; y)if and only if there exists an x, such that
F(xy) =1 and F(xg—2¢) <1 for every ¢ > 0.
and

. 1 — F(.xo — TX)
lim =
0<x=0 1 —F(xO—X)

oty

for every 7 > 0.
(iii) G5(-) if and only if

im nfl - FB,x+a)l=e" for each x,

n—awo
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where

a, = inf {z: < F(z)}

n

and

B, =inf{z: 1 — (ne)™* < Fa, + 2)}. I

Note that if F(*) is strictly monotone and continuous, then «, is given by
KHa,) =(n—1)/n, or a, = F '({n — 1}/n); and B, is given by F(a, + p,) =1 —
()™, or f, = F7'(1 —{ne} ™) — o, = F'(1 — {ne}™") — F~'({n — 1}jn).

EXAMPLE 10 Take F(x) = (1 — e *)l, ,,(x) as in Example 9. «, is such
that F(a,) =(n — 1)/n or 1 —e™** =1 — 1/n, which implies that «, =
(1) logn. B, issuchthat F(a, + B,) = 1 — (ne)~' or 1 — e~ #(!/4) logn=2fn
=1—(ne)~', or B, = 1/4.
limn[l — F(B,x + «,)] = limn(e~*#»**)) = ¢™*  for each x,
so, as we saw in Example 9, the exponential distribution has G;(*) as its
corresponding limiting extreme-value distribution. /1]

EXAMPLE 11 Take F(x) = F(x;7) = [1 — (1 — x)" 10, 1(x) + I}1, »)(x). Note
that for x, = I, F(xo) =1 and F(x, — €) <1 for every e > 0. Also,

1 — F(xo — 1 — v
lim (xo — 7x) — lim (1 —x¢ + 7x) o
0<x=0 1 —F(xg —x) o<x-0 (1 —x¢+ x)"
so F(*; 7) has G,(-; y) as its limiting extreme-value distribution. /11!

EXAMPLE 12 Take F(x) = F(x; ) the c.d.f. of a ¢ distribution with y degrees
of freedom.

1 — Fix ‘ 1+ 2y, q(v+1)/2
R (Co DR WY T 77 s

so the ¢ distribution with y degrees of freedom has G,(-; y) as its limiting
extreme-value distribution. I
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Theorem 16 gives conditions on the sampled c.d.f. F(-) that enable us to
determine the proper limiting extreme-value distribution for (Y™ — a,)/b,. The
theorem does not tell us what the constants {a,} and {b,} should be. If, how-
ever, the conditions for the third type are satisfied, then we have

n[l - F(ﬂnx + an)] _)e—x, as n— o,

and

b,
Now, P[(Y™ — a)/b, < x] = [F(b,x + a,)]"; hence
[F(bnx + a")]n — CXp (_e—x)’

Y™ —gq
P [*"——-—" < x] —exp(—e ™).

or

nlog Fb,x + a,) > —e 7,
or

n[l — Fb,x +a,)] > e ™;

and we see that g, can be taken equal to o, and b, = f§,. Thus, for the third
type the constants {a,} and {b,} are actually determined by the condition for that
type. We shall see below that for certain practical applications it is possible to
estimate {a,} and {b,}.

Since the types G,(-; y) and G,(-; y) both contain a parameter, it can be
surmised that the third type G4(-) is more convenient than the other two in
applications. Also, G5(y) = exp (—e™?) is the correct limiting extreme-value
distribution for a number of families of distributions. We saw that it was
correct for the logistic and exponential distributions in Examples 8 and 9; it is
also correct for the gamma and normal distributions. What is often done in
practice is to assume that the sampled distribution F(-) is such that exp (—e™?)
is the proper limiting extreme-value distribution: one can do this without assum-
ing exactly which parametric family the sampled distribution F(-) belongs to.
One then knows that P[(Y{™ — a,)/b, < y] = exp (—e?) for every y as n— o0.
Hence,

Y™ —a,
P [_b,,_ = J’] ~exp (—e™?)
for large fixed n. Or
PIY" <a +by] ~ exp (—e™?),
or
P[Yf"‘) <zlw e)(p(_e—(z—an)/b..)_
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It is true that g, and b, are given in terms of the (1 — 1/n)th quantile and the
(1 — 1/ne)th quantile of the sampled distribution; however, for certain applica-
tions they can be estimated, in which case we would have an approximate distri-
bution for Y™, a distribution that is valid for a variety of different distributions
that could be sampled from. (One might note that in applications of the central-
limjt theorem, which states that X, is approximately distributed as N(u, 6%/n),
often p and o” are unknown and consequently they also have to be estimated.)
The preceding indicates how powerful the asymptotic extreme-value theory can
be. We have merely introduced the subject. For instance, we stated some re-
sults for the asymptotic distribution of Y; one could state similar results
for Y, Y™, or Y, ... The interested reader is referred to Refs. 13, 30,
and 35.

5.4 Sample Cumulative Distribution Function

We have repeatedly stated in this chapter that our purpose in sampling from some
distribution was to make inferences about the sampled distribution, or popula-
tion, which was assumed to be at least partly unknown. One question that
might be posed is: Why not estimate the unknown distribution itself? The
answer is that we can estimate the unknown cumulative distribution function
using the sample, or empirical, cumulative distribution function, which is a func-
tion of the order statistics.

Definition 13 Sample cumulative distribution function ILet X, X, ...,
X, denote a random sample from a cumulative distribution function F(-),
and let Y; < Y, <-:- <Y, denote the corresponding order statistics.
The sample cumulative distribution function, denoted by F,(x), is defined by
F,(x) = (1/n) x (number of Y; less than or equal to x) or, equivalently,
by F,(x) =(1/n) x (number of X; less than or equal to x). /1

For fixed x, F,(x) is a statistic since it is a function of the sample. (The
dependence of F,(x) on the sample may not be clear from the notation itself.)
We shall see that F (x) has the same distribution as that of the sample mean of a
Bernoulli distribution.

Theorem 17 Let F,(x) denote the sample cumulative distribution function
of a random sample of size n from F(-); then

P[F,,(x) = %] = (Z) [FO - FOP™*, & = 0,1,...,n.  (43)
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PROOF Let Z; = I (- o, x(X1); then Z; has a Bernoulli distribution

with parameter F(x). Hence, Zzi, which is the number of X; less than
1

or equal to x,

has a binomial distribution with parameters n and F(x). But

F(x)=(1/n) Zn: Z;. The result follows. I
1

Much more could be said about the sample cumulative distribution func-
tion, but we will wait until Chap. X1 on nonparametric statistics to do so.

PROBLEMS

1

(@
()]

(a)

®)

@

®)

(a)

(%)

Give an example where the target population and the sampled population
are the same.

Give an example where the target population and the sampled population
are not the same.

A company manufactures transistors in three different plants A, B, and C
whose manufacturing methods are very similar. It is decided to inspect those
transistors that are manufactured in plant A since plant A is the largest plant
and statisticians are available there. In order to inspect a week’s produc-
tion, 100 transistors will be selected at random and tested for defects. Define
the sampled population and target population.

In part (@) above, it is decided to use the results in plant 4 to draw conclu-
sions about plants B and C. Define the target population.

What is the probability that the two observations of a random sample of two
from a population with a rectangular distribution over the unit interval will
not differ by more than 4?

What is the probability that the mean of a sample of two observations from a
rectangular distribution over the unit interval will be between } and 2 ?
Balls are drawn with replacement from an urn containing one white and two
black balls. Let X =0 for a white ball and X =1 for a black ball. For
samples X;, X,, ..., Xo of size 9, what is the joint distribution of the observa-
tions? The distribution of the sum of the observations ?

Referring to part (a) above, find the expected values of the sample mean and
sample variance.

Let X,, ..., X, be a random sample from a distribution which has a finite fourth
moment. Define u = &[X1}, 6% = var [X,], us = E[(Xq — p)°], e = EN(X: — 1)),

X=Q/m) 3 X, and 82 =[1/(z — D] > (X: — X"

(@ Does 82 =[1/2n(n — 1)] :_i S (X — X)*?

J=1
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*(b) Find var [82].
*(¢) Find cov [X, §2], and note that cov [X, 82] =0 if n; =0,

Possible HINT: Z(X: — u)* = Z(X; — X)2 + (1/n) ZE(X; — p)(X; — w).

6 *(a) For arandom sample of size 2 from a population with a finite (2r)th moment,

10

11

12

13

find £[M,] and var [M,], where M, = (1/n) 3 (X, — %Y.

(b) For a random sample of size » from a population with mean x and rth
central moment ., show that

é”[l 2. (Xr"#)’] = .

ni=1

(@) Use the Chebyshev inequality to find how many times a coin must be tossed
in order that the probability will be at least .90 that X will lic between .4
and .6. (Assume that the coin is true.)

() How could one determine the number of tosses required in part (@) more
accurately, i.e., make the probability very nearly equal to .90? What is the
number of tosses ?

If a population has ¢ = 2 and X is the mean of samples of size 100, find limits

between which X — p will lie with probability .90. Use both. the Chebyshev

inequality and the central-limit theorem. Why do the two results differ ?

Suppose that X, and X, are means of two samples of size » from a population

with variance ¢2>. Determine » so that the probability will be about .01 that the

two sample means will differ by more than ¢. (Consider ¥ = X, — X,.)

Suppose that light bulbs made by a standard process have an average life of 2000

hours with a standard deviation of 250 hours, and suppose that it is considered

worthwhile to replace the process if the mean life can be increased by at least

10 percent. An engineer wishes to test a proposed new process, and he is willing

to assume that the standard deviation of the distribution of lives is about the

same as for the standard process. How large a sample should he examine if he
wishes the probability to be about .01 that he will fail to adopt the new process if
in fact it produces bulbs with a mean life of 2250 hours?

A research worker wishes to estimate the mean of a population using a sample

large enough that the probability will be .95 that the sample mean will not differ

from the population mean by more than 25 percent of thé standard deviation.

How large a sample should he take?

A polling agency wishes to take a sample of voters in a given state large enough

that the probability is only .01 that they will find the proportion favoring a certain

candidate to be less than 50 percent when in fact it is 52 percent. How large a

sample should be taken?

A standard drug is known to be effective in about 80 percent of the cases in which

it is used to treat infections. A new drug has been found effective in 85 of the

first 100 cases tried. Is the superiority of the new drug well established? (If
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the new drug were as equally effective as the old, what would be the probability

of obtaining 85 or more successes in a sample of 100?)

14 Find the third moment about the mean of the sample mean for samples Of size

from a Bernoulli population. Show that it approaches 0 as » becomes large

(as it must if the normal approximation is to be valid).

15 (a) A bowl contains five chips numbered from 1 to 5. A sample of two drawn
without replacement from this finite population is said to be random if all
possible pairs of the five chips have an equal chance to be drawn. What is
the expected value of the sample mean? What is the variance of the sample
mean ?

(b) Suppose that the two chips of part (@) were drawn with replacement; what
would be the variance of the sample mean? Why might one guess that this
variance would be larger than the one obtained before ?

*(c) Generalize part (a) by considering N chips and samples of size n. Show that
the variance of the sample mean is

o N—n
n

where o? is the population variance; that is

16 I X:, X,, X; are independent random variables and each has a uniform distribu-
tion over (0, 1), derive the distribution of (X1 + X,)/2 and (X; + X, + X;)/3.

17 1f X, ..., X, is a random sample from N(u, ¢®), find the mean and variance of
> (X — Xy
S = —_—
n—1

18 On the F distribution:
(a) Derive the variance of the F distribution. [See part (d).]
(b) If X has an F distribution with m and » degrees of freedom, argue that 1/X
has an F distribution with » and m degrees of freedom.
(¢) If X has an F distribution with m and » degrees of freedom, show that

mXjin
"1+ mX)n

has a beta distribution.
(d) Use the result of part (¢) and the beta function to find the mean and variance
of the F distribution. [Find the first two moments of mX/n = Wi(1 — W)].
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19 On the ¢ distribution:

(a) Find the mean and variance of Student’s ¢ distribution. (Be careful about
existence.)

(b) Show that the density of a ¢ distributed random variable approaches the
standard normal density as the degrees of freedom increase. (Assume that
the “ constant” part of the density does what it has to do.)

(¢) If X is t-distributed, show that X2 is F-distributed.

(d) If X is t-distributed with k degrees of freedom, show that 1/(1 + X2/k) has
a beta distribution.

20 Let X, X, be a random sample from N(0, 1). Using the results of Sec. 4 of

Chap. VI, answer the following:

(@) What is the distribution of (X, — X;)/V/2?

(b) What is the distribution of (X; + X,)?/(X, — X1)2?

(¢) What is the distribution of (X, + X)/V (X1 — X;)??

(d) What is the distribution of 1/Z if Z = X2/ X2?

21 Let Xy, ..., X, be a random sample from N(0, 1). Define

_ 1k - 1 n
Xk:;(ZX‘ and Xn_k:n—kkzl X:.

Using the results of Sec. 4, answer the following:
(@) What is the distribution of 3(Xx + Xa-4)?
(b) What is the distribution of kX2 + (n — k) X2«?
(¢) What is the distribution of X7/X3%?
(d) What is the distribution of X1/X,?
22 Let X4, ..., X, be a random sample from N(y, 0*). Define

_ |
g e

_ i

Xn-kﬂn_kkngu
=15 x,

1 [3
8§=E—_—IZ(X,~—X:¢)Z,
e S X

—k— 171

and
§2——— 3 (X, — X
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Using the results of Sec. 4, answer the following:

(@) What is the distribution of ¢~ 2[(k — 1)8% + (n — k — 1)82_.1?

(b)) What is the distribution of 3)(Xi + Xu-2)?

(¢©) What is the distribution of 6~ *(X: — p)*?

(d) What is the distribution of 8%/87-x? -

(€) What is the distribution of (X — p)/(8/V/n)?

Let Z1, Z, be a random sample of size 2 from N(0, 1) and X,, X, a random sample

of size 2 from N(l, 1). Suppose the Z/’s are independent of the X;’s. Use the

results of Sec. 4 to answer the followiﬂg:

(@) What is the distribution of X +Z7?

(5) What is the distribution of (Zy + Z)V [(X> — X1)* +(Z2 — Z1)?)/2?

(¢) What is the distribution of [(Xi1 — X2)* + (Z1 — Z3)* + (Z, + Z2)*)/2?

(d) What is the distribution of (X2 + X1 — 2)*/(X2 — X,)*?

Let X, be a random variable distributed N(, i?, i =1, 2, 3. Assume that the

random variables X;, X,, and X are independent. Using only the three random

variables X;, X2, and X;:

(@) Give an example of a statistic that has a chi-square distribution with three
degrees of freedom.

() Give an example of a statistic that has an F distribution with one and two
degrees of freedom.

(¢) Give an example of a statistic that has ¢ distribution with two degrees of
freedom.

Let X;, X, be a random sample of size 2 from the density

S(x) = 3e 1o, «)(x).

Use results on the chi-square and F distributions to give the distribution of
Xi/X,.
Let U,, U, be a random sample of size 2 from a uniform distribution over the
interval (0, 1). Let Y, and Y, be the corresponding order statistics.
(@) For 0 <y, <1, what is fy, | v,=»,(|¥2), the conditional density of ¥, given

Y, =y2?
(b) What is the distribution of Y, — Y,?
If X1, X2, ..., X, are independently and normally distributed with the same
mean but different variances of, 03, ..., 62 and assuming that U = Z(X,/0?)/Z(1/0?
and V= Z(X; — U)?*/o} are independently distributed, show that U is normal and
¥ has the chi-square distribution with n — 1 degrees of freedom.
For three samples from normal populations (with variances o2, ¢2, and ¢3%), the
sample sizes being #,, n,, and ns, find the joint density of

i S2

U=— and V=

C2?
3 8%

where the 8%, 83, and 82 are the sample variances. (Assume that the samples
are independent.)
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29

30

31

32

*33

34

*35

36

Let a sample of size », from a normal population (with variance o%) have sample
variance 8%, and let a second sample of size n, from a second normal population
(with mean u, and variance o3) have mean X and sample variance 8%. Find the
joint density of
U= \/——nZ(i: ) and V= of .
82 H
(Assume that the samples are independent.)
For a random sample of size 2 from a normal density with mean O and variance 1,
find the distribution of the range.
(@) What is the probability that the larger of two random observations from any
continuous distribution will exceed the median?
(b) Generalize the result of part (a) to samples of size n.
Considering random samples of size » from a population with density f(x), what
is the expected value of the area under f(x) to the left of the smallest sample
observation?
Consider a random sample X;, ..., X, from the uniform distribution over the
interval (n — 50, © +4/ 50). Let Y, < -< Y, denote the corresponding
order statistics.
(@) Find the mean and variance of Y, — Y.
(b) Find the mean and variance of (¥, + Ya)/2.
(¢) Find the mean and variance of Yi+, ifn=2k+1,k=0,1, ....
(d) Compare the variances of X,, Yi+1, (Y1 + Ya)/2.
HiInT: It might be easier to solve the problem for U,, ..., U,, a random sample
from the uniform distribution over either (0, 1) or (—1, 1), and then make an
appropriate transformation.
Let Xi, ..., X, be a random sample from the density

f(x;e, B) =%em [ [(x— 2)/BI],

where — <a < o and B>0. Compare the asymprotic distributions of the
sample mean and the sample median. In particular, compare the asymptotic
variances. )
Let Xy, ..., X» be a random sample from the cumulative distribution function
F(x) ={1 — exp [~ x/(1 — )BLo, 1,(0) + 1. =x). What is the limiting distri-
bution of (Y& — a,)/b., where a, = log nf(1+ log n)and b;'* = (log n) (1 + log n)?
What is the asymptotic distribution of Y”?
Let X, ..., X» be a random sample from f(x; 6) = Oe~**Io, »)(x), 6 >0.
(@) Compare the asymptotic distribution of X. with the asymptotic distribution

of the sample median,
() For your choice of {as} and {b.}, find a limiting distribution of (Y — au)/bn.
(¢) For your choice of {as} and {b,}, find a limiting distribution of (¥{" — an)/ba.



VI

PARAMETRIC POINT ESTIMATION

1 INTRODUCTION AND SUMMARY

Chapter VI commenced with some general comments about inference. There,
it was indicated that a sample from the distribution of a population is useful
in making inferences about the population. Two important problems in
statistical inference are estimation and tests of hypotheses. One type of estima-
tion, namely point estimation, is to be the subject of this chapter.

The problem of estimation, as it shall be considered herein, is loosely
defined as follows : Assume that some characteristic of the elements in a popula-
tion can be represented by a random variable X whose density is fy(:; 0) =
f(-; 0), where the form of the density is assumed known except that it contains
an unknown parameter 6 (if 0 were known, the density function would be com-
pletely specified, and there would be no need to make inferences about it).
Further assume that the values x;, x,, ..., x, of a random sample X}, X,, ..., X,
from f(-; 0) can be observed. On the basis of the observed sample values
Xy, X2, -5 X, it is desired to estimate the value of the unknown parameter 0 or
the value of some function, say 7(), of the unknown parameter. This estima-
tion can be made in two ways. The first, called point estimation, is to let the
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value of some statistic, say #(X|, ..., X,), represent, or estimate, the unknown
7(0); such a statistic #(X;, ..., X,) is called a point estimator. The second,
called interval estimation, is to define two statistics, say #,(X, ..., X,) and
Xy, ..., X,), where ¢,(X,, ..., X,) < £5(X,, ..., X,),so that (£,(X,, ..., X,),
£5(X1, ..., X,)) constitutes an interval for which the probability can be deter-
mined that it contains the unknown (). For example, if £(-; 0) is the normal
density, that is,

150) = 1055 10.0) = 0 == exp | =3 (=1,

2no 2 g

where the parameter 0 is (u, ), and if it is desired to estimate the mean, that is,
7(6) = p, then the statistic X = (1/n) Y X; is a possible point estimator of
1

20) =y, and (X —2 /8%n, X +2 /8%/n) is a possible interval estimator
of ©(f) =pu. {Recall that 8% =[l/(n — 1)]), (X;— X)®.} Point estimation
1

will be discussed in this chapter and interval estimation in the next.

Point estimation admits two problems: the first, to devise some means
of obtaining a statistic to use as an estimator; the second, to select criteria and
techniques to define and find a ““best’’ estimator among many possible estima-
tors. Several methods of finding point estimators are introduced in Sec. 2.
One of these, and probably the most important, is the method of maximum
likelihood. 1InSec. 3 several “optimum” propertiesthat an estimator or sequence
ofestimators may possessaredefined. Theseinclude closeness, bias and variance,
efficiency, and consistency. The loss and risk functions, essential elements
in decision theory, are defined as possible tools in assessing the goodness of
estimators.

Section 4 is devoted to sufficiency, an important and useful concept in the
study of mathematical statistics that will also be utilized in succeeding chapters.
Unbiased estimation is considered in Sec. 5. The Cramér-Rao lower bound
for the variance of unbiased estimators is given, as well as the Rao-Blackwell
theorem concerning sufficient statistics. A brief look at invariant estimators
is presented in Sec. 6. Bayes estimation is considered in Sec. 7. A Bayes
estimator is given as the mean of the posterior or from the decision-theoretical
viewpoint as an estimator having smallest average risk. Some results in the
simultaneous estimation of several parameters are given in Sec. 8. Included is
the notion of ellipsoid of concentration of a vector of point estimators and the
Lehmann-Scheffé theorem. Section 9 is devoted to a brief discussion of some
optimum properties of maximum-likelihood estimators.
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Frequent use of some of the distribution-theoretical results for statistics,
which were derived in earlier chapters, especially Chaps. V and VI, will be
noted throughout this chapter. After all, estimators ‘are’sta‘tlsti‘cs, and to study
properties of estimators, it is desirable to look at their distributions.

L1

2 METHODS OF FINDING ESTIMATORS

Assume that X, ..., X, is arandom sample froma density (- ; 0), where the form
of the density is known but the parameter 0 is unknown. Further assume that
6 is a vector of real numbers, say 6 =(0,, ..., 6,). (Often k will be unity.)
We sometimes say that 6, ..., 0, are k parameters. We will let ©, called the
parameter space, denote the set of possible values that the parameter 6 can
assume. The objectis to find statistics, functions of the observations X, ..., X,
to be used as estimators of the 8;, j =1, ..., k. Or, more generally, our object
is to find statistics to be used as estimators of certain functions, say 7,(), .. ., 7,(0),
of 0 = (6, ..., 0,). A variety of methods of finding such estimators has been
proposed on more or less intuitive grounds. Several such methods will be
presented, along with examples, in this section. Another method, that of the
method of least squares will be discussed in Chap. X.

An estimator can be defined as in Definition 1.

Definition 1 Estimator Any statistic (known function of observable
random variables that is itself a random variable) whose values are used

to estimate 7(6), where 7(*) is some function of the parameter 0, is defined
to be an estimator of (6). /1]

An estimator is always a statistic which is both a random variable and a
function. For instance, suppose Xj, ..., X, is a random sample from a density
f(-; 6) and it is desired to estimate 7(6)), where 1(-) is some function of 6. Let
(X, ..., X,) be an estimator of 7(§). The estimator (X, ..., X,) can be
thought of in two related ways: first, as the random variable, say T, where
T =Xy, ..., X,), and, second, as the function (-, ..., -). Naturally, one
needs to specify the function #(-, ..., ) before the random variable T =
#(Xy, ..., X,)is defined. In all we have three types of tees: the capital Latin T,
Which represents the random variable (X, ..., X,), the small script ¢, which
represents the function #(-, ..., *), and the small Latin ¢, which represents a
value of T; that is, t = #(x,, ..., x,). Let us adopt the convention of calling
the statistic (or random variable) that is used as an estimator an “estimator”
and calling a value that the statistic takes on an “estimate.” Thus the word
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“estimator’’ stands for the function, and the word ‘“estimate’’ stands for a

. v 1 & . :
value of that function; for example, X, =— % X, is an estimator of a mean p,

and x, is an estimate of u. Here Tis X,,, tis X,, and #(*, ..., -) is the function
defined by summing the arguments and then dividing by .

Notation in estimation that has widespread usage is the following: 8 is
used to denote an estimate of 6, and, more generally, (8,, ..., 0,) is a vector
that estimates the vector (f,, ..., 6;), where 0, estimates 6, j=1, ..., k. If
0 is an estimate of 6, then ® is the corresponding estimator of 0; and if the
discussion requires that the function that defines both & and © be specified, then
it can be denoted by a small script theta, that is, ® = 3(X,, ..., X).

When we speak of estimating 0, we are speaking of estimating the fixed
yet unknown value that 6 has. That is, we assume that the random sample
X, ..., X, came from the density /(- ; #), where 0 is unknown but fixed. Our
object is, after looking at the values of the random sample, to estimate the fixed
unknown 6. And when we speak of estimating (), we are speaking of estimat-
ing the value 7(6) that the known function (‘) assumes for the' unknown but
fixed 6.

2.1 Methods of Moments

Let £(-; 0, ..., 6,) be a density of a random variable X which has k parameters
0, ..., 0,. Asbeforelet y, denote the rth moment about 0; that is, u, = £[X"].
In general p will be a known function of the k parameters 0,, ..., §,. Denote
this by writing p, = (6, ..., 6,). Let X;, ..., X, be a random sample
from the density f(-; 0, ..., 6)), and, as before, let M be the jth sample
moment; that is, .

1 n
i=1
Form the k equations
M= 0y 0 J=1,..k, 1)
in the k variables 0, ..., 0,, and let ©,, ..., ©, be their solution (we assume
that there is a unique solution). We say that the estimator (0, ..., ©)),
where 8, estimates 0, is the estimator of (6;, ..., 0,) obtained by the method of

moments. The estimators were obtained by replacing population moments by
sample moments. Some examples follow.
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EXAMPLE1 Let Xj,..., X, be arandom sample from a normal distribution

with mean g and variance o2. Let (0,, 0,) = (1, 6). Estimate the param-
eters g and ¢ by the method of moments. Recall that o? = u) — (u))?
and g = uj. The method-of-moments equations become

M = py = pi(y, 6) =
M5 = uh = pi(u, 6) = 0 + 1%,

and their solution is the following: The method-of-moments estimator
of u is M;=X, and the method-of- moments estimator of & is’

JM; X2 = /U Y X} —X*= /Y (X;— X)*/n. Note that the

method-of-moments estimator of ¢ given above is not \/ 82, /1]

EXAMPLE 2 Let X;, ..., X, be a random sample from a Poisson distribu-
tion with parameter 4. Estimate A. There is only one parameter, hence
~ only one equation, which is

M = py = () = 4.

Hence the method-of-moments estimator of A is M} = X, which says
estimate the population mean A with the sample mean X. /11

EXAMPLE 3 Let X}, ..., X, be a random sample from the negative expo-
nential density f(x; 6) = 0e” %I, ,,(x). Estimate 6. The method-of-
moments equation is

’ ’ 4 1
My =i :#1(9)265
hence the method-of-moments estimator of 6 is 1/M/ = 1/X. /11
EXAMPLE 4 Let X, ..., X, be a random sample from a uniform distribu-

tion on (u — \/ 30, 1+ \/ 3¢). Here the unknown parameters are two,
namely u and o, which are the population mean and standard deviation.
The method-of-moments equations are

M= =ui(,0)=1n
and

M35 =y = pyu, 0) = 6* + u?;
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hence the method-of-moments estimators are X for u and

We shall see later that there are better estimators of u and o for this
distribution. ////

Method-of-moments estimators are not uniquely defined. The method-
of-moments equations given in Eq. (1) are obtained by using the first k raw
moments. Central moments (rather than raw moments) could also be used to
obtain equations whose solution would also produce estimators that would be
labeled method-of-moments estimators. Also, moments other than the first
k could be used to obtain estimators that would be labeled method-of-moments
estimators.

If, instead of estimating (6,, ..., 6,), method-of-moments estimators of,
say, T4(0s, ..., 04, ..., T{0,, ..., 0,) are desired, they can be obtained in several
ways. One way would be to first find method-of-moments estimates, say
8,,...,0,,0f0,, ..., 0,and then use 7,(0,, ..., §,) as an estimate of 7,(0,, ..., 0;)
forj=1, ..., r. Another way would be to form the equations

M= pi(ty, ..., T,), j=1,...,r

and solve them for 7,, ..., 7,. [Estimators obtained using either way are called
method-of-moments estimators and may not be the same in both cases.

2.2 Maximum Likelihood

To introduce the method of maximum likelihood, consider a very simple estima-
tion problem. Suppose that an urn contains a number of black and a number
of white balls, and suppose that it is known that the ratio of the numbers is
3/1 but that it is not known whether the black or the white balls are more
numerous. That is, the probability of drawing a black ball is either } or 2.
If n balls are drawn with replacement from the urn, the distribution of X, the
number of black balls, is given by the binomial distribution

f(X;P)=(Z)p"q”"" forx=0,1,2,...,n,

where g =1 — p and p is the probability of drawing a black ball. Here p =1,

orp==%. e
We shall draw a sample of three balls, that is, » = 3, with replacément and
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attempt to estimate the unknown parameter p of the distribution. The estima-
tion problem is particularly simple in this case because we have only to choose
between the two numbers .25 and .75. Let us anticipate the results of the
drawing of the sample. The possible outcomes and their probabilities are given

below:
Outcome: x | 0 1 2 3
£ # & 23 52
£ 9 HH 8 & .

In the present example, if we found x =0 in a sample of 3, the estimate .25 for
p would be preferred over .75 because the probability 27 is greater than &
" i.e., because a sample with x = 0 is more likely (in the sense of having larger
probability) to arise from a population with p =% than from one with p = .
And in general we should estimate p by .25 when x =0 or 1 and by .75 when
x =2 or 3. The estimator may be defined as

| 25 for x=0,1
p=px) = [.75 for x =2, 3.

The estimator thus selects for every possible x the value of p, say p, such that

f(x; p) > f(x; P,

where p’ is the alternative value of p.
More generally, if several alternative values of p were possible, we might
reasonably proceed in the same manner. Thus if we found x = 6 in a sample

of 25 from a binomial population, we should substitute all possible values of p
in the expression

f6;p) = (265) p’1—p)'® foro<p<l 2

amtd choose as our estimate that value of p which maximized £(6; p). For the
given possible values of p we should find our estimate to be -%. The position
of its maximum value can be found by putting the derivative of the function

defined in Eq. (2) with respect to p equal to 0 and solving the resulting equation
for p. Thus,

d . 25
;f;,f(& p) = (6) p’(1 — p)**[6(1 — p) — 19p},
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and on putting this equal to 0 and solving for p, we find that p =0, 1, -% are
the roots. The first two roots give a minimum, and $0 our estimate is therefore
p =-"%. This estimate has the property that

f(6; p) > f(6; p",

where p’ is any other value of p in the interval 0 < p < 1.
In order to define maximum-likelihood estimators, we shall first define the
likelihood function.

Definition 2 Likelihood function The likelihood function of n random
variables X, X,,..., X, is defined to be the joint density of the » random
variables, say fx, . x(x;, ..., x,; 8), which is considered to be a function
of §. In particular, if X;, ..., X, is a random sample from the density
f(x; 0), then the likelihood function is f(x;; 0)f(x5;0) - -+ - - f(x,; 0. ////

Notation To remind ourselves to think of the likelihood function as a
function of 6, we shall use the notation L(0; x,, ..., x,) or L(*; x;, ..., x,,)
for the likelihood function. 111/

The likelihood function L(0; x,, ..., x,) gives the likelihood that the
random variables assume a particular value x,, x,, ..., x,. The likelihood is
the value of a density function; so for discrete random variables it is a proba-
bility. Suppose for a moment that 0 is known; denote the value by 0,. The
particular value of the random variables which is “ most likely to occur” is that
value x}, x5, ..., x; such that fx, . x(x;, ..., X,; 0) is a maximum. For
example, for simplicity let us assume that » = 1 and X; has the normal density
with mean 6 and variance 1. Then the value of the random variable which is
most likely to occur is X; = 6. By “most likely to occur” we mean the value
x; of X such that ¢¢ ,(x]) > ¢¢, 1(x;). Now let us suppose that the joint
density of » random variables is fx, .. x (X, ..., x,; 0), where 0 is unknown.
Let the particular values which are observed be represented by xg, x5, ..., X,.
We want to know from which density is this particular set of values most likely
to have come. We want to know from which density (what value of ) is the
likelihood largest that the set x|, ..., x, was obtained. In other words, we
want to find the value of 6 in ©, denoted by 8, which maximizes the likelihood
function L(0; X, - - -, x.). The value § which maximizes the likelihood function
is, in general, a function of x, ..., x,, say 0= §(x1, Xy, 44> X»). When this is
the case, the random variable ® = 3(X,, X5, ..., X,) is called the maximum-
likelihood estimator of 6. (We are assuming throughout that the maximum
of the likelihood function exists.) We shall now formalize the definition of a
maximum-likelihood estimator.
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Definition 3 Maximum-likelihood estimator Let
L(0) = L(6; x15 - - ., X5)

be the likelihood function for the random variables Xy, X5, ..., X,. If
8 [where 8 = §(x,, xz,---, x,)is a function of the oAbser\Azations Xisonns Xy
is the value of 8 in © which maximizes L(f), then © = Xy, Xzsoovs X)
is the maximum-likelihood estimator of 6. 8=398(x,, ..., x,) is the
maximum-likelihood estimate of 6 for the sample x, ..., x,. /1]

The most important cases which we shall consider are those in which
X., X, ..., X, is a random sample from some density f(x; 6), so that the
likelihood function is

L©) =f(x,;0)f(x2;0) -~ f(x,; 6).

Many likelihood functions satisfy regularity conditions; so the maximum-
likelihood estimator is the solution of the equation

dL()
do

Also L(0) and log L(6) have their maxima at the same value of 6, and it is some-
times easier to find the maximum of the logarithm of the likelihood.
If the likelihood function contains k parameters, that is, if

L(Ola 0,,..., Gk) = _]_:Ilf(xi; 91: 02, ..., 6k):

then the maximum-likelihood estimators of the parameters 0., 0,,...,0, are
the random variables ©, = ,(X,, ..., X,), ©,=9,(x;, ..., X)), ..., ©, =
94Xy, ..., X,), where 8,, 0,, ..., 8, are the values in © which maximize
L@,,0,,...,0).

. If certain regularity conditions are satisfied, the point where the likelihood
Is a maximum is a solution of the k equations '

8L(@,, ..., 0,

20, =0
al’(ela M Gk) -0

06,
al‘(els MR ] ek) =0

20,

In this case it may also be easier to work with the logarithm of the likelihood.
We shall illustrate these definitions with some examples.
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EXAMPLE 5 Suppose that a random sample of size n is drawn from the
Bernoulli distribution

fOp)=p"q" "l y(x), O<p<landg=1-p.

The sample values x;, x;, ..., x, will be a sequence of Os and Is, and the
likelihood function is :

L(p) = l__[1 priql T = prrghTEX,
and if we let

y = Z xi:
we obtain
*log L{p) =y log p+ (n — y) logg

and

dlogl(p) y n—y

dp p q

*

remembering that g =1 — p. On putting this last expression equal to 0
and solving for p, we find the estimate

p=

=
S| =

Y X=X, (3)

which is intuitively what the estimate for this parameter should be. It is
also a method-of-moments estimate. For n = 3, let us sketch the likeli-
hood function. Note that the likelihood function depends on the x;’s
only through ) x;; thus the likelihood function can be represented by the
following four curves:

L0=L(P;zxi=0)=(1 —P)3
L =Lp;Y x;=1)=p(l — py?
Ly=L(p;y x;=2)=p*(1 — p)
L3=L(P;zxi=3)=p3:

which are sketched in Fig. 1. Note that the point where the maximum of
each of the curves takes place for 0 < p < 1 is the same as that given in
Eq. (3) when n = 3. /1]

* Recall that log x means log, x.
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FIGURE 1

EXAMPLE 6 A random sample of size n from the normal distribution has
the density

=(1/20%)(x:—p)? _ 1\ 1 2
e =302 exp | — 757 Y (x;— ).

lﬂl 1
A1 2o
The -logarithm of the likelihood function is

n n 1
L*= —EIOgZTE—EIOgGZ—?Z(x"—M)Z,

where ¢ > 0 and — 0 < p < 0.
To find the location of its maximum, we compute

oL* 1
e (x: — 1)
and
oL* n 1 1
3or = "5zt ial -

and on putting these derivatives equal to 0 and solving the resulting
equations for y and o2, we find the estimates

R=lYx - @)

n

O NCE S NNC

which turn out to be the sample moments corresponding to u and ¢?.

i
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EXAMPLE 7 Let the random variable X have a uniform density given by

Sf(x; 0) =Io_4 04+ 41(x),

where —o0 < 6 < c0; that is, © =real line. The likelihood function
for a sample of size n is

L(O; x15.-.5x,) = il;llf(x.-; 0) = iljl I[G—f,ﬂ«i—«ﬂ(xi)

= Iyy,—4,y,+4:0)s (6)
where y; is the smallest of the observations and y, is the largest. The

B
last equality in Eq. (6) follows since [] fio—;, ¢+31(:) is unity if and only
i=1

if all x,, ..., x, are in the interval [§ — %, 8 + 4], which is true if and
only if 6 —4<y, and y,<0+%, which is true if and only if
y.—1<0<y +%1 We see that the likelihood function is either 1
(for y, — 3 <0 <y, + 1) or 0 (otherwise); hence any statistic with value
8 satisfying y,— 4+ <8<y, +1% is a maximum-likelihood estimate.
Examples are y, — %, ¥, + %, and ¥y, + y,). This latter is the midpoint
between y, — 4 and y, + %, or the midpoint between y, and y,, the
smallest and largest observations. 11/

EXAMPLE 8 Let the random variable X have a uniform distribution with
density given by
1
f(x; 6) =f(x; Hs O') = 2\/‘3—0_ I[u_\/ga,u_,_‘/gd(x),

where — o0 < g < o0 and ¢ > 0. (Recall Example 4.) Here the likeli-
hood function for a sample of size n is

1 nn
Lp, 05 %1500, X)) = (27?;) il;lll[u—s/so'.u+s/3¢](xi)

1 n
- (2\/—3- 0') I[“_‘/EG'- Yn](y l)l[yl, u+\/‘._”a'](yn)

1 n
- (m) I[(u—yl)/d 3, oo)(O')I [(yn—m)/v3, oo)(a)I [y1, w)(yn)’

where y, is the smallest of the observations and y, is the largest. The
likelihood function is (2\/ 3 &) " in the shaded area of Fig. 2 and O else-
where. (2\/ 3 ¢)~" within the shaded area is clearly a maximum when o
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FIGURE 2

is smallest, which is at the intersection of the lines u — \/ 3¢ = y; and
u+ \/5 ¢ =y,. Hence the maximum-likelihood estimates of p and o are

p=10ity) O

and

1
6 =— (yn -y ): (8)
2/3 '
which are quite different from the method-of-moments estimates given in
Example 4. 111/

The above four examples are sufficient to illustrate the application of the
method of maximum likelihood. The last two show that one must not always
rely on the differentiation process to locate the maximum.

The function L(6) may, for example, be represented by the curve in Fig. 3,
where the actual maximum is at 8, but the derjvative set equal to 0 would locate
0’ as the maximum. One must also remember that the equation 8L/80 = 0
locates minima as well as maxima, and hence one must avoid using a root of
the equation which actually locates a minimum.

We shall see in later sections (especially Sec. 9 of this chapter) that the
maximum-likelihood estimator has some desirable optimum properties other
than the intuitively appealing property that it maximizes the likelihood function.
In addition, the maximum-likelihood estimators possess a property which is
sometimes called the invariance property of maximum-likelihood estimators. A

little reflection on the meaning of a single-valued inverse will convince one of
the validity of the following theorem.
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L(6)

FIGURE 3 ] P —

Theorem 1 Invariance property of maximum-likelihood estimators Let
0 =93%x., X5, ..., X,) be the maximum-likelihood estimator of 8 in the
density f(x; 8), where 8 is assumed unidimensional. If z(-) is a function
with a single-valued inverse, then the maximum-likelihood estimator of

7(9) is 7(O). 1/

For example, in the normal density with g, known the maximum-likelihood
estimator of ¢2 is

1 n
;z- igl(X P ﬂo)z-

By the invariance property of maximum-likelihood estimators, the maximum-
likelihood estimator of o is

1]
\/;l' ;;(Xi — o).

Similarly, the maximum-likelihood estimator of, say, log ¢ is

tog| . 3 (i = 1ol
Ri=1

The invariance property of maximum-likelihood estimators that is exhib-
ited in Theorem 1 above can and should be extended. Following Zehna [43],
we extend in two directions: First. 8 will be taken as k-dimensional rather
than unidimensional, and, second, the assumption that t(-) has a single-valued
inverse will be removed. It can be noted that such extension is necessary by
considering two simple examples. As a first example, suppose an estimate of
the variance, namely (1 — ), of a Bernoulli distribution is desired. Example
5 gives the maximum-likelihood estimate of 6 to be X, but since 8(1 — ) is not
a one-to-one function of 8, Theorem 1 does not give the maximum-likelihood
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estimator of (1 — ). Theorem 2 below will give such an estimate, and it will
be (1 — ¥). As a second example, consider sampling from a normal distribu-
tion whete both y and 62 are unknown, and suppose an estimate of £[X*] =
u? + o2 is desired. Example 6 gives the maximum-likelihood estimates of u
and o2, but u? + 6? is not a one-to-one function of y and o®, and so the
maximum-likelihood estimate of u? + ¢ is not known. Such an estimate will
be obtainable from Theorem 2 below. It will be X2 + (1/n) ¥ (x; — %). B

Let 6= (8,, ..., 6;) be a k-dimensional parameter, and, as before, let ©
denote the parameter space. Suppose that the maximum-likelihood estimate
of 1) = (1,(0), ..., 1,(0)), where ] <r < k, is desired. Let Tdenote the range
space of the transformation () = (7,(*), ---, 7,(*))- Tis an r-dimensional

space. Define M(t; x;, ..., X,) = sup L(O; x;, ..., x5). M(; x5 ..., X,)
{8:t(0)=r}

is called the likelihood function induced by t(-).* When estimating § we max-
imized the likelihood function L(6; x,, ..., x,) as a function of @ for fixed
X, ..., X,; When estimating T = 7(f) we will maximize the likelihood function
induced by (), namely M(z; x,, ..., x,), as a function of 7 for fixed x,, ..., x,.
Thus, the maximum-likelihood estimate of t = t(8), denoted by %, is any
value that maximizes the induced likelihood function for fixed x, ..., x,; that
is, £ is such that M(%; x;,..., x,) > M(t;x,,..., x,)forall t € T. The invari-
ance property of maximum-likelihood estimation is given in the following
theorem.

Theorem 2 Let © = (8, ..., ©,), where ©, = §,(X,, ..., X,), be a
maximum-likelihood estimator of 8= (0, ..., 6,) in the density
JC5 6, ...,6). If1(0) = (1,(0), ..., 7,(0) for | <r < kisa transforma-
tion of the parameter space ©, then a maximum-likelihood estimator of
0) = (11(6), .-, (0) is 1(®) = (r,(®), ..., 7,(0)). [Note that 7,(9) =
T f(el’ . 95)§ so the maximum-likelihood estimator of 7;(0y, ..., 6)) is
rj(ela cet Ok)ajz 1: R r-]

PROOF Let 0= (8, ..., 8,) be a maximum-likelihood estimate of
6 =0 --., 6. It suffices to show that M(z(8); x,, ..., x,)>
M(z; x4, -.., x,) for any 7 e T, which follows immediately from the in-
equality M(7; x,,...,x,) = sup L(O;x,,..., X)) <sup L(0;x,..., x,)

{8:t(8)=1) Be o

= L(g; Xps=ves xn) _{B: r(Slililfr(é)}L(e; 2 EIIN xn) = M(T(g)y Xis v xn)' ////

*The notation “sup” is used here, and elsewhere in this book, as it is usually used in
;n?ther_r;a‘l‘tlcs." .For those TeaC}?l'S who are not acquainted with this notation, not much
s lost 1 *’sup™ is replaced by ““max,” where max is an abbreviation for maximum.
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It is precisely this property of invariance enjoyed by maximum-likelihood
estimators that allowed us in our discussion of maximum-likelihood estimation
to consider estimating (6, ..., 6;) rather than the more general 7,(6,, ..., 6,),

cees THO;, <. -5 0)).

EXAMPLE 9 In the normal density, let 8 = (0,, 6,) = (1, 6%). Suppose
©(0) = 1 + z, 0, where z, is given by ¢(z,) =q. 1(0) is the gth quantile.
According to Theorem 2, the maximum-likelihood estimator of t(f) is

X +2,/(/m) Y (X; — X). 11/

2.3 Other Methods

There are several other methods of obtaining point estimators of param-
eters. Among these are (i) the method of least squares, to be discussed in
Chap. X, (ii) the Bayes method, to be discussed later 1n.this chapter, (iii) the
minimum-chi-square method, and (iv) the minimum-distance method. In this
subsection we will briefly consider the last two. Neither will be used again in
this beok.

Minimum-chi-square method Let X, ..., X, be a random sample from a

density given by fx(x; 6), and let &, ..., &, be a partition of the range of X.

The probability that an observation falls in cell &, j=1, ..., k, denoted by

p;(0), can be found. For instance, if fx(x; ) is the density function of a con-

tinuous random variable, then p(6) = P[X falls in cell &;] = [, fx(x; 6) dx.
k

Note that Y pi(@) =1. Let the random variable N ; denote the number of
ji=1

k
X;s in the sample which falls in cell &;, j=1, ..., k; then ) N;=n, the
i=1
sample size. Form the following summation:

Xz _ i [nj - ”Pj(e)]2

i=1 np j(e)

3

where n;is a value of N;.  The numerator of the jth term in the sum is the square
of the difference between the observed and the expected number of observations
falling in cell &;. The minimum-chi-square estimate of 6 is that 6 which
minimizes y2. It is that 8 among all possible 8’s which makes the expected
number of observation incell & “nearest” the observed number. ' The minimum-
chi-square estimator depends on the partition &y, ..., & selected.
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EXAMPLE 10 Let X,, ..., X, be a random sample from a Bernoulli distri-
bution; that is, fx(x, 0) g*(1 — 6)' ~* for x=0, 1. Take N,=the
number of observations equal to j for j =0, I. Here the range of the
observation X is partitioned into the two sets consisting of the numbers 0

and 1 respectively.

L [n;—np 01> B [no — n(l — 0)]> (n, — nd)*
=2, : np,«;g =T hi-0 | no
[n—n, —n( -0 (- nf)* _ (. - n9)? 1
N n(l — 0) * no n 0(1 — 6)

The minimum of ¥? as a function of 0 can be found by inspection by
noting that x> =0 for 8 =n/n. Hence 0 =n/n. For this example

there was only one choice for the partition &, ..., &;. The estimator
found is theé same as what would be obtained by either the method of
moments or maximum likelihood. /11

Often it is difficult to locate that § which minimizes x?; hence, the denomi-
nator np(6) is sometlmes changed to n; (if n; =0, umty is used) forming a

modified y* Z {[n; —n pJ(G)]z/n Y. The modified minimum-chi-square estimate

of @ is then that 9 which minimizes the modified x2.

Minimum-distance method Let X, ..., X, be a random sample from the

distribution given by the cumulative distribution function Fy(x:; 0) = F(x; 0),

and let d(F, G) be a distance function that measures how ““far apart” two cumula-

tive distribution functions F and G are. An example of a distance function 1s

d(F, G) = sup |F(x) —G(x)|, which is the largest vertical distance between F
X

and G. See Fig. 4.

The minimum-distance estimate of @ is that § among all possible 0 for
which d(F(x; 6), F,(x)) 1s minimized, where F,(x) is the sample cumulative
distribution function. Thus, 6 is chosen so that F(x; 0) will be “closest’” to
F,(x), which 1s desirable since we saw in Subsec. 5.4 of Chap. V1 that for a
fixed argument x the sample cumulative distribution function has the same
distribution as the mean of a binomial distribution; hence, by the law of large
numbers F,(x) “converges” to F(x). The minimum-distance estimator might be
intuitively appealing, but it is almost always difficult to find since locating

& which minimizes d(F(x; 6), F,(x)) is seldom easy. The following example is
an exception.
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1
1
F
d(F, G)
G
= * X
FIGURE 4
EXAMPLE 11 Again let X,, ..., X, be a random sample from a Bernoulli

distribution; then

F(x; 0) = (1 — 0o, 1)(%) + Iy, 0y(X)s.

where0 < 6 < 1. Let n; = the number of observations equal to j; j = 0, 1.
Then

h
Fn(X) = ;0 I[O,l)(x) + I[l, Oo)(X).

Now if the distance function d(F, G) = sup |F(x) — G(x)| is used, then

d(F(x; 0), F,(x))is minimized if 1 — @ is taken equal to no/nor 0 =n,/n =
Y x;/n. Hence 0 =x. i

For a more thorough discussion of the minimum-chi-square method, see
Cramér [11] or Rao [17]. The minimum-distance method is discussed in
Wolfowitz [42].

3 PROPERTIES OF POINT ESTIMATORS

We presented several methods of obtaining point estimators in the preceding
section. All the methods were arrived at on a more or less intuitive basis. The
question that now arises is: Are some of many possible estimators better, in
some sense, than others? In this section we will define certain properties, which
an estimator may or may not possess, that will help us in deciding whether one
estimator is better than another.

3.1 Closeness

If we have a random sample X,, ..., X, from a density, say f(x; ), which is
known except for 0, then a point estimator of t(f) is a statistic, say #(X, ..., X,),
whose value is used as an estimate of 7(f). We will assume here that (0) is a
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real-valued (not a vector) function of the unknown parameter 8. [Often ()
will be 0 itseif.] Ideally, we. would like the value of /(X,,..., X,) to be the
unknown 7(6), but this is not possible except in trivial cases, one of which follows.

EXAMPLE 12 Assume that one can sample from a density given by
f(x;0)= I(e—%,ew)(x),

where § is known to be an integer. That is, ©, the parameter space,
consists of all integers, Consider estimating 6 on the basis of a single
observation x;. If #(x;) s assigned as its value the integer nearest x,, then
the statistic or estimator /(X;) will always correctly estimate 6. In a
sense, the problem posed in this example is really not statistical since one
knows the value of 6 after taking one observation. /1]

Not being able to achieve the ultimate of always correctly estimating the
unknown 1(6), we look for an estimator /(Xy, ..., X,) thatis “close” to ().
There are several ways of defining *“close.” T = ¢(X,, ..., X,) is a statistic
and hence has a distribution, or rather a family of distributions, depending on
what 8is. The distribution of T tells how the values t of T are distributed, and
we would like to have the values of T distributed near ©(0); that is, we would like
to select /(-, ..., *) so that the values of T = /(X], ..., X,) are concentrated
near ©(f). We saw that the mean and variance of a distribution were, respec-
tively, measures of location and spread. So what we might require of an
estimator is that it have its mean near or equal to 7(#) and have small variance.
These two notions are explored in Subsec. 3.2 below and then again in Sec. 5.

Rather than resorting to characteristics of a distribution, such as its mean
and variance, one can define what *“ concentration’” might mean in terms of the
distribution itself, Two such definitions follow.

Definition 4 More concentrated and most concentrated Let T =
Xy, ..., X,yand T' = £'(Xy, ..., X,) be two estimators of 7(f). T’ is
called a more concentrated estimator of 7(f) than T if and only if
Po[t(0) — A< T ' <1(0) + A] =2 Py[v(0) — A< T < 1(0) + 4] for all A>0
and for each 0 in ©. An estimator T* = £*%(X|, ..., X,) is called most
concentrated if it is more concentrated than any other estimator. /1]

Remar!c The subscript 6 on the probability symbol P,[-] is there to
emphasize that, in general, such probability depends on 8. For instance,
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in Py[t{6) — A <T<1t(0)+ 1], the event {1(6) —A<T<1(0) + A} is
described in terms of the random variable T, and, in general, the distri-
bution of T is indexed by 6. 1

We see from the definition that the property of most concentrated is
highly desirable (Pitman [41], in defense of his calling a ‘most concentrated
estimator best, stated that such an estimator is *“undeniably best’”); unfortu-
nately, most concentrated estimators seldom exist. There are just too many
possible estimators for any one of them to be most concentrated. What is then
sometimes done is to restrict the totality of possible estimators under con-
sideration by requiring that each estimator possess some other desirable property
and to look for a best or most concentrated estimator in this restricted class.
We will not pursue the problem of finding most concentrated estimators, even
within some restricted class, in this book.

Another criterion for comparing estimators is the following one.

Definition 5 Pitman-closer and Pitman-closest Let T = 4(X, ..., X,)
and T' =#(Xy, ..., X,) be two estimators of ©(f). T’ is called a Pitman-
closer estimator of (f) than Tif and only if

P|T — )| < |T—w0)|]1=1% for each 6 in 8.

An estimator T* is called Pitman-closest if it is Pitman-closer than any
other estimator. /1]

The property of Pitman-closest is, like the property of most concentrated,
desirable, yetrarely will there exista Pitman-closestestimator. Both Pitman-closer
and more concentrated are intuitively attractive properties to be used to com-
pare estimators, yet they are not always useful. Given two estimators T and
T’, one does not have to be more concentrated or Pitman-closer than the other.,
What often happens is that one, say T, is Pitman-closer or more concentrated
for some 6 in ©, and the other T’ is Pitman-closer or more concentrated for
other 0 in ©; and since § is unknown, we cannot say which estimator is preferred.
Since Pitman-closest estimators rarely exist for applied problems, we will not
devote further study to the notion in this book; instead, we will consider other
ways of measuring the closeness of an estimator to 7(6).

Competing estimators can be compared by defining a measure of the close-
ness of an estimate to the unknown ©(#). An estimator T' = ¢'(Xy, ..., X,)
of 7() will be judged better than an estimator T = /(X, ..., X,) if the measure
of the closeness of T’ to 7(#) indicates that T’ is closer to 7(f) than T. Such
concepts of closeness will be discussed in Subsecs. 3.2 and 3.4.
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In the above we were assuming that n, the sample size, was fixed. Still
another meaning can be affixed to *“closeness”” if one thinks in terms of increasing
sample size. It seems that a good estimator should do better when it is based
on a large sample than when it is based on a small sample. Consistency and
asymptotic efficiency are two properties that are defined in terms of increasing
sample size; they are considered in Subsec. 3.3. Properties of point estimators
that are defined for a fixed sample size are sometimes referred to as small-sample
properties, whereas properties that are defined for increasing sample size are
sometimes referred to as large-sample properties.

3.2 Mean-squared Error

A useful, though perhaps crude, measure of goodness or closeness of an esti-
mator #(Xy, ..., X,) of 7(6) is what is called the mean-squared error of the
estimator.

Definition 6 Mean-squared error Let 7T = /(X,, ..., X,) be an
estimator of ©(6). &[T — t(#))*] is defined to be the mean-squared error
of the estimator T = #(X;, ..., X,). /1]

Notation Let MSE,(0) denote the mean-squared error of the estimator
T =X, ..., X,) of ©(6). 1]/

Remark The subscript § on the expectation symbol &, indicates from
which density in the family under consideration the sample came. That is,

&[T — 2(0)1*]
= &l[4(Xy, ..., X,) — 1))

=J."'f[f’(x1’ ces Xn) = OIS (x5 0) + o fx,; 0) dxy - - - dx,,

where f(x; ) is the probability density function from which the random
sample was selected. 11/

The name * mean-squared error” can be justified if one first thinks of
the difference t — ©(6), where ¢ is a value of T used to estimate t(6), as the error
made in estimating t(6), and then interprets the “mean” in “mean-squared
error” as expected or average. To support the contention that the mean-
squared error of an estimator is a measure of goodness, one merely notes that
cg’e[!T — ®)1°] is a measure of the spread of T values about 7(6), just as the
variance of a random variable is a measure of its spread about its mean. If we
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were to compare estimators by looking at their respective mean-squared errors,
naturally we would prefer one with small or smallest mean-squared error. We
could define as best that estimator with smallest mean-squared error, but such
estimators rarely exist. In general, the mean-squared error of an estimator
depends on 6.

For any two estimators T; = (X, ..., X,) and T, = £,(X;, ..., X,) of
7(0), their respective mean-squared errors MSE, (8) and MSE,,(0) as functions
of 8 are likely to cross; so for some 8, ¢; has smaller MSE, and for others ¢, has
smaller MSE. We would then have no basis for preferring one of the estimators
over the other. See Fig. 5.

The following example shows that except in very rare cases an estimator
with smallest mean-squared error will not exist.

EXAMPLE 13 Let X,, ..., X, be a random sample from the density f(x; ),
where 0 is a real number, and consider estimating 0 itself; that is, ©(0) = 6.
We seek an estimator, say T* = ¢*(X,, ..., X,), such that MSE_(0) <
MSE (6) for every 0 and for any other estimator T = #(X,, ..., X,) of 6.
Consider the family of estimators Ty, = ¢4 (X;, ..., X,) = 0, indexed by
g, for 8, € ©. For each 6, belonging to B, the estimator Ty ignores the
observations and estimates 6 to be 6,. Note that

MSE,, (0) = &ol[Z5(X1s . .., X,) — OF]
= &[(0o — 6)*] = (6, — 6)*;

so MSE,, (6,) = 0; that is, the mean-squared error of ¢, evaluated at
6 = 0, is 0. Hence, if there is to exist an estimator T* = #*(X;, ..., X,)
satisfying MSE.(f) < MSE(6) for every 6 and for any estimator
/, MSE,.(6)=0. [For any 0,, MSE.(f8,) =0 since MSE,.(f,) <
MSE,, (6o) =0.] In order for an estimator ¢* to -have its mean-
squared error identically 0, it must always estimate 6 correctly, which
means that from the sample you must be able to identify the true parameter

value. ‘ /1]
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One reason for being unable to find an estimator with uniformly smallest
mean-squared error is that the class of all possible estimators is too large-—
it includes some estimators that are extremely prejudiced in favor of particular 6.
For instance, in the example above Zo (X1, ..., X,) is highly partial to 8, since
it always estimates 0 to be 6,. One could restrict the totality of estimators by
considering only estimators that satisfy some other property. One such
property is that of unbiasedness.

Definition 7 Unbiased An estimator T = #(X;, ..., X,) is defined to
be an unbiased estimator of 7(6) if and only if

Eo[T] = Eolt(Xy, ..., X,)] = 7(0) for all 6 € ©. I

An estimator is unbiased if the mean of its distribution equals z(6), the
function of the parameter being estimated. Consider again the estimator
lo( X1, ..., X,) =0, of the above example; Eg[fg (X, ..., X,)] = &l0,] =
0, # 0350 £4(X;, ..., X,)is not an unbiased estimator of 6. If we restricted the
totality of estimators under consideration by considering only unbiased estima-
tors, we could hope to find an estimator with uniformly smallest mean-squared
error within the restricted class, that is, within the class of unbiased estimators.
The problem of finding an unbiased estimator with uniformly smallest mean-
squared error among all unbiased estimators is dealt with in Sec. 5 below.

Remark
MSE(6) = var [T] + {=(0) — &,[T]}*. )
So if T is an unbiased estimator of 7(#), then MSE(f) = var [T].

PROOF
MSEA6) = &l[T — ©(O)*] = 8l((T — &6[T))— {2(0) — &6[T1H?]
= Eol(T — &o[TH] - 2{1(0) — EG[TI}E6[T — &4[T]]
+ Eol{t(0) — E6lTI}?] = var [T] + {=(6) — & T~ i

The term 7(6) — &[T] is called the bias of the estimator T and can be
either positive, negative, or zero. The remark shows that the mean-squared
error is the sum of two nonnegative quantities; it also shows how the mean-
squared error, variance, and bias of an estimator are related.

EXAMPLE 14 Let X,. ..., X, be a random sample from f(x; 6) = ¢, ,2(x).
l.{ecall glat the maximum-likelihood estimators of u and o? are, respec-
tively, X and (1/n) ¥ (X; — X)®. (See Example 6.) Now &[X] = u; so
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X is an unbiased estimator of p, and hence the mean-squared error of
X =&,[(X — w?]l=var [X] =0%/n. We know that &[8%]=02; so

&ol(1/n) Y. (X; — X)*1 = [(n — D/n)&,[[1/(n — DI Y. (X; — X)?]
= [(n — 1)/n)&,[8?] = [(n — 1)/n]o>.

Hence the maximum-likelihood estimator of o2 is not unbiased. The
mean-squared error of (1/n) > (X; — X)? is
&oll(1/n) Y (X; — X)? — ¢*1?]
= var [(1/n) ), (X; — X)?] + {6? — &[(1/m Y (X; — X)*]}
N2 —1 2
_ 21) var [8%] + (02 _z 02)
n n

_1\2 _ 4
=(n 21) l(u4_n 30_4)+ ’

n n n-—1

3,9

using Eq. (10) of Theorem 2 in Chap. VI /11!

Remark For the most part, in the remainder of this book we will take
the mean-squared error of an estimator as our standard in assessing the
goodness of an estimator. /1]

3.3 Consistency and BAN

In the previous subsection we defined the mean-squared error of an estimator
and the property of unbiasedness. Both concepts were defined for a fixed
sample size. In this subsection we will define two concepts that are defined
for increasing sample size. In our notation for an estimator of 7(8), let us use
T, = ¢,(X,, ..., X,), where the subscript n of ¢ indicates sample size. Actually
we will be considering a sequence of estimators, say T; = ¢,(X,), T, = #,( Xy, X>)
T, = ¢3(Xy, X2, X3), -.., T,=4,(Xy, ..., X,), .... An obvious example is

T,=¢dXys --o» X)=X,=(/n)> X;. Ordinarily the functions ¢, in the
i=1

sequence will be the same kind of function for each n.

When considering a sequence of estimators, it seems that a good sequence
of estimators should be one for which the values of the estimators tend to get
closer to the quantity being estimated as the sample sizeincreases. The following
definitions formalize this intuitively desirable notion of limiting closeness.

Definition 8 Mean-squared-error consistency Let T, T,, ..., T,...
be a sequence of estimators of t(f), where T, = ¢,(X;, ..., X,) is based
on a sample of size n. This sequence of estimators is defined to be a
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mean-squared-error consistent sequence of estimators of ©(f), if and only if
lim &[[T, — 7(6)]*] =0 for all § in ©. 11/

n—* o0

Remark Mean-squared-error consistency implies that both the bias
and the variance of T, approach 0 since &[[T, — (6))*] = var [T}]
+ {1(0) — &I T, )} I

EXAMPLE 15 In sampling from any density having mean g and variance
, let X _(1/n)z X; be a sequence of estimators of u and 87 =

[1/(n — 1)] Z (X, — X,) be asequence of estimators of 6. &[(X, — p)*] =
=1

var [X,] = ¢%/n - 0 as n > c0; hence the sequence {X,} is a mean-squared-
error consistent sequence of estimators of p.

5183 — o) = var [82] = ; (1 — 2= 0*) 0
n n—1
as n— o0, using Eq. (10) of Chap. VI; hence the sequence {82} is a
mean-squared-error consistent sequence of estimators of 6. Note that if
T,= (/)Y (X; — X)?, then the sequence {T,} is also a mean-squared-
error consistent sequence of estimators of o2, i

There is another weaker notion of consistency given in the following
definition.

Definition 9 Simple consistency Let T,, T,,..., T,, ... be a sequence
of estimators of (), where T, = #,(X,, ..., X,). The sequence {T,} is

defined to be a simple (or weakly) consistent sequence of estimators of 7(6)
if for every € > 0 the following is satisfied:

Iim Py[z(0) —e < T, < 1(6) + ¢] =1 for every 0 in ©. /1]

n—* 00

Remark If an estimator is a mean-squared-error consistent estimator,
it is also a simple consistent estimator, but not necessarily vice versa.
PROOF

Po[t() — e < T, < 1(0) + ¢] = P[| T, — 1(6)| < ¢]

= P[[T, — 1(0)]* <] > 1 — &oll T, _2 (O]
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by the Chebyshev inequality. As n approaches infinity, &,[[T, — t(6)]?]
approaches 0; hence lim Py[t1(0) — e < T, < 1(6) + ¢] = 1. 1

n=*cw
We close this subsection with one further large-sample definition.

Definition 10 Best asymptotically normal estimators (BAN estimators)
A sequence of estimators TT, ..., T, ... of 1(f) is defined to be best
asymptotically normal (BAN) if and only if the following four conditions
are satisfied:

(i) The distribution of \/;[T,’," — 7(0)] approaches the normal
distribution with mean 0 and variance o*’(6) as n approaches infinity.
(i) For every ¢ > 0,
lim Py[| T} — 7(#)| >¢e]=0  for each 0 in B.

n=+ o
(ii1) Let {T,} be any other sequence of simple consistent estimators

for which the distribution of \/ ;z—[T,l — 1(8)] approaches the normal dis-
tribution with mean 0 and variance a%(8).
(iv) 63(9) is not less than ¢*’(f) for all 0 in any open interval. ////

Remark The abbreviation BAN is sometimes replaced by CANE,
standing for consistent asymptotically normal efficient. 1]

The usefulness of this definition derives partially from theorems proving
the existence of BAN estimators and from the fact that ordinarily reasonable
estimators are asymptotically normally distributed.

It can be shown that for samples drawn from a normal density with

n
mean p and variance o the sequence Ty =(1/m)) X, =X, forn=1, 2, ...
i=1
is a BAN estimator of u. In fact, the limiting distribution of \/ n(X, — ) is
normal with mean 0 and variance 6%, and no other estimator can have smaller
limiting variance in any interval of y values. However, there are many other
estimators for this problem which are also BAN estimators of y, that is, esti-
mators with the same normal distribution in the limit. For example,

Zn: n=132""s

n

n+1

is a BAN estimator of 4. BAN estimators are necessarily weakly consistent
by (ii) of the definition.
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3.4 Loss and Risk Functions

In Subsec. 3.2 we used mean-squared error of an estimator as a measure of the
closeness of the estimator to 7(8). Other measures are possible, for example,
&ol| T — 2(6)]1,
called the mean absolute deviation. 1n order to exhibit and consider still other
measures of closeness, we Will borrow and rely on the language of decision
theory. On the basis of an observed random sample from some density
function, the statistician has to decide what to estimate 7(f) to be. One might
then call the value of some estimator T = #( Xy, ..., X,) a decision and call the
estimator itself a decision function since it tells us what decision to make. Now
the estimate ¢ of t(0) might be in error; if so, some measure of the severity of
the error seems appropriate. The word *“loss” is used in place of ““error,”
and “loss function” is used as a measure of the “error.”” A formal definition
follows.

Definition 11 Loss function Consider estimating 7(f). Let ¢ denote
an estimate of 7(6). The loss function, denoted by /#(t; 0), is defined to
be a real-valued function satisfying (i) Z(t; 8) > O for all possible estimates
t and all # in © and (ii) 2(¢t; 0) =0 for t = ©(f). £(t; 0) equals the loss
incurred if one estimates 7(#) to be t when 8 is the true parameter value. ////

In a given estimation problem one would have to define an appropriate
loss funiction for the particular problem under study. It is a measure of the
error and presumably would be greater for large error than for small error. We
would want the loss to be small; or, stated another way, we want the error in
estimation to be small, or we want the estimate to be close to what it is estimating.

EXAMPLE 16 Several possible loss functions are:

i) 41t 0) = [t — <O

(i) Z4(t;6) = |t — 1(0)].

|4 if |t—10)] >e¢
(i) 75(156) = {0 if |t — 1(0)] < ¢, where 4 > 0.
(iv) 241 0) = p@)]|t — (O for p() > 0and r > 0.

Z, is called the squared-error loss function, and 7/, is called the absolute-
error loss function. Note that both £, and /, increase as the error t — 7(6)
increases in magnitude. 73 says that you lose nothing if the estimate ¢
is within ¢ units of 7(6) and otherwise you lose amount A. /4 1s a general
loss function that includes both #, and £, as special cases. /1]
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We assume now that an appropriate loss function has been defined for our
estimation problem, and we think of the loss function as a measure of error
or loss. Our object is to select an estimator T = #(X,, ..., X,) that makes
this error or loss small. (Admittedly, we are not considering a very important,
substantive problem by assuming that a suitable loss function is given. In
general, selection of an appropriate loss function is not trivial.) The loss
function in its first argument depends on the estimate t, and ¢ is a value of the
estimator T'; that is, t = #(x, ..., x,). Thus, our loss depends on the sample
Xis-..5 X,. We cannot hope to make the loss small for every possible sample,
but we can try to make the loss small on the average. Hence, if we alter our
objective of picking that estimator that makes the loss small to picking that
estimator that makes the average loss small, we can remove the dependence of
the loss on the sample X;, ..., X,,. This notion is embodied in the following
definition.

Definition 12 Risk function For a given loss function 7(-; ), the risk
function, denoted by £ ,0), of an estimator T = 4 X, ..., X,) is defined
to be

RA0) = &ol¢(T; 0)). (10)

/1
The risk function is the average loss. The expectation in Eq. (10) can be

taken in two ways. For example, if the density f(x; 6) from which we sampled
is a probability density function, then

Eol£(T; 0)] = &l (4(Xy, - .., X,); 0)]
= [ fewn 2 O T s 0) d
Or we can consider the random variable T and the density of T. We get
E4(T; O = [ £ 0012(1)

where f7(t) is the density of the estimator T. In either case, the expectation
averages out the values of x, ..., x,.

EXAMPLE 17 Consider the same loss functions given in Example 16. The
corresponding risks are given by:
(i) &l[T — ©(0)]*], our familiar mean-squared error.
(ii) &[| T — ©(6)|], the mean absolute error.
(ili) A Py[| T — ()| > &)
(iv) pO)el| T — (6)|']. I
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Our object now is to select an estimator that makes the average loss (risk)
small and ideally select an estimator that has the smallest risk. To help meet
this objective, we use the concept of admissible estimators.

Definition 13 Admissible estimator For two estimators T, =
(X, ..., X,)and T, = £(Xys .-+, X,), estimator ¢ is defined to be a

better estimator than ¢, if and only if

R, 0 <R,(0) forallfin©

and
R, (0) < R0 for at least one 6 in 8.

An estimator T = #(X;, ..., X,) is defined to be admissible if and only if
there is no better estimator. /]

In general, given two estimators ¢; and ¢, neither is better than the other;
that is, their respective risk functions as functions of 8, cross. We observed
this same phenomenon when we studied the mean-squared error. Here, as
there, there will not, in general, exist an estimator with uniformly smallest risk.
The problem is the dependence of the risk function on 6. What we might do
is average out 0, just as we average out the dependence on x,, ..., x, when
going from the loss function to the risk function. The question then is: Just
how should 0 be averaged out? We will consider just this problem in Sec. 7
on the Bayes estimators. Another way of removing the dependence of the risk
function on @ is to replace the risk function by its maximum value and compare
estimators by looking at their respective maximum risks, naturally preferring
that estimator with smallest maximum risk. Such an estimator is said to be
minimax.

Definition 14 Minimax An estimator #* is defined to be a minimax
estimator if and only if s1;p 2 #0) < sup 2 (0) for every estimator &£ ////
)

Minimax estimators will be discussed in Sec. 7.

4 SUFFICIENCY

Prior to continuing our pursuit of finding best estimators, we introduce the
concept of sufficiency of statistics. In many of the estimation problems that
we will encounter, we will be able to summarize the information in the sample



300 PARAMETRIC POINT ESTIMATION vir

~
T

Xy, ... X5 That is, we will be able to find some function of the sample that
tells us just as much about 6 as the sample itself. Such a function would be
sufficient for estimation purposes and accordingly is called a sufficient statistic.

Sufficient statistics are of interest in themselves, as well as being useful in
statistical inference problems such as estimation or testing of hypotheses.
Because the concept of sufficiency is widely applicable, possibly the notion
should have been isolated in a chapter by itself rather than buried in this chapter
on estimation.

4.1 Sufficient Statistics

Let Xy,..., X, be arandom sample from some density, say f(-; 6). We defined
a statistic to be a function of the sample; that is, a statistic is a function with

domain the range of values that (X;, ..., X,) can take on and counterdomain
the real numbers. A statistic T = £ X, ..., X,) is also a random variable; it
condenses the n random variables X, X,, ..., X, into a single random variable.

Such condensing is appealing since we would rather work with unidimensional
quantities than n-dimensional quantities. We shall be interested in seeing if we
lost any “information” by this condensing process. The condensing can also be
viewed another way. Let X denote the range of values that (X, ..., X,) can
assume. For example, if we sample from a Bernoulli distribution, then X is a
collection of all n-dimensional vectors with components either O or 1; or if we
sample from a normal distribution, then X is an n-dimensional euclidean space.
Now a statistic induces or defines a partition of X. (Recall that a partition of X
is a collection of mutually disjoint subsets of X whose union is X.) Let
#(-, ..., *) be the function corresponding to the statistic T = #(Xy, ..., X,).
The partition induced by #(-, ..., *) is brought about as follows: Let ¢, denote
any value of the function #(-, ..., -); that subset of X consisting of all those

points (X, ..., x,) for which #(x;, ..., x,) =, is one subset in the collection
of subsets which the partition comprises; the other subsets are similarly formed
by considering other values of #(-, ..., ©). For example, if a sample of size 3

is selected from a Bernoulli distribution, then X consists of eight points
(0,0,0), (0,0, 1),(0,1,0), (1,0,0), (0, 1, 1), (1,0, 1), (1, 1, 0), (1, 1, 1). Let
H(x,, X3, X3) = X; + X5 + X5; then (-, -, -) takes on the values 0, 1, 2, and 3.
The partition of X induced by #(-, -, -), consists of the four subsets {(0, 0, 0)},
{(0,0, 1), (0, 1, 0), (1, 0, 0)}, {(0, 1, 1), (1, 0, 1), (1, 1, O}, and {(1, 1, 1)} corre-
sponding, respectively, to the four values 0, 1, 2, and 3 of #(-, -, *). A statistic
then is really a condensation of X. In the above example, if we use the statistic
#(-, -, *), we have only four different values to worry about instead of the eight
different points of X.
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Several different statistics can induce the same partition. In fact, if
£+, ..., ") is a statistic, then any one-to-one function of ¢ has the same partition
as ¢ In the example above £(x;, Xz, X3)=6(x; + x; + x3)%, or even
£(X), Xa, X3) = X3 + x2 + x3, induces tl.le same p.arti.tion as £(x;, X,, X3) =
X, + x; + x3. Oneof the reasons for using statistics is that they do condense
X and if such is our only reason for using a statistic, then any two statistics with
the same partition are of the same utility. The important aspect of a statistic
is the partition of X that it induces, not the values that it assumes.

A sufficient statistic is a particular kind of statistic. It is a statistic that
condenses X in such a way that no “information about 6 is lost. The only
information about the parameter 6 in the density (- ; 0) from which we sampled
is contained in the sample X, ..., X,; so, when we say that a statistic loses no
information, we mean that it contains all the information about 6 that is con-
tained in the sample. We emphasize that the type of information of which we
are speaking is that information about 6 contained in the sample given that we
know the form of the density; that is, we know the function f(-; *) in f(-; 0),
and the parameter 6 is the only unknown. We are not speaking of information
in the sample that might be useful in checking the validity of our assumption
that the density does indeed have form f(-; ).

Now we shall formalize the definition of a sufficient statistic; in fact, we
shall give two definitions, namely, Definitions 15 and 16. It can be argued that
the two definitions are equivalent, but we will not do it.

Definition 15 Sufficient statistic Let X, ..., X, be a random sample
from the density f(-; 6), where 8 may be a vector. A statistic S =
A Xy, ..., X,) is defined to be a sufficient statistic if and only if the con-
ditional distribution of Xy, ..., X, given S = s does not depend on 6 for
any value s of §. /]!

Note that we use S = «(X;, ..., X,), instead of T = #(X;, ..., X,), to
denote a sufficient statistic. Some care is required in interpreting the condi-

tional distribution of X, ..., X, given S = s, as Example 19 and the paragraph
preceding it demonstrate.

The definition says that a statistic S = s(X;, ..., X,) is sufficient if the
conditional distribution of the sample given the value of the statistic does not
depend on 6. The idea is that if you know the value of the sufficient statistic,
then the sample values themselves are not needed and can tell you nothing more
about 0, and this is true since the distribution of the sample given the sufficient

statistic does not depend on 6. One cannot hope to learn anything about 8 by
sampling from a distribution that does not depend on 6.
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EXAMPLE 18 Let X;, X,, X3 be a sample of size 3 from the Bernoulli
distribution. Consider the two statistics S =a(X;, X,, X3) =X,
+ X, + X;and T = 4X;, X,, X3)= X, X, + X5. We will show that
a(+, -, -)issufficient and #(:, *, -)is not. This first column of Fig. 6 is X.

Values of Values of
S T fx1.X2.X318 fX1.X2,X3IT

0, 0, 0) 0 0 1 1—p

b ] 1 +p

1 1—p

0,0,1) 1 1 3 T 525
1 P

©0,1,0) 1 0 T1p
1 P

(1,0,0) 1 0 3 m
1 P

©,1,1) 2 1 3 P
1 P

(1,0,1) 2 1 3 T+ 2p
1 P

1,1,0) 2 1 3 T
a,1,1) 3 2 1 1

FIGURE 6

The conditional densities given in the last two columns are routinely
calculated. For instance,

le,Xz,X3IS=1(O9 19 0|1)=P[X1 =0,X2 = 1,X3 =0|S= 1]
B P[S =1]
_-ppi-—p)_ 1

(i)p(l —p)’ 3
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and

fx, %0, x317=0(0 1 0]0) = P[T = 0]

_ a-p’p __ P _p
1-p’+20-p)’p 1—p+2p 1+p

The conditional distribution of the sample given the values of S is inde-
pendent of p;so Sisa sufficient statistic ; however, the conditional distribu-
tion of the sample given the values of Tdepends on p; so Tis not sufficient.
We might note that the statistic T provides a greater condensation of X
than does S. A question that might be asked is: Is there a statistic which
provides greater condensation of X than does S which is sufficient as well?
The answer is “no”” and can be verified by trying all possible partitions of
X consisting of three or fewer subsets. il

In the case of sampling from a probability density function, the meaning
of the term “the conditional distribution of Xj, ..., X, given S =5 that
appears in Definition 15 may not be obvious since then P[S = s] =0. We can
give two interpretations. The first deals with the joint cumulative distribution
function and uses Eq. (9) of Subsec. 3.3 in Chap. IV; that is, to show that
S = o(X;, ..., X,) is sufficient, one shows that P[X, < x;; ...; X, <x,|S =s]
is independent of 6, where P[X, < x;; ...; X,<x,|S=s] is defined as in
Eq. (9) of Chap. IV. The second interpretation is obtained if a one-to-one
transformation of X, X,, ..., X, to,say, S, Y,, ..., Y, is made, and then it is
demonstrated that the density of Y,, ..., Y, given § = sis independent of . If
the distribution of Y,, ..., ¥, given S = s is independent of 6, then the distribu-
tionof S, Y,, ..., Y, given § = s is independent of 8, and hence the distribution

of Xi, X3, ..., X, given S = s is independent of 6. These two interpretations
are illustrated in the following example.

EXAMPLE 19 Let X, ..., X, be a random sample from f(-; 6) = bo. 1(*);
that is, Xy, ..., X, is a random sample from a normal distribution with
mean 0 and variance unity. In order to expedite calculations, we take
n=2. Llet us argue that § = o(X;, X;)= X, + X, is sufficient using
the second interpretation above. The transformation of (X1, Xp) to
(S, Y;), where S=X, + X, and Y, = X, — X, is one-to-one; so it
suffices to show that fy, s(v,|s) is independent of §. Now

_ Jras00:5)  fr,(0)f505)
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(using the independence of X, + X, and X, — X, that was proved in
Theorem 8 of Chap. VI), but

1 -
Jr,(y2) = = ¢~ 202%/2)

NEZNE

since

Y, ~ N(, 2),

which is independent of 6.

The necessary calculations for the first interpretation above are
less simple. We must show that P[X; < X;; X, < x,|S =5s] is inde-
pendent of 6. According to Eq. (9) of Chap. 1V,

P[X: <x1; Xs <Xx,|S=s]=lim P[X, <x1; X; <X,|s—h<S <s+h]
h—0

Without loss of generality, assume that x; < x,. We have the following
three cases to consider: (i) s < x;, (il) x; <s <x,, and (i) x, <s.
P[X; < x;; X» < X,|S = s] is clearly 0 (and hence independent of 6) for
case (iii). Let us consider (i). [Case (ii) is similar.]

P[X1 le; X2 SX2ls=S]

=1lim P[X; < X; Xy, <x,|s —h <SS <s+ h]
h—0

1
llm—P[Xl le;Xzsxz;S—h<S<S+h]
_h—»02h

1
lim—Pls—h<S<s+h
lim 57 PLs s+l

1
limz—P[Xlle;XZsz;s—h<S<s+h]

_hoo 2k
Ss(s)

Note that (see Fig. 7)

st+h—u

lim 1 I fx (@) fx,(v) dv du

h—0 2h s+h—x2 “s—h—u

1
slimz—hP[Xlle;Xzsxz;s—h<X1+X2<s+h]

h—0
1 X1 s+h—u
lim — v) dv du,
<timy [ [ @fe®
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FIGURE 7

and hence

1
limz—hP[Xlgxl;Xzsxz;s—h<X1+X2<s+h]
h—o0

= _[sx:x Sx (W) fx (s — u) du.

Finally, then,
P[X, <x1; X, <x,5|8 =5]

_ I:‘-xz Jx, (W) fx,(s — u) du
Is(8)

J‘x1 (1/275)8 = 4[u2~206+6% + (5~ u)2— 2(s—u)8 +62] du

s§— X2
(1 /\/E)e—ﬂ(s-za)/ﬁ]z

_(13/28) it e
(1 /\/i)e— $(s2/2) ’

which is independent of 6. /1
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Definition 15 of a sufficient statistic is not very workable. First, it does
not tell us which statistic is likely to be sufficient, and, second, it requires us to
derive a conditional distribution which may not be easy, especially for con-
tinuous random variables. In Subsec. 4.2 below, we will present a criterion
that may aid us in finding sufficient statistics.

Although we will not so argue, the following definition is equivalent to
Definition 15.

Definition 16 Sufficient statistic Let X, ..., X, be a random sample
from the density f(-; ). A statistic S = s(X;, ..., X,) is defined to be a
sufficient statistic if and only if the conditional distribution of T given S
does not depend on 6 for any statistic T = #(Xq, ..., X,). /1]

Definition 16 is particularly useful in showing that a particular statistic
is not sufficient. For instance, to prove that a statistic T' = #(Xy, ..., X,) is
not sufficient, one needs only to find another statistic T = #(X}, ..., X,) for
which the conditional distribution of T given T’ depends on 6.

For some problems, no single sufficient statistic exists. However, there
will always exist jointly sufficient statistics.

Definition 17 Jointly sufficient statistics Let X, ..., X, be a random
sample from the density f(-; 0). The statistics Sy, ..., S, are defined to be
jointly sufficient if and only if the conditional distribution of X, ..., X,
given S; = sy, ..., S, = s, does not depend on 6. 1

The sample Xj, ..., X, itself is always jointly sufficient since the condi-
tional distribution of the sample given the sample does not depend on 6. Also,
the order statistics Y;, ..., Y, are jointly sufficient for random sampling. If the
order statistics are given, say, by (Y¥; = y;, ..., Y, = y,), then the only values
that can be taken on by (Xi, ..., X,) are the permutations of y,, ..., y,. Since
the sampling is random, each of the n! permutations is equally likely. So, given
the values of the order statistics the probability that the sample equals a partic-
ular permutation of these given values of the order statistics is 1/n!, which is
independent of 6. (Sufficiency of the order statistics also follows from Theorem
5 below.)

If we recall that the important aspect of a statistic or set of statistics is the
partition of X that it induces, and not the values that it takes on, then the
validity of the following theorem is evident.
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Theorem 3 If S; = a(Xis -5 Xa), oo, S, = o(Xy, ..., X,) is a set of
jointly sufficient statistics, then any set of one-to-one functions, or trans-
formations, of Sy, - - -» Sy is also jointly sufficient. i

For example, if >, X; and ) X} are jointly sufficient, then X and
T (X, — X7 =Y x?~ nX? are also jointly sufficient. Note, however, that
X2 and Y (X; — X)* may not be jointly sufficient since they are not one-to-one
functions of ¥ X, and ), X7.

We note again that the parameter 0 that appears in any of the above three
definitions of sufficient statistics can be a vector.

4.2 Factorization Criterion

The concept of sufficiency of statistics was defined in Definitions 15 to 17 above.
In many cases, a relatively easy criterion for examining a statistic or set of
statistics for sufficiency has been developed. This is given in the next two
theorems, the proofs of which are omitted.

Theorem 4 Factorization theorem (single sufficient statistic) Let X,
X, ..., X, be a random sample of size n from the density f(-; 6), where
the parameter 6 may be a vector. A statistic S = 4(X|, ..., X,)is sufficient

if and only if the joint density of X, ..., X,, whichis [] f(x;; 6), factors as
i=1

Sxe, o x, X0 oo Xns 0) = g(o(xXys .. ., X0); Dh(xy, ..., X,)
= g(s; Oh(xy, ..., x,), (11
where the function A(x, ..., x,) is nonnegative and does not involve the

parameter 6 and the function g(s(x;, ..., x,); ) is nonnegative and
depends on xy, ..., x, only through the function (-, ..., ). 111}

Theorem 5 Factorization theorem (jointly sufficient statistics) Let X,
X35 ..., X, be a random sample of size n from the density f (-; 0), where
the parameter 6 may be a vector. A set of statistics S; = 4,(X,, ..., X,),
o5 Sy = 3(Xy, ..., Xy)is jointly sufficient if and only if the joint density
of Xy, ..., X, can be factored as

le,-..,Xn(xl’ cees Xy
=G(a1(X1s oo Xads ooy 9X15 o, X)) OB(Xy, ..., X)) (12)
=g(sl9 cees Sy g)h(xl, veey x,,),
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where the function h(x,, ..., x,) is nonnegative and does not involve the
parameter 6 and the function g(s,, ..., s,; 0) is nonnegative and depends
on Xy, ..., X, only through the functions 4,(*, ..., ), .-+, 9,(*5 -+, *)- /]

Note that, according to Theorem 3, there are many possible sets of suffi-
cient statistics. The above two theorems give us a relatively easy method for
judging whether a certain statistic is sufficient or a set of statistics is jointly
sufficient. However, the method is not the complete answer since a particular
statistic may be sufficient yet the user may not be clever enough to factor the
joint density as in Eq. (11) or (12). The theorems may also be useful in discover-
ing sufficient statistics.

Actually, the result of either of the above factorization theorems is in-
tuitively evident if one notes the following: If the joint density factors as
indicated in, say, Eq. (12), then the likelihood function is proportional to
9(sy> ..., s; 0), which depends on the observations x;, ..., x, only through
4y - - -, o, [the likelihood function is viewed as a function of 0, so h(xy, ..., x,)
is just a proportionality constant], which means that the information about
0 that the likelihood function contains is embodied in the statistics (-, ..., *),
cees 0y iy )

Before giving several examples, we remark that the function (-, ..., -)
appearing in either Eq. (11) or (12) may be constant.

EXAMPLE 20 Let X|,..., X, be arandom sample from the Bernoulli density
with parameter 0; that is,

f(x; 0) =01 — 0% ,(x) and 0<O<I.

Then
il;ll f(x;50) = 1;11 0%(1 — 0)! " g, 1)(x)
= (1 — Gy F ™ ,1311{0, 1)(X0)-

If we take gzxi(l _6)" —Xx; as g(d(xl, ey xn)’ 6) and DII{O’IJ(xi) as

h(xy, -..» X,) and set os(xy, ..., x,) =D x;, then the joint density of
Xy, ..., X, factors as in Eq. (11), indicating that S = 4(Xy, ..., X,) =2 X;
is a sufficient statistic. | 1!
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EXAMPLE 21 Let X, ..., X, be a random sample from the normal density
with mean p and variance unity. Here the parameter is denoted by u

instead of . The joint density is given by

le, ...,X,,(xl’ R x,,; #) = iLII ¢u, l(xi)

n ] 1 2]
= —_— —_— - xi _

.-1;11 o P [ 5 1)

S .

=0 | 72 PR ]
_ 1 [ 1 2 _ 2]
—WGXP_ Z(Zx' ZMZx,-+nu)

=a£)—nﬁexp (usz—'éﬂz) oxp (_"Z_Lx'?)'

If we take h(xy, . . ., X,) = [1/(27)"*] exp (—%) xP) and g(o(xy, ..., X,); ) =
exp [u ) x; — (n/2)p*], then the joint density has been factored as in
Eq. (11) with o(x,, ..., x,) =) X;; hence ) X; is a sufficient statistic.
(Recall that X, is also sufficient since any one-to-one function of a suffi-
cient statistic is also sufficient.) 1]

EXAMPLE 22 Let X,, ..., X, be a random sample from the normal density
¢,,.2(+). Here the parameter 0 is a vector of two components; that is,
0 = (u, 6). The joint density of Xy, ..., X, is given by

Hneto= | o |5 (3]

e 422

g
= 1 o "ex -_ _.l. (Z 2 2
G o |~ 5 2w+ )]
so the joint density itself depends on the observations x,, ..., x, only
through the statistics a,(xy, ..., X,) =Y x; and 3y (Xpy oees Xg) = 3 X2

that is, the joint density is factored as in Eq. (12) with h(xy, ..., x,) = 1.
Hence, » X; and ) X} are jointly sufficient. It can be shown that

X, and 822 =[1/(n — D1, (X; — X)? are one-to-one functions of Y X;
and Z X?;s0 X, and 82 are also jointly sufficient. 1
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EXAMPLE 23 Let X,, ..., X, be a random sample from a uniform distribu-
tion over the interval [0y, 0,]. The joint density of Xy, ..., X, is given by

n
Txey oy 2, (X155 X3 0y,0,) = D [01,02](";)

= ( _ 9 )n ]._[ 1[01,02](xz)

1 .
(6, — 6,)" Tto, yuf ¥ 1) 151, 023(0n)s

where
Yy =min [x,, ..., X,] and Yo =max [xq, ..., X,]-

The joint density itself depends on x,, ..., x, only through y; and y,;
hence it factors as in Eq. (12) with A(x;, ..., x,) = 1. The statistics Y,
and Y, are jointly sufficient. Note that if we take 6, =6 and 6, =0 + 1,
then Y, and Y, are still jointly sufficient. However, if we take ; = 0 and
6, = 6, then our factorization can be expressed as

1 .m
Sy XXty s X3 0) = " _1__[11[0, a(*3)

= EEI[O,B](yH)I[OpJ’n](yl)'

Takmg g(d(xl, MR xn); 6) = (1/0”)1[0, 0](yn) and h(xl’ e xn) = I[O,yn](yl)’
we see that Y, alone is sufficient. /]

The factorization criterion of Eqs. (11) and (12) is primarily useful in
showing that a statistic or set of statistics is sufficient. It is not useful in
proving that a statistic or set of statistics is not sufficient. The fact that we
cannot factor the joint density does not mean that it cannot be factored; it could
be that we are just not able to find a correct factorization.

If we go back and look through our examples on maximum-likelihood
estimators (see Examples 5 to 8), we will see that all the maximum-likelihood
estimators that appear there depend on the sample Xj, ..., X, through sufficient
statistics. This is not something that is characteristic of the relatively simple
examples we had given but something that is true in general.

Theorem 6 A maximum-likelihood estimator or set of maximum-
likelihood estimators depends on the sample through any set of jointly
sufficient statistics.
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PROOF If Sl = dl(Xl’ MR Xn)’ coes Sie= 51,(X1, ceey X,,) are jointly
sufficient, then the likelihood function can be written as

L@O;x,,..., Xy
- 11160
= (51 (Xgs o v> Xn)s -+ o5 (X5 -+ - x,); Oh(xy, ..., X,)-

As a function of 8, L(f; x,, ..., x,) will have its maximum at the same
place that g(s,, ..., 5x; ) has its maximum, but the place where g attains
jts maximum can depend on Xy, ..., x, only through s, ..., 5, since g

does. I

We might note that method-of-moment estimators may not be functions
of sufficient statistics. See Examples 4 and 23.

4,3 Minimal Sufficient Statistics

When we introduced the concept of sufficiency, we said that our objective was to
condense the data without losing any information about the parameter. We
have seen that there is more than one set of sufficient statistics. For example,
in sampling from a normal distribution with both the mean and variance un-
known, we have noted three sets of jointly sufficient statistics, namely, the sample
X,, ..., X, itself, the order statistics Y, ..., Y,, and X and 8. We naturally
prefer the jointly sufficient set X and 82 since they condense the data more than
either of the other two. (Note that the order statistics do condense the data.)
The question that we might ask is: Does there exist a set of sufficient statistics
that condenses the data more than X and $2? The answer is that there does
not, but we will not develop the necessary tools to establish this answer. The
notion that we are alluding to is that of a minimum set of sufficient statistics,
which we label minimal sufficient statistics.

We noted earlier that corresponding to any statistic is the partition of X
that it induces. The same is true of a set of statistics; a set of statistics induces
a partition of X. Loosely speaking, the condensation of the data that a statistic
or set of statistics exhibits can be measured by the number of subsets in the
partition induced by that statistic or set of statistics. If a set of statistics has
fewer subsets in its induced partition than does the induced partition of another
set of statistics, then we say that the first statistic condenses the data more than
the latter.  Still loosely speaking, a minimal sufficient set of statistics is then a
sufficient set of statistics that has fewer subsets in its partition than the induced
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partition of any other set of sufficient statistics. So a set of sufficient statistics
is minimal if no other set of sufficient statistics condenses the data more. A
formal definition is the following.

Definition 18 Minimal sufficient statistic A set of jointly sufficient
statistics is defined to be minimal sufficient if and only if it is a function of
every other set of sufficient statistics. /1]

Like many definitions, Definition 18 is of little use in finding minimal
sufficient statistics. A technique for finding minimal sufficient statistics has
been devised by Lehmann and Scheffé [19], but we will not present it. If the
joint density is properly factored, the factorization criterion will give us minimal
sufficient statistics. All the sets of sufficient statistics found in Examples 20
to 23 are minimal.

4.4 Exponential Family

Many of the parametric families of densities that we have considered are
members of what is called the exponential class, or exponential family, not to be
confused with the negative exponential family of densities which is a special case.

Definition 19 Exponential family of densities A one-parameter family
(6 is unidimensional) of densities f(-; #) that can be expressed as

£(x; 6) = a(@)b(x) exp [c(B)d(x)] (13)

for —oo < x < 0, for all 8 € ©, and for a suitable choice of functions
a(*), b(+), ¢(-), and d(-) is defined to belong to the exponential family or
exponential class. I/

EXAMPLE 24 If f(x; 0) = 8% I, .(x), then f(x; 0) belongs to the expo-
nential family for a(f) = 0, b(x) = I o, »)(X), ¢(f) = —0, and d(x) = x in
Eq. (13). /]

EXAMPLE 25 If f(x; 6) = f(x; A) is the Poisson density, then

e *)x

x!

f(x; A) = I, 1,...}(x)

1
= e—l(; Lo, 1, ___}(x)) exp (x log 2)
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In Eq. (13), we can take a(d) = e™%, b(x) = (1/xD;o, 1,..,(9), o(2) = log 4
and d(x) = x; so f(x; 4) belongs to the exponential family. )

Remark If f(x; 8) = a(6)b(x) exp [c(6)d(x)], then
1 fxs 0 = @) I bxd | exp e 3, dx |
and hence by the factorization criterion Y d(X;) is a sufficient statistic. ////

" The above remark shows that, under random sampling, if a density belongs
to the one-parameter exponential family, then there is a sufficient statistic. In
fact, it can be shown that the sufficient statistic so obtained is minimal.

The one-parameter exponential family can be generalized to the k-param-
eter exponential family.

Definition 20 k-parameter cxponential family A family of densities
S(; 64, ..., 0y) that can be expressed as

k
S(x; 04, ..., 0) = a0y, ..., 0)b(x) exp .Zlcj(ﬂl, ey 0)d (%) (14

for a suitable choice of functions a(-, ..., -), b(*), ¢;(*, ..., *), and di(-),
J=1,..., k, is defined to belong to the exponential family. I/

In Definition 20, note that the number of terms in the sum of the exponent
is k, which is also the dimension of the parameter.

EXAMPLE 26 Iff(x;0,,0,) = ¢, ,2(x), where (64,0,) = (4, 0),thenf(x;0,,0,)
belongs to the exponential family.

1 — u\ 2T
500,09 = ——exp | -3 (£
/2o 2 o i
1 1 u2) 1
= exp | — = S )exp | —— x2 4 #*
 2no p( 2 o? p\ 262~ +0'2x)'

Take a(y, o) = (1//2n0) exp (-3 - y?/o?), b(x) =1, ¢,(u, 0) = —1/202,
¢, 0) = pfo?, dy(x) = x?, and dy(x) = x to show that b,,.2(X) can be
expressed as in Eq. (14). | i
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EXAMPLE 27 If

f(x; 64, 0,) = xorl(l - x)oz—ll(o,n(x),

B(6,, 0,)
then

Sfx; 04, 0,) = Io,1, (x) exp[(0; — 1) log x + (6, — 1) log(1l — x)];

1
B(6;, 62)
so f(x; 0,, 0,) belongs to the exponential family with a(f,, 6,) =
1/B(O, 03), b(x)=1o,1y(x), c(@)=0;,—-1, c;(0)=0,—1, di(x)=
log x, and d,(x) =log (1 — x). 111}

k
Remark Iff(x;0;,...,0,) =a(b,...,0)b(x)exp D c, 0y, ..., 0)d;(x),
i=1

then, under random sampling,

i]'—_-llf(xi; 613 LI Y Bk)

k

=a"(0;, ..., 0) [;[:Il b(x,-)] exp [Z ci(By, ..., 0%) igldj(xi)],

ji=1
n n
and so by the factorization criterion Y di(X;), ..., Y. di(X;)isasetof
i=1 i=1

jointly sufficient statistics. Y dy(X}), ..., Y. di(X;) are in fact minimal
sufficient statistics. iy

EXAMPLE 28 From Example 27, we see that ) log X; and ) log(l — X))
i=1 i=1

are jointly minimal sufficient when sampling from a beta density. I/

Our main use of the exponential family will not be in finding sufficient
statistics, but it will be in showing that the sufficient statistics are complete, a
concept that is useful in obtaining “best” estimators. This concept will be
defined in Sec. 5.

Lest one get the impression that all parametric families belong to the
exponential family, we remark that a family of uniform densities does not
belong to the exponential family. 1In fact, any family of densities for which the
range of the values where the density is nonnegative depends on the parameter 0
does not belong to the exponential class.
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5 UNBIASED ESTIMATION

Since estimators with uniformly minimum mean-squared error rarely exist, a
reasonable procedure is to restrict the class of estimating functions and look
for estimators with uniformly minimum mean-squared error within the restricted
class. One way of restricting the class of estimating functions would be to
consider only unbiased estimators and then among the class of unbiased esti-
mators search for an estimator with minimum mean-squared error. Con-
sideration of unbiased estimators and the problem of finding one with uniformly
minimum mean-squared error are to be the subjects of this section.

According to Eq. (9) the mean-squared error of an estimator T of 1(6)
can be written as

Eol[T — w01 = vary [T]1+ {2(6) — &,[TT}?,

and if T is an unbiased estimator of ©(f), then &,[T]= 1(f), and so
&ol[T — ©(6))’] = var, [T]. Hence, seeking an estimator with uniformly
minimum mean-squared error among unbiased estimators is tantamount to
seeking an estimator with uniformly minimum variance among unbiased
estimators.

Definition21 Uniformly minimum-variance unbiased estimator (U MVUE)
Let Xy, ..., X, be a random sample from f(-; 6). An estimator
T* = #*(Xy, ..., X,) of 1(6) is defined to be a uniformly minimum-variance
unbiased estimator of 1(0) if and only if (i) &,[T*] = 7(0), that is, T* is
unbiased, and (ii) vary [T*] < var, [T] for any other estimator T =
H Xy, ..., X,) of 7(6) which satisfies &,[T] = 1(6). /1]

In Subsec. 5.1 below we will derive a lower bound for the variance of
unbiased estimators and show how it can sometimes be useful in finding an
UMVUE. In Subsec. 5.2 we will introduce the concept of completeness and

show how it in conjunction with sufficiency can sometimes be used to find an
UMVUE.

5.1 Lower Bound for Variance

Let X_l_, ..., X, be arandom sample from f(- ; 6), where ¢ belongsto ©. Assume
that © is a subset of the real line. Let T = #(Xy, ..., X,) be an unbiased

estimator of 7(f). We will consider the case where S(-; 0) is a probability
density function; the development for discrete density functions is analogous.
We make the following assumptions, called regularity conditions:

. %,
)] Py log f(x;0) exists for all x and all 6.
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(if) a% [ Hl f(x;; 0) dx, -+ dx,
= [ o T s 0 dxs - s,
(iii) 6_69 ff(xl, s x,,)-f[ fCx; 0y dx, - dx,
21
=f”'fi(xl’“"xn)a%iljlf(xi;ﬂ)dxl---dx,,.

0 2 —
(iv) 0< @99[[%10gﬂX; 6)] ]< oo for all 8 in ©.

Theorem 7 Cramér-Rao inequality Under assumptions (i) to (iv)

above

[7' ()1
ng,,[[% log f(X; 0)] 2]

where T = #(X;, ..., X,) is an unbiased estimator of 7(f). Equality
prevails in Eq. (15) if and only if there exists a function, say K(f, n),
such that

vary [T] >

(15)

n 9
Y. 35 108/ (xi3 0) = KO, Ml 4(xy, .., x) = w(O)) (16)

Equation (15) is called the Cramér-Rao inequality, and the right-hand side
is called the Crameér-Rao lower bound for the variance of unbiased estimators
of ©(0).

PROOF |
(0 =@ = [ [t ) T 501, i,
P O e Lljlf(xi; 9)] dx, - dx,

— %(0) a%jfljl Lf(x; 6) dxi]
=f...f¢(x1,...,x,,)a% Lljlf(xi;e)] dx, - dx,

0 [ [ L]jlf(x‘; e)] dx, - dx,
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=J'...f[;(xl,...,xn)—t(ﬂ)]%[ D ]dxl - dx,

= f j [£(%y - - r(e)][ log n f(x;; 9)]
x f]f(x;;e)dxl - dx,
i=1

=<3’0[[4‘(X1,...,X,,) 1:(ﬁ’)][ 1ogﬂf (X”G)H

Now by the Cauchy-Schwarz inequality
0
[T < Gl &4 Xys ..., Xn) — 1(6)]2]@"9[[ log l_[ f(X;; 6)] ]

or

['(0)]°
p [(;@ log [1 f(x,,a)) ]

varg [T] =

>

but

s|[Sroe ] s0xs0)| | = [[ 3, roerxan)]

ZX,: [[—logf(X,, 6)] -666 log f(X ;3 6)]]

é”o[[% log f(X; 9)] 2],

using the independence of X; and X; and noting that
0 _ 8 .

0 d d
= [3g/ s O dx = = [ 7(x; 0) dx = () = 0.
The inequality in the Cauchy-Schwarz inequality becomes an
equality if and only if one function is proportional to the other; in our case
0
this requires that —log ]_[ f(x;; 6) be proportional to 4(x;, ..., X,) — t(6)

00
or that there exists K = K(B, n) such that

0 n
55108 L]Jl f(xy: 6)] = K@, n)[#(xy, ..., x,) — 1(O)]. !
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The regularity conditions, which were stated for probability density
functions, can be modified for discrete density functions, leaving the statement
of the theorem unchanged.

The theorem has two uses: First, it gives a lower bound for the variance
of unbiased estimators. An experimenter using an unbiased estimator whose
variance was close to the Cramér-Rao lower bound would know that he was
using a good unbiased estimator. Second, if an unbiased estimator whose
variance coincides with the Cramér-Rao lower bound can be found, then this
estimator is an UMVUE. Equation (16) aids in finding an estimator whose
variance coincides with the Cramér-Rao lower bound. In fact, if there exists a
T* = £*(X,, ..., X,) such that

9
; 35108/ Gxi3 0) = KO, [ *Gx, .., %) = *(O)]

for some functions K(6, n) and t*(6), then T* is an UMVUE of 7*(0).
EXAMPLE 29 Let X;, ..., X, be a random sample from f(x; 6) =

0e™ %I o »y(x). Take 7(f) = 0. It can be shown that the regularity con-
ditions are satisfied. 7'(0) =1; hence

1
ng,,[[% log f(X: 6)] 2] |

0
Note that a%logf(x; f) = a—g(log 6 —6x) =1/0 — x, and so

var, [T] =

fb‘”o[[a%logf(X; 9)]2] = é‘”a[(% — )2] = var [X]= (%

Hence, the Cramér-Rao lower bound for the variance of unbiased esti-
mators of 8 is given by

2

1
var, [T] Z;la-/e—z)= n

Similarly the Cramér-Rao lower bound for the variance of un-
biased estimators of t(0) = 1/0 is given by

[@OF 1
n(1/6%)  nd*

var, [T] >
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The left-hand side of Eq. (16) is

n

5. o log f i 0) = 5.~ (log 0 - ox) =3 (5-%) = —n(=—3)

By taking K(6, n) = —n and utilizing the result of Eq. (16), we see that
X, is an UMVUE of 1/6 since its variance coincides with the Cramér-Rao

lower bound. 1

EXAMPLE 30 Let X,, ..., X, be a random sample from f(x; 6) =f(x; ) =
e **/x! forx=0,1,2,....

——Alx

0
;1 logf(x; A) ——log

X
= — — —_ ! =—1 —_
61( A+ xlog A —logx!) ~l—/1

Therefore

o[ [Zoesx | =8 [(5-1) | =z 81 - 7

=Ai2var[X]——A=

>-'lr-~

and so the denominator of the Cramér-Rao lower bound is n/i. Now,
if ©1(A) =e™*=P[X =0], then the Cramér-Rao lower bound for the
variance of unbiased estimators of 7(A) =e™* is given by var [T] >

Ae~*4n, Note that T = (1/n) Y. I,0,(X;) is an unbiased estimator of t(1)
i=1

=™ since S1T] = (1) 3. SlU(X)] = (1) Y™ = €™ Tig(X) =1

if X;=0, and /4 (X) =0 otherwise; so &[l,(X)]=1"P[X,=0]
+0- P[X;#0]=e"* T isthe proportion of observations in the sample
that are equal to 0. var [T]=(1/n)e (1 — e~ *), as compared to the
Cramér-Rao lower bound, which is (1/n)Ae~22,  Note that

(/me™ (1 — e™% = (1/m)Ae™24,

as it should be. An UMVUE of t(A) = e™% is found in Example 34.

We note that ) (8/04) log f(x;; 1) =Y (=1 + x,/A) = (WA — A);
hence, X is the UMVUE of 4 by Eq. (16). 11/
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In general, the Cramér-Rao lower bound is not an attainable lower bound;
that is, there often exists a lower bound for variance that is greater than the
Cramér-Rao lower bound. We will see several such examples in Subsec. 5.2
below. We will see that an UMVUE can exist whose variance does not coincide
with the Cramér-Rao lower bound.

We conclude this subsection with several remarks, the statements of which
are not necessarily mathematically precise. All the same, the remarks are
important and do relate some earlier concepts to the Cramér-Rao lower bound.

Remark = Under certain assumptions involving the existence of second
derivatives and the validity of interchanging the order of certain differen-
tiations and integrations,

2

‘g”“;e log f(X; 9)] 2] = —&, [aaez log f(X; 6)] /1

This remark is computationally useful if the first expectation is more
difficult to obtain than the second. The proof is left as an exercise.

Remark If the maximum-likelihood estimate of 8, say 6 = 3(x,, ..., x,),
is given by a solution to the equation
0
50 log L(B; x4, ..., X log Hf(x,, 0) =0,
i=1
and if T* = #*(Xy, ..., X,) is an unbiased estimator of 7*() whose

variance coincides with the Cramér-Rao lower bound, then #*(x, ..., x,) =
‘t*(9(x1, ey xn)).

PROOF

0
0= ~log [1 fx:: 9) = K@, m[*(xy, ..., x,) — )]
9 8=

by Eq. (16) and the deﬁmtlon of 0. 11/

This remark tells us that under the conditions of the remark a maximum-
likelihood estimator is an UMVUE!

Remark If T* = ¢*(X,, ..., X,) is an unbiased estimator of some

7%(0) whose variance coincides with the Cramér-Rao lower bound, then
f(-; ) is a member of the exponential class; and, conversely, if f(-; 0)
is a member of the exponential class, then there exists an unbiased esti-
mator, say T*, of some function, say t*(0), whose variance coincides with
the Cramér-Rao lower bound. 1
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We will omit the proof of this remark. It relates the Cramér-Rao lower
bound to the exponential family; in fact, it tells us that we will be able to find
an estimator whose variance coincides with the Cramér-Rao lower bound if
and only if the density from which we are sampling is a member of the expo-
nential class. Although the remark does not explicitly so state, the following is
true: There is essentially only one function (one function and then any linear
function of the one function) of the parameter for which there exists an unbiased
estimator whose variance coincides with the Cramér-Rao lower bound. So,
what this remark and the comments following it really tell is: The Cramér-
Rao lower bound is of limited use in finding UMVUEs. It is useful only if we
sample from a member of the one-parameter exponential family, and even then
it is useful in finding the UMVUE of only one function of the parameter.
Hence, it behooves us to search for other techniques for finding UMVUE:s, and
that is what we do in the next subsection.

5.2 Sufficiency and Completeness

In this subsection we will continue our search for UMVUEs. Our first result
will show how sufficiency aids in this search. Loosely speaking, an unbiased
estimator which is a function of sufficient statistics has smaller variance than an
unbiased estimator which is not based on sufficient statistics. In fact, let
f(-; 8) be the density from which we can sample, and suppose that we want to
estimate t(6). Let us assume that T = #(X,, ..., X,) is an unbiased estimator
of 7(0) and that S = 4(X}, ..., X,)is a sufficient statistic. It can be shown that
another unbiased estimator, denoted by T’, can be derived from T such that
(i) T' is a function of the sufficient statistic S and (ii) T’ is an unbiased estimator
of ©(6) with variance less than or equal to the variance of T. Therefore, in our
search for UMVUEs we need to consider only unbiased estimators that are

functions of sufficient statistics. We shall formalize these ideas in the following
theorem.

Theorem 8 Rao-Blackwell Let X, ..., X, be a random sample from
the density f(-; 6), and let S; = 5;(X, ..., X)), ..., Sy = 0(Xy, ..., X,)

be a set of jointly sufficient statistics. Let the statistic T = #(X,, ..., X,)
be an unbiased estimator of t(f). Define T' by T’ = &[T|S,, ..., S.].
Then,

(i) T'is a statistic, and it is a function of the sufficient statistics
Sl,..., Sk- Write T'=&"(Sl,..., Sk)'
(11) &o[T'] = ©(0); that is, T’ is an unbiased estimator of 7(6).
(iii) var, [T'] < var, [T] for every 0, and var, [T'] < var, [T] for
some 0 unless T'is equal to T’ with probability 1.
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PROOF (1) §;, ..., S, are sufficient statistics; so the conditional
distribution of any statistic, in particular the statistic T, given S,, ..., S,
is independent of 6; hence T' = &[T|S,, ..., S;] is independent of 6, and
so T’ is a statistic which is obviously a function of S, ..., S,.
(i) &[T = &4lE[T|Sys . ..» Sill = &,[T] = ©(6) [using Eq. (26) of
Chap. 1V]. (iii) We can write

vary [T] = &[T — &[T’ )1 =&, [(T—T' + T — &,[T'))?]
= &[(T— T')?] + 28,[(T— T'X(T' — &,[T'D)] + var, [T'].
But
Eol(T — T'AT' — &[T'D] = &l6UT — T'XT' — &EJAT'DIS,, ..., S,
and

EUT — T'YT' — E[T'DISy =515 ... S = 5]
={'(s1s .., 5) — EJT'BEAT — T')| Sy =515 -5 Sk = 5]
={l(s;, ..., 8) — EJT'INEIT|S; =58¢5...; 8 = 8]
— &[T |S;=s51; .3 Sk =50
={t'(sp> ..., 8) — ET' B (s, .o 8) — /(515 .- -, )]
=0,

and therefore
vary [T] = &[(T — T')?] + var, [T'] = var, [T'].
Note that var, [T] > var, [T'] unless Tequals T’ with probability 1. ////

For many applications (particularly where the density involved has only
one unknown parameter) there will exist a single sufficient statistic, say
S = 4(X;, ..., X,), which would then be used in place of the jointly sufficient
set of statistics Sy, ..., Sx. What the theorem says is that, given an unbiased
estimator, another unbiased estimator that is a function of sufficient statistics
can be derived and it will not have larger variance. To find the derived statistic,
the calculation of a conditional expectation, which may or may not be easy, is
required.

EXAMPLE 31 Let X,,..., X, be a random sample from the Bernoulli density
f(x; ) =61 —6)'"* for x=0 or 1. X; is an unbiased estimator of
1(0) = 0. We use X; as T = #(X, ..., X,) in the above theorem. ) X;
is a sufficient statistic; so we use S =) X; as our set (of one element) of
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sufficient statistics. According to the above theorem T’ =&[T|S]=
€[X,|Y X;]is an unbiased estimator of 8 with no larger‘ variance t.han
T = X,. Letusevaluate &[T |S]. We first find the conditional distribu-
tion of X, given Y. X; =s. X takes on at most the two values 0 and 1.

P[X1=0|2Xi=5]= i=1
gl

P[X, = 0]- PL; = s] (1— 6)(” : 1)9s(1 _ gyt -

X
P[iXi= ] (:)9‘(1 _gy-s n

P{X,=1]- P[.EZ;X5=S— 1] g - (':__ 1)98*1(1 )

fx=] T [Pea-o "

We note in passing that the conditional distribution of X, given ). X; =
is independent of 8, as it should be. Also, we could have derived the
conditional distribution with much less effort by asking: Given that you
have observed s successes in n trials, what is the probability that the

first trial resulted in a success? This probability is s/n. (See Example 28
in Chap. 1.)

i xeo]-o izt

n

b
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hence,

2 X
i=1

n

The variance of X, is 6(1 — 0), and the variance of T’ is 6(1 — 6)/n; so
for n > 1 the variance of T’ is actually smaller than the variance of

T =X I

T =

Before leaving Theorem 8, two comments are appropriate: First, if the
unbiased estimator T is already a function of only S|, ..., Sy, then the derived
statistic T’ will be identical to T, and hence no improvement in variance can be
expected. Second, although the set of jointly sufficient statistics is an arbitrary
set, in practice one would naturally use a minimal set of jointly sufficient statistics
if such were available.

Theorem 8 tells us how to improve on an unbiased estimator by con-
ditioning on sufficient statistics. For some estimation problems this unbiased
estimator, obtained by conditioning on sufficient statistics, will be an UMVUE.
To aid in identifying those estimation problems for which a derived estimator
is an UMVUE, the concept of completeness of a family of densities is useful.

Definition 22 Complete family of densities Let X, ..., X, denote a
random sample from the density f(-; ) with parameter space 8, and let
T=4¢X,,.... X,) be a statistic. The family of densities of T is defined
to be complete if and only if &[x(T)) =0 for all #e© implies that
P,[+(T)=0]=1 for all § € ©, where x(T)is a statistic. Also, the statistic
T is said to be complete if and only if its family of densities is complete.

I

Another way of stating that a statistic T is complete is the following:
Tis complete if and only if the only unbiased estimator of O that is a function of
Tis the statistic that is identically O with probability 1.

EXAMPLE 32 Let X, ..., X, be a random sample from the Bernoulli
density. The statistic T = X; — X, is not complete since &,[X; — X,] =0

and X; — X, is not 0 with probability 1. Consider the statistic T = }_ X;.
1
Let «(T) be any statistic that is a function of T for which &[«(T)] =0
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for all 6 € O, that is, for 0 <6 < 1. To argue that Tis complete, we must
show that z(f) = 0 for t = 0,1,...,n. Now

e 1= § s0(")01 = oy~ = = oy 5o ora - o

= =0

hence, &,[»(T)]=0forall0 <6 <1 implies that

L)) =0

tgox(t) (:’)a‘ =0

for all a, where & = 8/(1 — 6). Now in order for a polynomial in « to be
identically 0, each coefficient of o, t =0, ..., n, must be O0; that is,

z(t)(:l) —0fort=0,...,n, but (?)7&0;30z(t)=0f0rt=0,...,n. I

or

EXAMPLE 33 Let X, ..., X, be a random sample from the uniform distri-
bution over the interval (0, 6), where © ={#: 6 >0}. Show that the
statistic Y, is complete. We must show that if &,[«(Y,)] =0 for all 6 > 0,
then P,[«(Y,)=0]=1forall § > 0.

9
Eol(Y)) = [£0)fy, () dy = | #3)6™"my" " dy,
and &y[4(Y,)] =0 for all 8 >0 when and only when
(/]
%J Ay~ ldy=0 forall 8 >0
0
or
L)
fo Ay)y" " 'dy=0  forall 6 >0.

Differentiating both sides of this last identity with respect to 8 produces
#(6)0"~! =0, which in turn implies that «(6) = 0 for 6 > 0. I

In general, demonstrating completeness can require tricky analysis. The
two above examples are exceptions. We state now, without proof, a theorem

that gives us completeness of a statistic. It will be our main tool for arguing
completeness.
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Theorem 9 LetX|,..., X, bearandomsample fromf(-; 8), 6 € ©, where
O is an interval (possibly infinite). If f(x; 8) = a(6)b(x) exp [e(f)d(x)],
that is, f(-; ) is a member of the one-parameter exponential family,
then Y d(X;)is a complete minimal sufficient statistic. 1

Theorem 9 shows once again the importance of the exponential family or
exponential class. We are finally adequately prepared to state the theorem that
is useful in finding UMVUEs.

Theorem 10 Lehmann-Scheffé Let X, ..., X, be a random sample
from a density f(-; 6). If S=4(X,, ..., X,) is a complete sufficient
statistic and if T* = £*(S), a function of S, is an unbiased estimator of
7(6), then T* is an UMVUE of ©(6).

PROOF Let T' be any unbiased estimator of () which is a function
of S; that is, T' = #(S). Then &,[T* - T']=0 for all # €©, and
T* — T’ is a function of S; so by completeness of S, Po[¢*(S) = £'(S)] =1
for all 8 € ©. Hence there is only one unbiased estimator of 7(6) that
is a function of S. Now let T be any unbiased estimator of 7(f). T*
must be equal to &[T|S] since &£[T|S] is an unbiased estimator of ©(6)
depending on S. By Theorem 8, var, [T*] < var, [T] for all 6 € ©; so
T* is an UMVUE. I/

Let us review what this important theorem says: First, if a complete
sufficient statistic S exists and if there is an unbiased estimator for 7(6), then
there is an UMVUE for 7(6); second, the UMVUE is the unique unbiased
estimator of t(f) which is a function of S.

To actually find that unbiased estimator of t(f)) which is a function of S,
we have several ways of proceeding. First, simply guess the correct form of the
function of S that defines the desired estimator. Second, guess or find any
unbiased estimator of 7(f), and then calculate the conditional expectation of
the unbiased estimator given the sufficient statistic. Third, solve for #*(-)
in the equation &,[¢*(S)] = ©(f). Such an equation becomes the integral
equation | #*(s)f5(s) ds = ©(0) in the case of a continuous random variable S
and becomes the summation ) #*(s)f5(s) = t(f)for S a discrete random variable.
We will employ two of these methods in the following examples.

EXAMPLE 34 Let X,, ..., X, be a random sample from the Poisson density

e-l X

f(x;l): forx=0,1,....

x!
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We saw in Example 25 that f(x; 1) belongs to the exponential family with
d(x) = x. By Theorem 9, the statistic 2 X, 1s complete and sufficient.
To find the UMVUE of 1 itself, it suffices to guess a function of } X,
whose expectationis 4. Noting that 4 is the population mean, (1/n) ¥’ X,
is the obvious choice; so (1/n) ¥, X is the UMVUE of 1.

Consider now estimating (1) =e¢ %= P[X; =0]. (Recall Ex-
ample 30.) Let us derive the UMVUE of ¢~* by calculating the condi-
tional expectation of some unbiased estimator given the sufficient statistic.
Any unbiased estimator will do as the preliminary estimator whose
conditional expectation needs to be calculated; so we may as well choose
one that would make the calculations easy. f;o,(X}) is an unbiased estimator
of ¢~%* and is relatively simple since it can assume only the two values 0
and 1. By Theorem 10, &[1,0,(X;)|Y. X;]is the UMVUE of e™*. To find
the desired conditional expectation, we first find the conditional distribu-
tion of X, given Y X;.

P[Xl =0;$Xi=s]
]

) P[Xl =O;Z::Xi=s] | PLX; =O]P[§:Xi=s]
-] e

_ et DM — DPYs! (n—1\°
= 25! = ( - ) forn>1.

Therefore,

EUof(XD|L X, =5] = P[X, = 0| X, = 5] (” _ l)s;
n
hence
n— 1\
()

is the UMVUE of e"*for n>1. For n= 1, 10y(X7) is an unbiased
estimator which is a function of the complete sufficient statistic X;, and
hence 7jo,(X;) itself is the UMVUE of ¢™*.  The reader may want to derive
the mean and variance of

n — 1\

()
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and compare them with the mean and variance of the estimator

(l/n).z:l[{o}(X ;) given in Example 30. /1!

EXAMPLE 35 Let X;, ..., X, be a random sample from f(x; 6)=
8% 14, »)(X). Our object is to find the UMVUE of each of the following
functions of the parameter 8: 6, 1/6, and ¢~ X% = P[X > K] for given K.
Since B2 ™% 14 (%) is a member of the exponential class (see Example 24),

the statistic S =) X; is complete and sufficient.
1
X,=(/nm ) X;, which is a function of the complete sufficient
i=1

statistic S = ) X;, is an unbiased estimator of 1/8; hence by Theorem 10,
i=1

X, is the UMVUE of 1/6.
To find the UMVUE of 6, one might suspect that the estimator is

of the form ¢/)_ X;, where c is a constant which may depend on n. Now
1

o] 1
@"o[i%(—i] cé”o[ ] f fs(s) ds = fo —%B”S"‘le""s ds
cO

n n—'2 -@s n—2 _ =-u
—cr——(n)J 0"s ds = F(n)f u" ‘e “du
ch ct
=—— -TI'(n—1=
-~ I'(n) (=1 n—1

for n>1. So &lc¢/d. X;] =6 when ¢ =n — 1; hence (n — 1)/Y X; is the
UMVUE of 6 for n>1. The variance of (n —1)/> X, is given by
6%/(n — 2) for n> 2.

Although one might be able to guess which function of S =) X;
is an unbiased estimator for ¢~ X% let us derive the desired estimator by
starting with the following simple unbiased estimator of e X%: I, \(X}).
Note that &4[1 k(X)) =0 - P[X; < K] +1: P[X; > K] = P[X; > K] =
e~ %% 50 Ik, )(X7) is indeed an unbiased estimator of e ~K8 and therefore
by Theorems 8 and 10 &[/k, .,(X1)|S] is the UMVUE of e~ X8 Now,
Eollik, o) (XS = 5] = PlIx, (X)) =1|S =s] =P[X; > K|[S=3s]. In
order to obtain P[X; > K|S = s], we will first find the conditional distribu-
tion of X, given S =s.
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fx1|s=.(x1|3) Ax,
_ ths(xl, S) Axl As
Js(s) As
P[x1<X1 < Xy +Ax1;S<ZXi<S+AS]
1
[1/T(n)]0"s" e~ As

n
P[xl <X1<x1 +Ax1;s—x1 <2Xi<8—x1+AS]
2

~ [1/T(n)]6"s" 1™ As

P[xl <X1 <x1+Ax1]P[s—x1 <ZX,-<s—x1+AS]
2
[1/T(n)]6%" " 1e As
Ge O [1/T(n — D]6* " 1(s — x,)*" 279 Ax, As
[1/T(mIe°s" e~ As

_ T (s—x)"?
" T(n-1) s

Ax1

for x;, <sand n > 1.

Sull ik, XIS = 5] = PUX; > KIS =51= [ fr,js=ulx1]5) dx,

§ — n—2
= J;( r(n) (S xl) dxl

C(n—1) 51

n—l
'f(s—xl)" 2 dx,
n—l
f Y=y
—-n_ly"“'l s=K
Sn—ln—lo

_ (s — K)"‘l
s
for s > K and n > 1, where the substitution y = s — x, was made. Hence,

(Z—%i—;ii()n—l ik, (X X))
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is the UMVUE for e™%? for n > 1. (Actually the estimator is applicable
for n =1 as well.) It may be of interest and would serve as a check to
verify directly that

—_——

(Z %’,;l K)m—l (S X

1s unbiased.

‘go[(z_gg;.f)n“ 1I(K, o (2 Xi)] = f: (S - K)n— 1fs(s) ds

K S ['(n)
— wun~1 1 Bne~6(u+K) du = e—eK’
0 I"(n)
where the substitution # = s — K was made. /1]

In closing this section on unbiased estimation, we make several remarks.

Remark For some functions of the parameter there is no unbiased
estimator. For example, in a sample of size 1 from a binomial density
there is no unbiased estimator for 1/6. Suppose there were; let T = #(X)

denote it. Then &[T] = Y #(x) (z) (1 — 6"~ * = 1/6, which says that
x=0

an nth-degree polynomial in 8 is identical to 1/8, which cannot be. I

Remark We mentioned in Subsec. 5.1 that the Cramér-Rao lower bound
is not necessarily the best lower bound. For example, the Cramér-Rao
lower bound for the variance of unbiased estimators of 6 in sampling
from the negative exponential distribution is given by 6%/n (see Example 29),
and the variance of the UMVUE of 6 is given by 6%/(n — 2) (see Ex-
ample 35). 60%/(n — 2) is necessarily the best lower bound. /]!

Remark For some estimation problems there is an unbiased estimator
but no UMVUE. Consider the following example. i

EXAMPLE 36 Let X;, ..., X, be a random sample from the uniform density
over the interval (A, 6 +1]. We want to estimate #. X,—3% and
(Y; + Y,)/2 — 1 are unbiased estimators of 6, yet there is no UMVUE
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of . For fixed 0 < p < 1, consider the estimator g(X; — p) + p, where
the function g() is defined to be the greatest inieger less than y. Now

&[9(X,—p) + 7l
- o+1 8+1—-p
=f glx—pdx +p=|  g)dy+ P
0 -p
For fixed @ and p, there exists an integer, say N = N(0, p), satisfying
0 —p<N<@+1—p Hence,

€l9(X, — p) + pl
é+1-p

N ¢+1-p
—[ " eydy+p=] N-Ddy+| Ndy+p=0.
é—p 0-p N

So g(X; — p) + pis an unbiased estimator of §. Moreover, if 6 +1 —p
is an integer, say J, then g(x; —p)=J —1 for all x; satisfying
—p<x,—p<0+1-—p; so gx;,—p+p=J—1+p=0+1—1p
— 1+ p=~6forall® <x; <8+ 1;thatis, g(X; — p) + pestimates 6 with
no error, and hence has zero variance for 6 + 1 — p equal to any integer.
So, we have an estimator, namely g(X; — p) + p, which has zero variance
for 8 = any integer — 1 + p. But 0 < p <1 is arbitrary; so for any fixed
68, say 6, , we can find an unbiased estimator of 8 which has zero variance
at 6,. Hence, in order for an estimator to be the UMVUE of 6, it must
have zero variance for all 6; that is, it must always estimate 6 without
error. Clearly, no such estimator exists. {The reader may wish to show
that var [g(X; — p)+p]=[N— (00— pl(6 +1— p)— N], where N =
N(8, p) is an integer satisfying 8 —p<N<6+1— p} I/

Remark It-is sometimes possible to find an UMVUE even when a
minimal sufficient statistic is not complete. See Prob. 11, p. 313, in

Rao [17]. m

6 LOCATION OR SCALE INVARIANCE

In the last section we employed the property of unbiasedness as a means of
restricting the class of estimators with the hope of finding an estimator having
minimum mean-squared error within the restricted class. In this section we will
indicate how an alternative property, the property of invarignce, can be used to
restrict the class of estimators.  Our discussion will be limited to only two types
of invariance, namely, location invariance and seqle invariance: a fuller discus-

sion, which is beyond the scope of this book, can be found in Refs. [12] and [19].



332 PARAMETRIC POINT ESTIMATION vII

6.1 Location Invariance

If the observations X, ..., X, represented measurements of some sort and the
parameter being estimated was also measured in the same units, one might
reasonably require that an estimator #(-, ..., -) satisfy the property
£xy +¢, xa+¢, ..., x,+¢)=4#(x(, ..., x,)+ c for every constant ¢. The
idea is that if a constant ¢ is added to each of the measurements x, ..., x,,
then the estimator evaluated at the adjusted measurements x; +¢, ..., X, + ¢
ought to adjust the estimated values #(x,, ..., x,) by adding the same constant
to it. For example, suppose that it is desired to estimate the average weight
of a group of pigs when the only method available for weighing is for a person
to stand on a scale holding a pig; so both the pig and person are weighed. If
one person were to hold the pigs, the measurements (weights) x, +¢, ...,
x, 4+ ¢ would be obtained, where x; is the weight of the ith pig and cis the person’s
weight. If, on the other hand, someone else were to hold the pigs, the measure-
ments x; + ¢, ..., x, + ¢’ would be obtained, where ¢’ is the other person’s
weight. It seems reasonable that the estimate of the average weight of the group
of pigs obtained should not depend on which person held the pigs; that is, the
estimate should not vary with ¢, the weight of the pig holder. We define a
location-invariant estimator accordingly.

Definition 23 Location invariant An estimator T = 4(X;, ..., X,) is
defined to be location-invariant if and only if #(x; +¢, ..., x,+¢) =
£(xy, ..., x,) + cfor all values x, ..., x, and all ¢. /1]

A number of the estimators that we have encountered are location-
invariant, for example, X, and (Y; + Y,)/2, as the following shows:

b= Y. (x:l+ c) _ an,-

fxg+e...,x, + +ec=4xy, ..., x,) +cC

for #(x,, ..., x,)=X,; and

fxi+¢...,%x,+0)

min [x; +¢,...,x, +c]+max [x; +¢,..., x, + ]

2
_min[x1,---,x,,]+c+max [x1, ..., %)+ ¢
2
min [x, ..., x,] + max [x;, ..., x,]

2

= (x5 .-sx)+¢C
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for #(xg, «»er X)) =01+ y.)/2. On the other hand, quite a number of
estimators are not location-invariant; for example, 8% and Y, — Y,, as the fol-
lowing shows: Take T = 4(X;, ..., X)) = 8 = ) (X;— X,)*/(n — 1); then
f(xl 4+ € euy xn+C)=Z[xi + C_Z(xi —|—c)/n]2/(n -1 = f(xla REE) xn)9 in-
stead of #(x;, ..., X)) + ¢ Now take T =#X,, ..., X,)=Y,—Y;; then
X+ € oy X, +€)=max [x; +¢, ..., x,+c]—min [x; +¢, ..., x,+c]l=
max [x;, ..., x|+ c¢—min[x;, ..., x,J—¢=4Fx; ..., Xx,), instead of
£(Xxg, -0.5 X)) + €.

Our use of location invariance will be similar to our use of unbiasedness.
We will restrict ourselves to looking at location-invariant estimators and seek
an estimator within the class of location-invariant estimators that has uniformly
smallest mean-squared error. The property of location invariance is intuitively
appealing and turns out also to be practically appealing if the parameter we are
estimating represents location.

Definition 24 Location parameter Let {f(-; 0), 6 € 8} be a family
of densities indexed by a parameter 0, where @ is the real line. The param-
eter 0 is defined to be a location parameter if and only if the density
f(x; 6) can be written as a function of x — 6; that is, f(x; 68) = h(x — )
for some function A( ). Equivalently, 6 is a location parameter for the
density fx(x; 6) of a random variable X if and only if the distribution of
X — 0 does not depend on 6. 1/

We note that if 6 is a location parameter for the family of densities
{f(-; 0), 6 € B}, then the function A( -) of the definition is a density function
given by 4(-) =f(-;0).

EXAMPLE 37 We will give examples of several different location parameters.
If f(x; 6) = ¢y, 1(x), then 6 is a location parameter since

1 1
o) = T =emp =5 (¢ = 07 = ot =0

Or if X is distributed normally with mean 6 and variance 1, then X — 6
has a standard normal distribution; hence the distribution of X — 8 is
independent of 6.

If f(x; 0)=14-4,6+1(%), then 0 is a location parameter since
S(x; 0)=Lg-4, 0+1(X) =1 _; (x — 6), a function of x — 6.

If f(x; @) = 1/n[1 + (x — @)?], then « is a location parameter since
f(x; o) is a function of x — a. 1!
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We will now state, without proof, a theorem that gives within the class
of location-invariant estimators the uniformly smallest mean-squared error
estimator of a location parameter. The theorem is from Pitman [41].

Theorem 11 Let X,, ..., X, denote a random sample from the density

f(-; 6), where 6 is a location parameter and © is the real line. The
estimator

(617 rx,; 0y do
i=1

KXy X)) ="
[T rxis 6o

(17

is the estimator of 6 which has uniformly smallest mean-squared error
within the class of location-invariant estimators. /1]

Definition 25 Pitman estimator for location The estimator given in
Eq. (17) is defined to be the Pitman estimator for location. 1/

According to the formula given in Eq. (17), determining the Pitman
estimator requires evaluating the integrals given in the numerator and denomi-
nator; such evaluation may not be easy. Note that the integration is with
respect to the parameter; so the resulting ratio will be a function of X, ..., X

n*

EXAMPLE 38 Let X, ..., X, be arandom sample from a normal distribution
with mean 8 and variance unity. We saw in Example 37 that 6 is a loca-
tion parameter. Our object is to find the Pitman estimator of 8, which is
given by Eq. (17). In the following series of equalities one should be
forewarned that cancellations and insertions are being made simultaneously
in the numerator and denominator.

| eiljl Go.1(Xd0 [ 0(1//2m) exp [-3 ¥ (X; — 6)*] db
[ [T 60.1(X0d0  [(17 /2y exp [4 5% — 6] 0

j fexp [—(n/2)02 + 6 X;] db

[exo[—(w/2)67 + 0% X)] db
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[0 exp [~ (y2)(0 — X)) db

) [exp (= (n/2)(0 — X148
[ol1/2001 1/ W]exp{ 410 — X,)/(U//n)}do
[ [1/+/3701 /7)) exp{ =310 — X D/(1//m} b

=X,
by noting that the last denominator is just the integral of a normal density
with mean X, and variance 1/n and hence is unity, and the last numerator
is the mean of this same normal density and hence is X,,.

We note that, for this example, the Pitman estimator of 8, which is
uniformly minimum mean-squared error among location-invariant esti-
mators, is identical to the UMVUE of 6; that is, the estimator that
is best among location-invariant estimators is also best among unbiased
estimators. 1]

EXAMPLE 39 Let X}, ..., X, be a random sample from a uniform»distribu-
tion over the interval (6 — 4, 6 +4). According to Example 37, 6 is a
location parameter. The Pitman estimator of 8 is

1 aigl gy o0 4(Xp) d6 f 0 gl I s x5 4(0) d6

J I om0 sfXDd0 [ T im0 (@) 46
I:***Bde_ L M+ -, -9 _Y,+7,
fniidd 2 (Y +3H—(Y,— D 2

Recall that for this example there is no UMVUE of 8. (See Example 36.)
"

Remark A Pitman estimator for location is a function of sufficient
statistics.

PROOF If Sy = 4i(X;, ..., X,), ..., Sy = o(Xy, ..., X,) is a set of
sufficient statistics, then by the factorization criterion H f(x; 6) =

g1 ooy 855 Oh(xy, ..., x,); so the Pitman estimator can be written as
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f@ﬂf(Xi;B) do feg(sl, s S ONXy, ..., X,)d6
i=1 .

“31 f(X;; 0)do fg(sl,...,sk;e)h(xl,..., X,)do

[09(Sss ... 5, 0y dB

fg(sls crey Sk; B) d@

which is a function of S,, ..., S,. I

6.2 Scale Invariance

For those experiments in which measurements can be made in different units,
such as length being measured in either inches or centimeters, weight being
measured in either pounds or kilograms, or volume being measured in either
quarts or liters, one might reasonably require that his statistical procedure be
independent of the measurement units employed. If the statistical procedure
is that of point estimation, then one might require that the estimator that is to
be used satisfy the property of scale invariance defined below. The idea is that
an estimator will be scale-invariant if the estimator does not depend on the scale
of the measurement.

Definition 26 Scale-invariant An estimator T = #(X;, ..., X,) is
defined to be scale-invariant if and only if #(cx,, ..., cx,) = cf(xy, ..., X,)
for all values x4, ..., x, and all ¢ > 0. /1!

A number of the estimators that we have considered are scale-invariant,
including X,,, \/ $2, (Y; +Y)2, and Y,— Y;. Our discussion of scale-
invariant estimators will be limited to problems concerning estimation of scale
parameters defined below.

Definition 27 Scale parameter Let {f(-; 6), 8 >0} be a family of
densities indexed by a real parameter #. The parameter 8 is defined to be a
scale parameter if and only if the density f(x; ) can be written as (1/6)h(x/0)
for some density h(-). Equivalently, @ is a scale parameter for the
density fyx(x; 6) of a random variable X if and only if the distribution of
X/8 is independent of 6. i

Note that if 8 is a scale parameter for the family of densities { f( - ; 6), 6 > 0},
then the density A( - ) of the definition is given by A(x) = f(x; 1).
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EXAMPLE 40 We give several examples of scale parameters. If f(x; 4) =
(/D" g, o)%)> then 4 is a scale parameter since e 7/, «)(y) is. a
density. Note that this parameterization of the negative exponential
distribution is not the parameterization that we have used previously.

If

f(x;8) = bo, 2(%) =\/217rg exp[‘ %(?;C) 2],

then ¢ is a scale parameter since (1 /\/27n) exp (—1y?) is a density.

If f(x; 0) =1/, 0(x) = (1/6)1 0, 1y(%/6), then 0 is a scale param-
eter since Iy, 1y(y) is a density.

If f(x; 0) = (1/0)] 4, 26)(X) = (1/6) 1, 2)(x/8), then 8 is a scale param-
eter since /1, z)(¥) is a density. ]

Our sole result for scale invariance, a result that is comparable to the
result of Theorem 11 on location invariance, requires a slightly different frame-
work. Instead of measuring error with squared-error loss function we measure
it with the loss function £(t; 6) = (t — 6)*/6* =(¢/6 — 1)*. If |t — 8] represents
error, then 100|¢ — 8| /6 can be thought of as percent error, and then (¢t — 6)%/6?
is proportional to percent error squared. We state the following theorem, also
from Pitman [41], without proof.

Theorem 12 Let X,..., X, bearandomsamplefromthe density f( - ;6),
where 8 > 0 is a scale parameter. Assume that f(x; 6) =0 for x < 0;
that is, the random variables X; assume only positive values. Within
the class of scale-invariant estimators, the estimator

[“wen T rxi; 6 do
HXyr .. X, =22 i=1

. d (18)
jo (16 [1 /(X;; 6)do

has uniformly smallest risk for the loss function £(¢; 8) = (t — 6)%/6%. ////

Definition 28 Pitman estimator for scale The estimator given in Eq.
(18) is defined to be the Pitman estimator for scale. /1]

Remark The Pitman estimator for scale is a function of sufficient
statistics. I/
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EXAMPLE 41 Let X, ..., X, be a random sample from a density f(x; 6) =
(1/6),¢)(x)- The Pitman estimator for the scale parameter 6 is

J.Ooo(l/ez) ilill(l/e)l(o’ 0)(Xi) dé J‘:’B_nw 2 4o

.].000(1/93) l;nll (1/9)1(0’ 0)(Xi) do ijg—n_3 0

AUl(n +2) — 1BY; DL g2
C{Y[(n+ ) —ABY T

Y,-

We know that Y, is a complete sufficient statistic and &[Y,] =[#/(n + 1)]0;
so by the Lehmann-Scheffé theorem [(n + 1)/n]Y, is the UMVUE of 6.

/11

EXAMPLE 42 Let X, ..., X, be a random sample from the density f(x; 1) =
(1/2) exp (=x/ o, )(x). The Pitman estimator for the scale param-
eter A is

[ flraana [ aresen(-L X/

[ /% Xy 2e (% Xija?) do
j: (/Y X)) "™ (Y Xi/a?) du

Q0

. I ae”* da

=YX
f o"tle™ % da
0

L(n+1) 2 X,
R Ty

(It can be shown that the UMVUE of 1is } Xi/n.)

Note that ¥ X,/n is a scale-invariant estimator, and, hence, since
Y Xi/(n + 1) 1s the scale-invariant estimator having uniformly smallest
risk for the loss function (¢ — 6)?/6?, the risk of ), X;/(n + 1) is uniformly
smaller than the risk of Y X;/n. Also, since here risk equals 1 /6% times the
MSE, the MSE of ¥ X;/(n + 1) is uniformly smaller than the MSE of
Z Xi/n. /111
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7 BAYES ESTIMATORS

In our considerations of point-estimation problems in the previous sections .of
this chapter, we have assumed that our random sample came from some density
f(- ; 6), where the function f(+; -) was assumed knowa. Moreover, we have
assumed that 8 was some fixed, though unknown to us, point. In some -real-
world situations which the density f( - ; 6) represents, there is often additional
information about 8 (the only assumption which we heretofore have made about
g is that it can take on values in ©). For example, the experimenter may have
evidence that @ itself acts as a random variable for which he may be able to
postulate a realistic density function. For instance, suppose that a mach-ine
which stamps out parts for automobiles is to be examined to see what fraction
6 of defectives is being made. On a certain day, 10 pieces of the machine’s
output are examined, with the observations denoted by X;, X;, ..., Xjo, Where
X, = 1 if the ith piece is defective and X; = 0 if it is nondefective. These can
be viewed as a random sample of size 10 from the Bernoulli density

fx;0) =671 — 0)' "Ly 4(x) for0<H<1,

which indicates that the probability that a given part is defective is equal to the
unknown number 6. The joint density of the 10 random variables X, X,, ...,
Xlo iS )

10
6= *(1 — 9)10-“1111{0, n(x) for0<@<1.

The maximum-likelihood estimator of 6, as explained in previous sections, is
® = X. The method of moments gives the same estimator. Suppose, how-
ever, that the experimenter has some additional information about 6; suppose
that he has observed that on various days the value of 8 changes and it appears
that the change can be represented as a random variable with the density

90(9) = 606(1 — 9)1[0, 1](9)-

An important question is: How can this additional information about 8 be

used to estimate f,, where 0, is the value that @ was equal to on the day the
sample was drawn?

To examine this problem, we will assume, in addition to the assumption
that our random sample came from a density f( - ; 6), that the unknown param-
eter 0 is the value of some random variable, say ®. We will still be interested
in estimating some function of 8, say ().

If ® is a random variable, it has
a distribution.

We let G(-) = Gg(*) denote the cumulative distribution function
of ® and g(-) = ge(*) denote the density function of ®, and we assume these

functions contain no unknown parameters. In order to emphasize that the



340 PARAMETRIC POINT ESTIMATION VI

distribution of @ is over the parameter space, we have departed from our custom
of using F(-) and f(-) to represent a cumulative distribution function and
density function, respectively, and have used G( - ) and g( - ) instead.

If we assume that the distribution of ® is known, we have additional
information. So animportant question is: How can this additional information
be used in estimation? It is this question that we will address ourselves to in
the following two subsections. In many problems it may be unrealistic to
assume that 0 is the value of a random variable; in other problems, even though
it seems reasonable to assume that 6 is the value of a random variable ® the
distribution of ® may not be known, or even if it is known, it may contain other
unknown parameters. However, in some problems the assumption that the
distribution of ® is known is realistic, and we shall examine this situation.

7.1 Posterior Distribution

Heretofore we have used the notation f(x; 8) to indicate the density of a random
variable X for each #in ©. Whenever we want to indicate that the parameter
6 is the value of a random variable ®, we shall write the density of X as f(x|6)
instead of f(x; 6). We should note that f(x|6) is a conditional density; it is
the density of X given ® = 6. A more complete notation for f(x|68) would be
Sxje=0(x|0).

Let Xy, ..., X, be a random sample of size n from the density f( - |6),
where 6 is the value of a random variable ®. Assume that the density of @,
ge(*), is known and contains no unknown parameters, and suppose that we
want to estimate 7(#). How do we incorporate the additional information of
known gg( - ) into our estimation procedures? In the past, we thought of the
likelihood function as a single expression that contained all our information; the
likelihood function included the observed sample xq, ..., x, as well as the form
of the density f(x; 8) we sampled from in its expression. Now we need an
expression that contains all the information that the likelihood function con-
tains plus the added information of the known density gg(+). ge(*) is called the
prior distribution of ®. It summarizes what we know about 8 prior to taking
a random sample. What we seek is an expression that summarizes what we
know about 6 after we take a random sample. We seek the posterior distribu-
tion of ® given X; =x,, ..., X, =x,.

Definition 29 Prior and posterior distributions The density gg(*) is
called the prior distribution of ®. The conditional density of ® given
Xy=X ..., X,=2x,, denoted by fox,=x,, .. xn=x,0|X15 -0y X,), 18
called the posterior distribution of ©. 1/
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Remark

— Sxi, s xnj@=o(X15 - - - X, | Dge(0)
Sy oy x(X15 -+ s Xn)

[Ul f (xalﬂ)]ge(e) 19)
J [Hl e 9)] go(6) 9

for random sampling. [Recall that fyx=x(¥|%) =fx y(x, ¥)/fx(x)=
Fxir=y x| O x(X).] /111

foixs=x1, s Xn=xnl 01X 15 -5 %)

The posterior distribution replaces the likelihood function as an expression
that incorporates all information. If we want to estimate 6 and parallel the
development of the maximum-likelihood estimator of 6, we could take as our
estimator of 8 that 6 which maximizes the posterior distribution, that is, estimate
6 with the mode of the posterior distribution. However, unlike the likelihood
function (as a function of 8), the posterior distribution is a distribution function;
so we could just as well estimate 6 with the median or mean of the posterior
distribution. We will use the mean of the posterior distribution as our estimate
of 8, and in general we could estimate 7(6) as the mean of 7(®) given Xy = x4, ...,
X, = x,; that is, take &[t(®)| X; = x4, ..., X, = x,] as our estimate of 7(6).

Definition 30 Posterior Bayes estimator Let X, ..., X, be a random
sample from a density f(x|6), where 8 is a value of the random variable
©® with known density ge(+). The posterior Bayes estimator of ©(0) with
respect to the prior ge(-) is defined to be

ElWO)| X, ..., X,] (20)
11

Remark
SO X =x1..0, Xy =%X1= [ 1O forx,=x,, ... 1,25, O| X1» - » X,) dO
" (21)
@] [1 7110 a0 as N

'[ [iljl Sl 9)] ge(0) do

One might note the similarity between the posterior Bayes estimator of
7(6) = 0 and the Pitman estimator of a location parameter [see Eq. (17)].
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EXAMPLE 43 Let X, ..., X, denote a random sample from the Bernoulli
density f(x|8) = (1 — 6)' "* for x =0, 1. Assume that the prior distri-
bution of @© is given by ge(8) = I o, ;) (6); that is, @ is uniformly distribu-
ted over the interval (0, 1). Consider estimating 6 and 7(6) = 6(1 — 6).
Now

gzxi(l B)n—zxg I (9)
= =X 9 x 9 e 0y xn — (OP 1) ;
f0|X1 X1y veey Xn n( | 1 ) J‘(l) Bzx;(l B)n—):xz A0

so the posterior Bayes estimator of 6 with respect to the uniform prior
distribution is given by

EO|X;=x( ..., X,=x,]
= fefelX1=x1,...,X,,=x,,(6|xl’ L ) xn) de

_Ja00F=(1 — 0" % dg B x+ 2, n—Y x;+ 1)
Co[eeE1 -0y de BO.x;+ L,n=Y x4+ 1)

TR x+20(n =) x;+ 1) I'(n+2)

B T(n + 3) I x + DI(n =Y x, + 1)
X x+1

 on+2

Hence the posterior Bayes estimator of 6 with respect to the uniform prior
distribution is given by (3 X;+ 1)/(n +2). Contrast this to the
maximum-likelihood estimator of 6, which is Y, X,/n. Y X,/nis unbiased
and an UMVUE, whereas the posterior Bayes estimator is not unbiased.

To obtain the posterior Bayes estimator of, say () = 6(1 — 6), we
calculate

g[T(@)lXI =X, ""Xn= xn]

= [60 = 0)forx,=ss .. e 01 %15 - X,) 4B

_ f6 — 9)0* (1 — 6y~ =x dp
- [FEA -0y do
T x+2T(n =Y x,+2) I'(n +2)
B T(n+ 4) T x + 1)0(n =Y. x; + 1)
_Exi+ D -Y x+1)
(n+ 3)(n+2) '

So the posterior Bayes estimator of (1 — 6) with respect to a uniform
prior distribution is (O, X; + 1)(n = ), X; + 1)/(n + 3)(n + 2). I
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We noted in the above example that the posterior Bayes estimator that
we obtained was not unbiased. The following remark states that in general a

posterior Bayes estimator is not unbiased.

Remark Let T* =#%(X,, ..., X,) denote the posterior Bayes estimator
of w(#) with respect to a prior distribution G(-). If both T¢ and ©(®)
have finite variance, then either var [T¢|6] =0, or TE is not an unbiased
estimator of ©(). That is, either T¢ estimates t(6) correctly with proba-
bility 1, or T* is not an unbiased estimator of ().

PROOF Let us suppose that T¢ is an unbiased estimator of 7(6);
that is, €[T%|0] = ©(). By definition we have T = £g(Xy, ..., X,) =
&E[1(O®)| Xy5 ..., X,]. Now

var [T¥] = &[var [T§| ®]] + var [€[Tg| O]]
= &[var [TE| O]] + var [7(O)],

and

var [7(®)] = &[var [1(®)] Xy, ..., X,]] + var [E[(®)] Xi, ..., X,]]
= &[var [W(®)| Xy, ..., X,]] + var [T¢];

hence, &[var [Tg|@]] + &lvar [¢(®)| Xy, ..., X, ]]=0. Since both
&[var [T¢| ®]] and &[var [71(®)| X;, ..., X,]] are nonnegative and their
sum is 0, both are 0. In particular, &[var [T¢|®]] =0, and since
var [T§| ©] is non-negative and has zero expectation, var [T&|6] = 0. ////

7.2 Loss-function Approach

In Subsec. 3.4 we introduced the concepts of Joss and risk. These two concepts
were used to assess goodness of estimators. In this section we discuss how the
additic.)nal information of knowledge of a prior distribution of ® can be used
in conjunction with loss and risk to define or select an optimum estimator.

We commence with a review of the problem we hope to solve. Let
X, ..., X, be arandom sample from a density f(x|0), ¢ belonging to ©, where
the function f( - |6) is assumed known except for §. We assume —that the
unknown § is the value of some random variable ® and that the distribution of
® is known and contains no unknown parameters, On the basis of the random
sample X, ..., X, we hope to estimate 7(6), some function of 6. In addition
we assume that a loss function £(¢; 6) has been specified, where £(¢; 6) represents’
the loss incurred if we estimate () to be t when 6 is the pare,tmeter of the
density from which we sampled. For any estimator T = £(Xps -ovr Xp), We
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noted in Subsec. 3.4 that &,[£(T; )] represented the average loss of that esti-
mator, and we defined this average loss to be the risk, denoted by % ,8), of the
estimator #(°, ..., -). We further noted that two estimators, say T, =
£1(Xy, ..., X,)and T, = £,(Xy, ..., X,), could be compared by looking at their
respective risks &, (6) and #,,(0), preference being given to that estimator with
smaller risk. In general, the risk functions as functions of 8 of two estimators
may cross, one risk function being smaller for some 8 and the other smaller
for other 8. Then, since 6 is unknown, it is difficult to make a choice between
the two estimators. The difficulty is caused by the dependence of the risk
function on 8. Now, since we have assumed that 0 is the value of some random
variable @, the distribution of which is also assumed known, we have a natural
way of removing the dependence of the risk function on 8, namely, by averaging
out the 6, using the density of ® as our weight function.

Definition 31 Bayes risk Let X, ..., X, be a random sample from a
density f(x|6), where 6 is the value of a random variable ® with cumula-
tive distribution function G(-) = Gg(*) and corresponding density
g(*) =ge(*). In estimating t(0), let Z(t; ) be the loss function. The
risk of estimator T = #(X,, ..., X,) is denoted by %#,68). The Bayes risk
of estimator T = #( X, ..., X,) with respect to the loss function £( - ; *)
and prior cumulative distribution G( ), denoted by #(¢) = 2, ¢(¢), 18
defined to be

(O = 1,6 = | RO GO dO.  (2D)
Il

The Bayes risk of an estimator is an average risk, the averaging being over
the parameter space © with respect to the prior density g(-). For given
loss function (- ; -) and prior density g( * ) the Bayes risk of an estimator is a
real number; so now two competing estimators can be readily compared by
comparing their respective Bayes risks, still preferring that estimator with smaller
Bayes risk. In fact, we can now define the “best’’ estimator of 7(f) to be that
estimator with smallest Bayes risk.

Definition 32 Bayes estimator The Bayes estimator of 7(0), denoted by
T} ¢ = 47, 6(X1, ..., X,), with respect to the loss function #(-; -) and
prior cumulative distribution G(*), is defined to be that estimator with
smallest Bayes risk. Or the Bayes estimator of t(f) is that estimator
£} g satisfying

25, 6(¢%) =14, 6(47 ,6) <, 6(4)
for every other estimator T = #(Xy, ..., X,) of 7(6). /1]
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The posterior Bayes estimator of (), defined in Definition 30, was defined
without regard to a loss function, whereas the definition given above requires

specification of a loss function. . .
The definition leaves the problem of actually finding the Bayes estimator,

which may not be easy for an arbitrary loss function, unsolved. However, for
squared-error loss, finding the Bayes estimator is relatively easy. We seek that
estimator, say #*(*, ..., *), Which minimizes the expression |5 240)g(6) db =
[ &6l14( X, --., X,)— t(6)F19(6)d0 as a function over possible estimators
H,..., ). Now,

J, SilleX sy, X0) = <O 1a(6) 46

= [ {50 = HOF S0 510 [T o) do

X (X1 e x,| 0)g(8) dﬂ}
le,--..xn(xl, ey xn)

= L{fﬁ[r(e) O ELt

n
'fxl, ...,X,.(xla sery xn)i];Il dx,

= LUE [€(0) = 4(x15 .- s X forxi=x1, o Xn= (B X1 - -5 X,) dB}
tn o x(F1r e ees %) ﬂl dx;,

and since the integrand is nonnegative, the double integral can be minimized
if the expression within the braces is minimized for each xy, ..., x,. But the
expression within the braces is the conditional expectation of [1(®) — #(x;,
...» Xx,)F with respect to the posterior distribution of ® given X, = x;, ...,
X, = x,, which is minimized as a function of #(x,, ..., x,) for #*(x,, ..., x,)
equal to the conditional expectation of (@) with respect to the posterior distribu-
tion of ® given X; =x;, ..., X, =x,. {Recall that &(Z — q)?] is minimized
as a function of g for a* = &[Z].} Hence the Bayes estimator of 7(f) with re-
spect to the squared-error loss function is given by

[«® [,le x| 9)] 4(6) do
[[f1se100]ocer ao

which is identical to the estimator given in Eq. (21).

(o@['t(@)le = Xy, '--3Xn=xn]= ’ (23)
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For a general loss function, we seek that estimator which minimizes

Ja RA6)g(0) do. Again,

jé RL0)g(6) 40

=J‘§ [L C(E(X1s eevs %) O fxps o x, (K15 e ves xn|9)ilj1 dxi]g(e) do
= J; [J.Ef(f(xla oo X0)s O fo1xy=x1, oo, Xn=x, (O] X105 - 5 X) d@]

n
.fxlg.-., xn(xli LR | xn)i]:[l dxi,

and minimizing the double integral is equivalent to minimizing the expression
within the brackets, which is sometimes called the posterior risk. So, in general,
the Bayes estimator of 7(8) with respect to the loss function £( - ; -) and prior
density g( - ) is that estimator which minimizes the posterior risk, which is the
expected loss with respect to the posterior distribution of ® given the observa-
tions x;, ..., X,. We have the following theorem and corollaries.

Theorem 13 Let X, ..., X, be a random sample from the density
f(x|6), and let g(B) be the density of ®. Further let £(¢; 6) be the loss
function for estimating 7(#). The Bayes estimator of 7(f) is that estimator
£*(*, ..., *) which minimizes

JLeC0ess - %) O formimsa, o xumsaO1 %1 x,) dB (24)

as a function of #(-, ..., *). 1]

Corollary Under the assumptions of Theorem 13, the Bayes estimator
of 1(6) is given by

[®) [Hlf e 6)] 9(6) do
J Lf:llf (%] 9)] g(6) do

for a squared-error loss function. I

g[T(®)|X1=x15---5Xn=xn]= (25)

Corollary Under the assumptions of Theorem 13, the Bayes estimator
of @ is given by the median of the posterior distribution of @ for a loss
function equal to the absolute deviation. /1]

The proofs of the theorem and first corollary preceded the statement of the

theorem. The second corollary follows from the observation that
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J‘_ |9 - f(xla LI xn)|f8|X1=x1,..., X,.=x..(9| xl 320y xn) dG
o

is minimized as a function of (-, ..., *)for ¢*(-, ..., ) equal to the median
of the posterior distribution of ®. {Recall that &||Z — a|] is minimized as a

function of a for a* = median of Z.}

EXAMPLE 44 Let X, ..., X, be a random sample from the normal density
with mean 8 and variance 1. Consider estimating 8 with a squared-error
loss function. Assume that ® has a normal density with mean p, and
variance 1. Write y, = x, when convenient. According to Eq. (25) the
Bayes estimator is given as the mean of the posterior distribution of @.

f®|X1=x1, ...,X,.=x,.(el Xis-nns xn)

_ St xaloX15 -1 X, 0)g(8) _ L: 1f (inB)] g(6)
Pt {1l 9)]9(9) 48
i=1

(1/3/2m)" exp [—% (- W]a/ﬁ) exp [~ 40 — po)’]

J :(1/\/%)" exp [-% >; (¥ = 9)2](1/\/5) exp [—4(0 — 1o)] 46
exp [_%‘ﬁo(xi = 9)2]

f: exp [—%ijo(x,- - 9)2] do

exp {—%[(n + 1)6% — ZBEi)x,- +

| :, exp { _3 [(n + 102 — 2oi=foxi + éox,?]} do
exp ( —[(n + 1)/2]{92 ~ 26 ; x/(n + 1) + [; %,/(n + 1)] 2])
J_ o (~ton+ y21fe? ~ 205w+ 1) 4 [ 5in + 1] ) a0

—
0

(/2 + D1 exp | = Ln + /21[ 0~ 3 . ]|

f: [1</27)(n + 1)] exp { —[(n + 1)/2] [9 — S x)(n+ 1)] 2} 0

= -‘—__\/Zn/(lT-i-l) exp {— f—;—l [B — gx‘/(" + 1)] 2};
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the denominator is unity since it is the integral of a density. We have
shown that the posterior distribution of ® is normal with mean
Y8 x;/(n + 1) and variance 1/(n + 1); hence the Bayes estimator of § with
respect to squared-error loss is

n n
x0+;Xi ﬂo+‘L:.Xi

n+l  n+l

Since the posterior-distribution of @ is normal, its mean and median are
the same; hence

n
ﬂo‘i“L;Xi
n+1

is also the Bayes estimator with respect to a loss function equal to the
absolute deviation. /1]

EXAMPLE 45 Let X, ..., X, be a random sample from the density f(x|6) =
(1/6)1 6, (x). Estimate 6 with the loss function Z(¢; 6) = (t — 6)%/6>.
Assume that ® has a density given by g(0) = 1,0,,y(6). Let y, denote
max [x,, ..., X,]- Find the posterior distribution of ©.

1/ 9)"i1j1 Lo, 0)(x:)L 0, 1y(0)
J[ @10 T1 1,00 do

_ (1/8)'T, 16)
| j6y1,.1,(6)do

W06,
[T/ = DI/ T = 1)

f8|X1=x1, eeny Xn=xn(olx13 L) xn) =

We seek that estimator which minimizes Eq. (24), or we seek that esti-
mator #( ) which minimizes

[ {[4(y,) — 61/6%)(1/6")1,,,,,1)(B) dO
[1/n = DIA/y™" = 1)

H
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or that estimator which minimizes

1 1
[ 10 -oF gz a0

L0 [ g d0 =200 | gmdo+ [ do @9

Equation (26) is a quadratic equation in #(-); this quadratic equation
assumes its minimum for

ooy In(1/0h A0 [-mII-ly) _n+l o 1-v
£ = fL@/0"*2yde ~ [1/(—n— DIA —1/y3"") n JrT_ et 1

We note that the Bayes estimators derived in Examples 43 to 45 are
functions of sufficient statistics. It can be shown that this is generally true;
that is, a Bayes estimator is always a function of minimal sufficient statistics. In
fact, under quite general conditions it can be shown that the Bayes estimator
corresponding to an arbitrary prior probability density function, which is
positive for all @ belonging to ©, is consistent and BAN. So, even if you do not
know the correct prior distribution, a Bayes estimator has some desirable
optimum properties. And if you do know the correct prior distribution and
accept the criterion that a best estimator is one that minimizes average loss, then
the Bayes estimator corresponding to the known prior distribution is optimum,

Even in those problems when the prior distribution is unknown, the
concept of Bayes estimation can benefit us. It provides us with a technique of
determining many estimators that we might not have otherwise considered.
Each possible prior distribution has a corresponding estimator, whose merits
can be judged by using our standard methods of comparison. Thus, we have
yet another method of finding estimators to append to the methods given in
Sec. 2.

Bayes estimation can also sometimes be useful as a tool in obtaining an
estimator possessing some desirable property that does not depend on prior
distribution information. The property of minimax is such a property, and
in the next subsection we will see how Bayes estimation can sometimes be used
to find a minimax estimator. Another such property is given below. Our
objective has been to minimize risk, but since risk depended on the parameter,
we were unable to find one estimator that had smaller risk than all others for
all parameter values. Minimax circumvented such difficulty by replacing the
risk function by its maximum value and then seeking that estimator which
minimized such maximum value. Another way of getting around the difficulty
arising from attempting to uniformly minimize risk is to replace the risk function
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by the area under the risk function and to seek that estimator which has the
least area under its risk function. We note that if the parameter space © is
an interval, the estimator having the least area under its risk function is the
Bayes estimator corresponding to a uniform prior distribution over the interval ©.
This is true because for a uniform prior distribution the Bayes risk is propor-
tional to the area under the risk function, and hence minimizing the Bayes risk is
equivalent to minimizing area.

7.3 Minimax Estimator

We defined a minimax estimator at the end of Subsec. 3.4 as an estimator whose
maximum risk is less than or equal to the maximum risk of any other estimator.
Such an estimator might be considered * conservative” since it protects against
the worst that can happen; it seeks to minimize the maximumrisk. The follow-
ing theorem is sometimes useful in finding a minimax estimator.

Theorem 14 If T* = ¢*(X,, ..., X,) is a Bayes estimator having con-
stant risk, that is, #,.(0) = constant, then T* is a minimax estimator.

PROOF Let g*(-) be the prior density corresponding to the Bayes

estimator #*( -, ..., - ).
sup Z(8) = constant =% ,.(9)
fecB

= [L RAO)*©)d8 < [ ALO)G*(®) d6 < sup R,6)
Y o

e
for any other estimator #( -, ..., - ). 111

EXAMPLE 46 Findthe minimax estimator of  in sampling from the Bernoulli
distribution using a squared-error loss function. We seek a Bayes esti-
mator with constant risk. The family of beta distributions is a family of
possible prior distributions. We hope that for one of the beta prior
distributions the corresponding Bayes estimator will have constant risk.
A Bayes estimator is given by

I},GGZ (1 — 6)""E*[1/B(a, b)}0° (1 — 6)"" ' d6
[50*(1 — 6)"**[1/B(a,b)}0“~'(1 — 0)°"~" dO
j(1)02x1+a(1 _ G)n—r.x;+b—1 do
= Ll)@'_/:;—ﬁ a—l(l _ 9)n—2x1+b—1 de
_BYx;+a+1l,n—Yx+b) Yxi+a
~ B x;+a,n-Yx;+4b) n+a+b’
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So the Bayes estimator with respect to a beta prior distribution having
parameters @ and b is given by

.- , Z X 1+ a
n+a+b

" We now evaluate the risk of (Y. X; + a)/(n + a + b) with the hope that we
will be able to select a and b so that the risk will be constant. Write
Ay, .., x) =AY, x;+B= (Y x,+a)/(n+ a+b); then Zs, ,(0)
—6[(AY X, + B — 0] = S[[A(X X; — nb) + B — 0 + nd6]’] =
A28[(Y X; — n6)?] + (B — 0 +nd6)* =nA*6(1 — 6) + (B— 0 + nA6)* =
02[(nd — 1)*> — nd?] + 6[n4* + 2(ndA — 1)B] + B?, which is constant if
(nd — 1) —n4? =0 and nd? + 2(nA — 1)B=0. Now (nd — 1)*> — n4?
=0 if A=1//n(/n+1), and nd>+2(md-1)B=0 if B=
—nd?2(nd— 1), which is 1/2(/n+1) for A =1//n(y/n+1). On

solving for a and b, we obtaing = b = \/ ;1/2; so (). X; + ﬁ/Z)/(n + \/;:)
is a Bayes estimator with constant risk and, hence, minimax. /1]

8 VECTOR OF PARAMETERS

In this section we present a brief introduction to the problem of simultaneous
point estimation of several functions of a vector parameter. We will assume
that a random sample X, ..., X, of size n from the density f(x; 6,, ..., 8,) is
available, where the parameter 8 = (8, ..., 6,) and parameter space © are
k-dimensional. We want to simultaneously estimate ,(6), ..., (), where
10),j=1, ..., r, is some function of § = (6, ..., 8,). Often k = r, but this
need not be the case. An important special case is the estimation of 6 =
(64 -..,0))itself; thenr = k,and 7,(0) = 6,, ..., 7,(6) = 6,. Another important
special case is the estimation of 7(f); then r=1. A point estimator of
(t1(6), .. ., 7(6))is a vector of statistics, say (Ty,...,T,),where T; = ¢(X;,..., X,)
and Tj is an estimator of 7,(6).

Our presentation of the method of moments and maximum-likelihood
method as techniques for finding estimators included the possibility that the
parameter be vector-valued. So we already have methods of determining esti-
mators. What we need are some criteria for assessing the goodness of an esti-
mator, say (T;, ..., T,), and for comparing two estimators, say (T}, ..., T.)
and (T, ..., T;). As was the case in estimating a real-valued function 7(0),
where we wanted the values of our estimator to be close to 7(6), we now want
the values of the estimator (T}, ..., T)) to be close to (t,(0), ..., T(0). We
want the distribution of (T;, ..., T,) to be concentrated around (z,(6), - .., 7,(8)).
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There are a number of ways of measuring the closeness of an estimator. For
instance, in comparing two estimators the definitions of “ more concentrated >
and ‘““closer,” given in Subsec. 3.1, can be generalized to r dimensions. We will,
however, restrict ourselves to consideration of unbiased estimators and define
several ways of measuring the closeness of an unbiased estimator. No attempt
will be made in this book to generalize to r dimensions the notions of loss and/or
risk, invariance, Bayes estimation, and minimax. As far as optimum estima-
tion is concerned, we will be content to consider only unbiased estimators and
look for a best estimator within the restricted class of unbiased estimators.

Definition 33 Unbiased An estimator (T;, ..., T,), where T;=
Xy, oo Xo), J=1, ..., r, is defined to be an unbiased estimator of
(t1(0), ..., 7,(8) if and only if &y[T;] = 7;(6) for j=1, ..., r and for all
0e®O. /1

In Sec. 5, where we considered unbiased estimation of a real-valued func-
tion 1(0), we employed the variance of an estimator as a measure of its closeness
to 7(6). Here we seek a generalization of the notion of variance to r dimensions.
Several such generalizations have been proposed ; we will consider four of them,
called (i) vector of variances, (ii) linear combination (with nonnegative coeffi-
cients) of variances, (ii1) ellipsoid of concentration, and (iv) Wilks’ generalized
variance. The last two require some knowledge of matrices.

Possibly the simplest way of generalizing the concept of variance to
r dimensionsisto usethe vector of variances of the unbiased estimators T3, ..., T,.
That is, let the vector (vary [T}], ..., vary [T,]) be a measure of the closeness of
the estimator (T;, ..., T,) to (7,(8), ..., 7,(0)). The disadvantage of such a
definition is that our measure is vector-valued and consequently sometimes
difficult to work with. One way of circumventing this disadvantage is to use a
linear combination of variances, that is, measure the closeness of the estimator
(Tys -, T to (14(0), ..., ©(8)) with ) 7_, a; var, [T;] for suitably chosen a; > 0.
Both of these generalizations of variance embody only the variances of the
T;,j=1,..., r. The T; are likely to be correlated ; so one might justifiably
think that our measure of closeness of (T3, ..., T;) to (11(0), ..., 7,(6)) should
incorporate the covariances of the T’s.

Notation If (T, ..., T)) is an unbiased estimator of (7,(9), ..., 7,(6)),
let 6,;(6) = covy [T;, T;]. The matrix whose ijth element is 6;;(0) is called
the covariance matrix of the estimator (Tj, ..., T;). Let 6¥/(6) denote the
ijth element of the inverse of the covariance matrix. /]
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(51(6), 72(0)

3 ,Z HO)It; — (N[ — 70)) = 4

FIGURE 8 ot

Definition 34 Ellipsoid of concentration Let (Tj, ..., T,) be an un-
biased estimator of (7,(6), ..., 7{(6)). Let 6*/(8) be the ijth element of the
inverse of the covariance matrix of (T}, ..., T,), where the ijth element of
the covariance matrix is ¢;;(6) = cov, [T;, T;]. The ellipsoid of concen-
trationof (T,,..., T,) is defined as the interior and boundary of the ellipsoid

T 3O - Oy - @l =+ 2 QD)

See Fig. 8 for r = 2. /111

Loosely speaking, the ellipsoid of concentration measures how concen-
trated the distribution of (T3, ..., T,) is about (7,(0), ..., 7(6)). [In fact, if one
considers the vector random variable, say (U,, ..., U,), uniformly distributed
over the ellipsoid of concentration, it can be proved that (U,, ..., U,) and
(T}, ..., T,) have the same first- and second-order moments.] The distribution of
an estimator (T3, ..., T,) whose ellipsoid of concentration is contained within
the ellipsoid of concentration of another estimator (77, ..., T) is more highly
concentrated about (z,(6), ..., 7,(0)) than is the distribution of (T}, ..., T)).

It is known that the determinant of the covariance matrix of an estima-
tor is proportional to the square of the volume of the corresponding ellipsoid of
concentration; hence another generalization of variance is as in Definition 35.

Definition 35 Wilks’ generalized variance Let (T;, ..., 7,) be an
unbiased estimator of (7,(6), ..., 7.(0)). Wilks’ generalized variance
of (Ty, ..., T,) is defined to be the determinant of the covariance matrix
of (Ty, ..., T). 1]
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Theorem 8, which showed how sufficiency could be used to improve on an
arbitrary unbiased estimator, generalizes to r dimensions. The generalization
is stated without proof.

Theorem 15 Let X,, ..., X, be a random sample from the density
f(x;0y,...,0),andlet S; = o(X,,..., X,), ..., S, = dnu(Xis ..., X,) be
a set of jointly sufficient statistics. Let (T}, ..., T,) be an unbiased esti-
mator of (7,(6), ..., 7,(6)). Define T} = &[T;|S;, ..., S,l,j=1,...,r.
Then,

1) (T{, ..., T}) 1s a statistic and an unbiased estimator of
(1), ..., 1(0)), and T; = £(S,, ..., S,); that is, T} is a function of the
sufficient statistics S;, ..., S,,.j=1,...,r.
(ii) var, [T]] < var, [T;] forevery0e©,j=1,...,r.
(iii) The ellipsoid of concentration of (T}, ..., T)) is contained in
the ellipsoid of concentration of (T, ..., T,), for every 0 € 6. 1]/

We might note that (ii) implies that
Y a;varg [T]]1< Y a;var,[T;] fora; >0
i=1 ji=1

and (iii) implies that Wilks’ generalized variance of (T}, ..., T)) is smaller than
Wilks’ generalized variance of (T, ..., T,).

Theorem 10 of Sec. 5 can also be generalized to r dimensions, but first the
concept of completeness has to be generalized.

Definition 36 Joint completeness For X,, ..., X,, a random sample
from the density f(x; @,, ..., 8,), let (T, ..., T,) be a set of statis-
tics. T, ..., T, are defined to be jointly complete if and only if
Eolx(Ty, ..., T,)] =0 for all 6 € © implies that P[«(T, ..., T,)=0]=1
for all 8 € ©, where «(T}, ..., T,) is a statistic. /]

EXAMPLE 47 Let X, ..., X, be a random sample from

1
f(x;0y,0;)= 92—_0_1 1(01,82)(x)s

where 0, <0,. Write 6 =(0,, 6,). Let ¥, =min[X;, ..., X,] and
Y, = max [X;, ..., X,]. We want to show that ¥, and Y, are jointly
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complete. (We know that they are jointly sufficient.) Let #x(Y;, Y,) be
an unbiased estimator of 0, that is,

go[%(Yl, Yn)] = 0 fOI‘ all 0 € E.

Now

69[‘(Y19 Yn)] = J.J.‘(yl’ yn)f)’l, Yu(yb yn) dyl dyn

az[J‘ 6, ,V1_9)
B 9, 01

x(yl’ .Vn) n(n 1)(6 _ 61 62 _ 6
1 1

* 92'—91.92—91
which is identically 0 if and only if

dyl] dyy,

J; f x(yl’ yn)(yn yl)n_z dyl dynEO fOI' 61 <02'
1

Differentiate both sides with respect to 6,, and obtain

02

L 21, 02)(0, — y)' "2 dy, =0  for all 6, < 6,;

1

now differentiate both sides of the resulting identity with respect to
6,, and obtain —(0,, 6,)(0, — 0,)" 2 =0 for all 6§, <6,, and hence
#(6,, 6,) =0 for 8, <@,; that is, z(y,, y,) =0 for y, <y,, where y,
and y, are the possible values of Y; and Y¥,. We have shown that Y, and
Y, are jointly complete. 111!

If the density f(x; 6, ..., 6,) is a member of the k-parameter exponential
family, a set of jointly complete and sufficient statistics can be found using the
following theorem. It is a k-dimensional analog of Theorem 9 and is stated

without proof. The following theorem is not precisely stated; certain regularity
conditions are omitted [16].

Theorem 16 Let X, ..., X, be a random sample from f(x; 6, - .., 6,)-
k
I f(x; 6y, ..., 0 =a(@, ..., 0)b(x)exp [ Y cy8,, ..., 0,) dy(x)], that
[} . j=1
" s, f(x; 0y, . .., 0,) is a member of the k-parameter exponential family, then

n
(i;1d1(X i)y e ’i; d( X, i)) is a minimal set of jointly complete and sufficient
statlstlcfs. 1/
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EXAMPLE 48 Let X,, ..., X, be a random sample from

)
Now

1 0,\2 x2  O,x
x;0,,0,)= ex [_ (_1)] ( 1 )

f(x; 619 62) = ¢01.022(x) =

n n
so Y X; and .zl X} are jointly complete and sufficient statistics by
i=

i=1

Theorem 16. /1]

We will state without proof the vector analog of Theorem 10. In the
same sense that an UMVUE was optimum, this following theorem gives an
optimum estimator for a vector of functions of the parameter.

Theorem 17 Let X, ..., X, be a random sample from f(x; 6, ..., 8,).
Write0=(0,,...,0,). IfS,=0(X, ..., Xo)y ooy Sp=a,(X1, ..., X))
is a set of jointly complete sufficient statistics and if there exists an un-

biased estimator of (z,(#), ..., t,(6)), then there exists a unique unbiased
estimator of (7,(0), ..., ©.(0), say T} = #3(S;, ..., S,), ..., TF¥=
¢5(S;, ..., S,), where each ¢} is a function of S, ..., S,,, which satisfies:

(i) vary [T}] < var, [T;] for every 08, j=1, ..., r, for any
unbiased estimator (T}, ..., T;) of (7,(6), ..., 1.(0)).

(ii) The ellipsoid of concentration of (T%, ..., T7) is contained in
the ellipsoid of concentration of (T, ..., T,), where (T}, ..., T,) is any
unbiased estimator of (z,(0), ..., 7,(0)). /1]

There are four different maximal subscripts, all of which are intended.
n denotes the sample size, k denotes the dimension of the parameter 6, m is the
number of real-valued statistics in our jointly complete and sufficient set, and r
is the dimension of the vector of functions of the parameter that we are trying
to estimate. In practice, it will turn out that usually'k = m. The estimator
(T%, ..., TP is optimal in the sense that among unbiased estimators it is the
best estimator using any of the four generalizations of variance that have been
proposed.

Just as was the case in using Theorem 10, we have two ways of finding
(T*, ..., T*. Thefirstis to guess the correct form of the functions 47, ..., 47,
which are functions of S, ..., S,, that will make them unbiased estimators of
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, 7(0). The second is to find any set of unbiased estimators of

,(6), ..., t,(0) and then calculate the conditional expectation of these unbiased
estimators given the set of jointly complete and sufficient statistics. We employ

only the first method in the following examples.

EXAMPLE 49 Let X;, ..., X, be a random sample from the density

f(x; 05, 0,) = [1/(62 — 6D, 6, (%). Suppose we want to jointly estimate
the range and midrange, that is, 7,(8) = 6, — 6, and 7,(0) = (6, + 6,)/2.
We know that ¥; = min [X;, ..., X,] and Y, =max [X}, ..., X,] are
jointly sufficient (see Example 23); also, they are jointly complete (see
Example 47). Hence, to find the unbiased estimator (T, T3) which has
uniformly smallest variance for each component among all unbiased
estimators, it suffices to find the unbiased estimator that is a function of
the jointly complete sufficient statistics. Since &[Y;]=0;+(8,—6,)/(n+1)
and &[Y,] = 6, — (6, — 6)/(n + 1), ({(n + D/(n — DI(Y,— Y,), (¥, + ¥,)/2)
is the unbiased estimator of (6, — 0,, (6, + 0,)/2) that we are seeking. ////

EXAMPLE 50 Let X), ..., X, be a random sample from the normal den-

sity f(x; 0y, 0,) = ¢,,,2(x). By Examples 22 and 48, _ X; and ) X7 are
jointly complete and sufficient statistics. Hence, by Theorem 17,
(> Xi/n, 3 (X, — X)*/(n — 1)) is an unbiased estimator of (i, 62) whose
corresponding ellipsoid of concentration is contained in the ellipsoid of
concentration of any other unbiased estimator. [Norte: ) (X, — X)* =
Y. X7 —nX?; so the estimator ¥ (X; — X)?/(n — 1) is a function of the
jointly complete and sufficient statistics )" X; and Y X?2.]

For this same example, suppose we want to estimate that function
of 8 = (u, ¢?) satisfying the following integral equation:

f ¢ﬂ,62(x) dx = o
(0)

for a fixed and known. 1(6) is that point which satisfies PIX; > 1] =«;
that is, it is that point which has 100« percent of the mass of the population
density to its right, or ¢(f) is the (1 — @)th quantile point. We have
I —a=o(6) — nlfo); so ©(6) =p+2z_,0, where z,_, is given by
D(z;_,)=1—a Since « is known, z, _, can be obtained from a table
of the standard normal distribution. To find the UMVUE of (6), it
suffices to find the unbiased estimator of M + z; _, o which is a function of
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Y X;and ) X?. We know that X is the UMVUE of g, and it can be
verified that

T[(n — 1)/2] .
ToR2 JEX-XP=T

say, is the UMVUE of ¢; hence X + z, _, T* is the UMVUE of 7(8). We
have employed Theorem 17 for r = 1; our vector of functions of the
parameter that we wanted to estimate was unidimensional. /I

9 OPTIMUM PROPERTIES OF
MAXIMUM-LIKELTHOOD ESTIMATION

Several methods of finding point estimators were presented in Sec. 2 of this
chapter. There, and in succeeding sections, we have particularly emphasized
the method of maximum likelihood. In this section we will partially justify
such emphasis by considering some optimum properties of maximum-likelihood
estimators.

For simplicity of presentation, let us consider the maximum-likelihood
estimation of the parameter 8, which is to be estimated on the basis of a random
sample from a density f( - ; 8), where 0 is assumed to be areal number. That is,
let us consider the unidimensional-parameter case and estimate @ itself. Recall
that for the observed sample x,, ..., x, the maximum-likelihood estimate of 6
is that value, say 8, of 8 which maximizes the likelihood function L(0; x,, ..., x,)

= f'[ f(x;; 6). Let ©,=8,(X,, ..., X,) denote the maximum-likelihood
i=1

estimator of @ based on a sample of size n. We defined and discussed in Sec. 3
of this chapter a number of properties that an estimator may or may not possess.
Recall that some of these properties, such as unbiasedness and uniformly
minimum variance, are referred to as small-sample properties, and others of
these properties, such as consistency and best asymptotically normal, are referred
to as large-sample properties. The use of the word “small” in *small-sample >’
is somewhat misleading since a small-sample property is really a property that is
defined for a fixed sample size, which may be fixed to be either small or large.
By a large-sample property, we mean a property that is defined in terms of the
sample size increasing to infinity. Our main result of this section will be con-
tained in Theorem 18 below and will concern optimum large-sample properties
of maximume-likelihood estimation.
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We have already observed some small-sample properties of maximum-
likelihood estimation. For instance, we have noted two things: first, that some
maximum-likelihood estimators are unbiased and others are not and, second,
that some maximum-likelihood estimators are uniformly minimum-variance
unbiased and others are not. For example, in the density f(x; 6) = @, 1(x) the
maximum-likelihood estimator of @ is X, which is the uniformly minimum-
variance unbiased estimator of 6, whereas in the density f(x; 6) = (1/6)]o, 6)(x)
the maximum-likelihood estimator of 8 is Y, = max [X;, ..., X,], which is
biased. [We might note here that the Y, in this last example can be corrected
for bias by multiplying Y, by (n+ 1)/n and that the estimator that is thus
obtained is uniformly minimum variance unbiased.]

One property that it seems reasonable to expect of a sequence of esti-
mators is that of consistency. Theorem 18 will show, in particular, that generally
a sequence of maximum-likelihood estimators is consistent.

Theorem 18 If the density f(x; 0) satisfies certain regularity conditions
and if ®, = 3,(X;, ..., X,) is the maximum-likelihood estimator of 6 for
a random sample of size n from f(x; 6), then:

(i) O, is asymptotically normally distributed with mean 6 and
0 2
variance l/ma",[[% log f(X; 0)] ]

(i) The sequence of maximum-likelihood estimators @, ..., ©,,
... is best asymptotically normal (BAN). /1]

We will not be able to prove Theorem 18. In fact, we have not precisely
stated it, inasmuch as we have not delineated the regularity conditions. We
do, however, want to emphasize what the theorem says. Loosely speaking, it
says that for large sample size the maximum-likelihood estimator of 8 is as
good an estimator as there is. (Other estimators might be just as good but not
better.)

We might point out one feature of the theorem, namely, that the asymptotic
normal distribution of the maximum-likelihood estimator is not given in terms of
the distribution of the maximum-likelihood estimator. It is given in terms of
Sf(+; 0), the density sampled. Also, the variance of the asymptotic normal
distribution given in the theorem is the Cramér-Rao lower bound.

EXAMPLE 51 Let Xj,..., X, be a random sample from the negative
exponential distribution f(x; 6) = 8™, ,,(x). It can be routinely
demonstrated that the maximum-likelihood estimator of 0 is given by
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n/y. X;=1/X,. According to Theorem 18 above, the maximum-likeli-
1

hood estimator has an asymptotic normal distribution with mean 6 and
variance equal to

1 _6& _
né"o[[é% log f(X; 6)] 2}

(See Example 29.) I

We have ordinarily considered estimation of 7(#) some function of 6,
rather than estimation of € itself. For maximum-likelihood estimation, we
noted (see Theorem 2) that the maximum-likelihood estimator of 7(d) was given
by t(@), where © was the maximum-likelihood estimator of 6. If we assume
that 7( - ) is differentiable, then it can be shown that 7(®) has an asymptotic
normal distribution with mean 7(f) and variance

[7'(0))?
ms’a[[a% log f(X; 9)] 2]

which is the Cramér-Rao lower bound. (See Theorem 7.)

Maximume-likelihood estimators possess similar optimum large-sample
properties in the case of a k-dimensional parameter. For instance, it can be
proved (again under regularity conditions) that the joint distribution of the
maximum-likelihood estimators is asymptotically distributed as a multivariate
normal distribution. Let us illustrate for the case when k=2; that is,
@ = (6,, 6;). Recall that the bivariate normal distribution is specified by the
five parameters yu,, i, 62, 63, and p. (See Sec. 5 of Chap. IV.) It turns out
that under certain regularity conditions the joint distribution of the maximum-
likelihood estimators &, and ©, is asymptotically distributed as a bivariate
normal distribution with parameters y, = 8,, y, = 0,,

]

- A2

.
—&,|—==log f(X;0
- B-aeg gf( )-
0-1 -_— nA b
-az . T
—éag é"éilogf(X’e)
62 = - -

nA ’
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and
62
1 X;
[aa2 25, &/ o)
po,6, = A ’
where
5 5’ ? _x 9] 2
A= 0| 2 tou 06 0], 3 1or X 0)] - (6057 les s 0] )

EXAMPLE 52 Let X,,..., X, be a random sample from the density

1 2
f(x;0)=f(x; 0y, 0,) = ¢y, o,(x) = o~ (1/202)(x—01)2

A/ 27562

We have already derived, in Example 6, the maximum-likelihood estimators
of 8, and 0, ; they are, respectively,

‘2 and Zn: - 0)%
1 1

According to the above, the asymptotic large-sample joint distribution of
O, and O, is a bivariate normal distribution with means 6, and 6,.
Since log f(X; 0) = —4log2n — 4 log 8, — (1/20,)(X — 6,)?, the required
derivatives are

zlv—
=It—-

2

|
52 108/ (X 0 = — &=,
2 X_ 61
662 661 logf(X’ 6) - = 92 s
and
2
« 1 (X —6,)?
— 10 X. 9 — _ 17 .

and because

E[X]=16, and El(X — 91)2] =0,,

—é’[azl XG !

62
_évo [662 691 logf(X; 6)' = 09
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and
—& [az log f(X: 9)] _
°lagz /| T 22
which gives A = 1/263. Finally, then, ¢? = 6,/n, 62 = 20%/n, and p = 0.
I
PROBLEMS

1 An urn contains black and white balls. A sample of size » is drawn with replace-
ment. What is the maximum-likelihood estimator of the ratio R of black to
white balls in the urn? Suppose that one draws balls one by one with replacement
until a black ball appears. Let X be the number of draws required (not counting
the last draw). This operation is repeated » times to obtain a sample X;, Xa, ...,
X.. Whatis the maximum-likelihood estimator of R on the basis of this sample?

2 Suppose that # cylindrical shafts made by a machine are selected at random from
the production of the machine and their diameters and lengths measured. It is
found that N;; have both measurements within the tolerance limits, N, have
satisfactory lengths but unsatisfactory diameters, N.; have satisfactory diameters
but unsatisfactory lengths, and N.. are unsatisfactory as to both measurements.
> N, =n. Each shaft may be regarded as a drawing from a multinomial popula-
tion with density

x11,%12,.%21

I 260 265 25 Oy 2Ty 2P — p21) 22 for xi; =0, 1; Z xiy=1

having three parameters. What are the maximum-likelihood estimates of the
parameters if Ny, =90, Ny2 =6, N.; =3, and N2, =17

3 Referring to Prob. 2, suppose that there is no reason to believe that defective
diameters can in any way be related to defective lengths. Then the distribution
of the X,; can be set up in terms of two parameters: p., the probability of a satis-
factory length, and ¢,, the probability of a satisfactory diameter. The density of
the X, is then

(P1g)™ ' [p1(0 — g)T (A — p)a: T2'A — po X1 — @I
for xu=0, 1; ZXU=1.

What are the maximume-likelihood estimates for these parameters? Are the prob-
abilities for the four classes different under this model from those obtained in the
above problem?

4 A sample of size n, is to be drawn from a normal population with mean u, and
variance o2. A second sample of size #. is to be drawn from a normal population
with mean p. and variance o3. What is the maximum-likelihood esti'rrlg.'ator of
0 = p, — p2 7 If we assume that the total sample size # =n, + n. 1S xéd, how
should the n observations be divided between the two populations in order to
minimize the variance of the maximum-likelihood estimator of 6?
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A sample of size n is drawn from each of four normal populations, all of which
have the same variance o The means of the four populations are a + b +-c,
a+b—c,a—b+c,anda—b—c. What are the maximum-likelihood estima-
tors of a, b, ¢, and 0>? (The sample observations may be denoted by X;,i=1,
2,3,4andj=12,...,1)

Observations X1, Xz, .- -, Xu are drawn from normal populations with the same
mean p but with different variances of, oi , ..., a2, Is it possible to estimate all
the parameters? If we assume that the o] are known, what is the maximum-
likelihood estimator of p?

The radius of a circle is measured with an error of measurement which is dis-
tributed N(0, o), ¢ unknown. Given n independent measurements of the
radius, find an unbiased estimator of the area of the circle.

Let X be a single observation from the Bernoulli density f(x; 6)=
6%(1 — 0) ~*I 0, 1y(x), where 0 < 0 <1. Let £:(X)= X and ¢(X) =4

(@) Are both £,(X) and #2(X) unbiased? Is either?

(b)) Compare the imean-squared error of #,(X) with that of #2(X).

Let X, X be a random sample of size 2 from the Cauchy density

1
C O\ — - ]
f(x,B) 17[1+(x—9)2]’ o0 << U< oo,

Argue that (X; + X>)/2 is a Pitman closer estimator of ¢ than X, is. [Note that
(X1 + X-)/2 is not more concentrated than X, since they have identical distribu-
tions.]

Let 6 denote some physical quantity, and let X1, ..., X, denote » measurements of
the physical quantity. If @ is estimated by ©, then the residual of the ith measure-
ment is defined by X; — 6, i=1, ..., n. Show that there is only one estimator
with the property that the residuals sum is 0, and find that estimator. Also,
find that estimator which minimizes the sum of squared residuals.

Let X,, ..., X, be a random sample from some density which has mean p and
variance o2.

(@) Show that > a, X, is an unbiased estimator of i for any set of known constants
1

a, ..., a,satisfying > a; = 1.
1

@& If 21: a; =1, show that var | 2 a; X,) is minimized fora; =1/n,i=1, ..., n.

[HinT: Prove that > a = Dlai—1/m)2+1 /n when i a=1.]
. 1 1 1

Let Xy, ..., X, be a random sample from the discrete density function f(x; 6) =

0*(1 — 6)' ~*Io, 1(x), where 0 <6 < §. Note that © = {f: 0 < 0 < ).

(a) Find a method-of-moments estimator 6, and then find the mean and mean-
squared error of your estimator.

(b) Find a maximum-likelihood estimator of 6, and then find the mean and
mean-squared error of your estimator.
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13

14

5

16

17

Let X,, X, be a random sample of size 2 from a normal distribution with mean ¢
and variance 1. Consider the following three estimators of 0:

T, =£i(X1, X2) = %X, + 31X,
T, =£(X1, X2)=1X: + iX.
T3 = £3(Xy, X2)=31X1 + 1Xo.
(@) For the loss function £(z; 0) = 36*(t — )2, find &,,(f) for i=1, 2, 3, and
sketch it.

(b) Show that 7, is unbiased for i =1, 2, 3.

Let Xi, ..., Xa, ... be independent and identically distributed random variables
from some distribution for which the first four central moments exist. We know
that £[82] = ¢2 and

1 —3
var [82]=;(p4—-z_ T 0'4),

where
1
2 . 2
8§ =— 2 (X, — X

Is 82 a mean-squared-error consistent estimator of o2 ?
In genetic investigations one frequently samples from a binomial distribution

m
f(x)= (x) P*q™~* except that observations of x = 0 are impossible; so, in fact, the

sampling is from the conditional (truncated) distribution

m pxq m—x
(X) 1 —_ qm I{l’ 2, .. ,m}(X).

Find the maximum-likelihood estimator of p in the case m =2 for samples of
size n. Is the estimator unbiased ?

Let X be a single observation from N(0, 0). (0 =o02.)

(@) Is X a sufficient statistic?

(6) Is | X| a sufficient statistic ?

(¢) Is X2 an unbiased estimator of 6?

(@ What is a maximum-likelihood estimator of v/ 8?

(¢) What is a method-of-moments estimator of V/0?

Let X have the density f(x;8) =(0/2)'"(1 — 6)' ""i_1.0.y(x), 001

Define #(x) = 211)(x).

(a) Is X a sufficient statistic? A compldte statistic ?

(b)) Is | X| asufficient statistic? A cemple{e statistic ?

(¢) What is a maximum-likelihood estimator of 6?

(d) Is T= #(X) an unbiased estimator of 6?

(&) Does f(x; 6) belong to an exponential class ?

(f) Find an estimator with uniformly smaller mean-squared error than that of
Z(X), if such exists.
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Let X, Xz2,..., Xnbea random sample from the density

Fx; 0) = 0x~ 21, oy(x)

where 6 > 0.

(@) Find a maximum-likelihood estimator of 6.

() Is Y, =min [X;, ..., X.] a sufficient statistic ?

Let Xi, ..., Xa. be a random sample from f(x; ) = e~ 1x-% — o0 <0 <00,

(d) Discuss sufficiency for this density.

(b)) Obtain a method-of-moments estimator of 0.

(¢) Find a maximum-likelihood estimator of 6.

(d) Does f(x; f) belong to an exponential class?

Find a maximum-likelihood estimator for o in the density f(x; o)=

(2/a?)(oe — X)L (o, oy(x) for samples of size 2. Is it a sufficient statistic? Estimate «

by the method of moments. What is the maximum-likelihood estimator of the

population mean ?

Let X, ..., X» be a random sample from f(x; 6) = (1/0)I;0, sy(x), where & > 0.

Define Y, =max [Xi, ..., Xu] and Y, =min [X,,..., X ]

(a) Estimate 6 by the method of moments. Call the estimator 7,. Find its
mean and mean-squared error.

(b) Find the maximum-likelihood estimator of f. Call the estimator 7>. Find
its mean and mean-squared error.

{¢) Amongallestimators of the form aY,, where a is a constant which may depend
on n, find that estimator which has uniformly smallest mean-squared error.
Call it 75. Find its mean and mean-squared error.

(d) Find the UMVUE of 6. Call it 7,. Obtain its mean and mean-squared
error.

(e) LetTs=Y,+ Y,. Find the mean and mean-squared error of Ts.

(f) What estimator of # would you use and why ?

(g) Find the maximum-likelihood estimator of the variance of the population.

Let X,,..., X,bearandom sample from the Bernoulli distribution, say P[X = 1] =

0=1—P{X=0]

(a) g‘ind the Cramér-Rao lower bound for the variance of unbiased estimators of

1 — 0).

(b) Find the UMVUE of 8(1 — 0) if such exists.

Assuming r known, find the maximum-likelihood estimator for A for a random

sample of size n from a gamma distribution. Find a sufficient statistic if one

exists, Is your maximum-likelihood estimator unbiased? Is there an UMVUE

of A?

Let Xy, ..., X, be a random sample from 0x°-11, ,,(x), where 8 > 0.

(@) Find the maximum-likelihood estimator of p. = /(1 + 6).

(b) Find a sufficient statistic, and check completeness. Is > X, a sufficient
statistic?

(c) Is there a function of 6 for which there exists an unbiased estimator whose
variance coincides with the Cramér-Rao lower bound ?

*(d) Find the UMVUE of each of the following: 6, 1/, p. = 6/(1 + 6).
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28

30

31

Let X3, ..., X, be a random sample from the binomial distribution

(m)P"(l —pm % x=0,1,..., m where mis knownand 0 <p <1.
X

@

Estimate p by the method of moments and the method of maximum likelihood.

(b) Is there an UMVUE of p? If so, find it.
*26 Let X, ..., X, be a random sample from the discrete density function

fx; )=/, o, ....ax),

where 6 =1, 2,.... Thatis, @ ={f: 0 =1, 2,...} =the set of positive integers.

(a)
()]

©)
@)

Find a method-of-moments estimator of 6. Find its mean and mean-squared
€rror.

Find a maximum-likelihood estimator of §. Find its mean and mean-squared
error.

Find a complete sufficient statistic.

Let T=Y,, the largest order statistic. Show that the UMVUE of 0 is
[T —(T— )" YT —(T— 1))

Let X be a single observation from the density [1/B(0, §)]x®~'(1 — x)° L0, 1y(x).
Is X a sufficient statistic? Is X complete?

An experimentef knows that the distribution of the lifetime of a certain component
is negative exponentially distributed with mean 1/6. On the basis of a random
sample of size n of lifetimes he wants to estimate the medianlifetime. Find both
the maximum-likelihood and uniformly minimum-variance unbiased estimator of
the median.

Let X, ..., X, be a random sample from N(6, 1).

(@

()]
(©)
()]
(e)
N

Find the Cramér-Rao lower bound for the variance of unbiased estimators of
8, 02, and P{X > 0].

Is there an unbiased estimator of 02 for n =17 If so, find it.

Is there an unbiased estimator of P[X > 0]? If so, find it.

What is the maximum-likelihood estimator of P[X > 0]?

Is there an UMVUE of 02? If so, find it.

Is there an UMVUE of P[X >0]? If so, find it.

For a random sample from the Poisson distribution, find an unbiased estimator of
() =1 4+ Ne-* Find a maximum-likelihood estimator of 7(A). Find the
UMVUE of 7(}).

Let X,, ..., X, be a random sample from the density

2
fx: )= "0% Io.0)(x)

where ¢ > 0.

(@
®)
©

Find a maximum-likelihood estimator o‘ffﬂ.
Is Y, =max [X,, ..., X,] a sufficient statistic? Is Y, complete?
Is there an UMVUE of 0?7 If so, find it.



32

33

34

35

* 36

37

PROBLEMS 367

Let X3,..., Xnbea random sample from the density
f; =004+ 2"*PLo o(x) for 0>0.

(@) Estimate 6 by the method of moments assuming 0 > 1,

() Find the maximum-likelihood estimator of 1/6.

() Find a complete and sufficient statistic if one exists.

(d) Find the Cramér-Rao lower bound for unbiased estimators of 1/6.
(¢) Find the UMVUE of 1/8 if such exists.

(f) Find the UMVUE of @ if such exists.

Let X, ..., X, be a random sample from

f(x; 0)= I[ 0, 01(x) for @>0.

(@) Find a maximum-likelihood estimator of 6.

() Suppose n =1, so that you have only one observation, say X = X,. Clearly
X is a sufficient statistic. Is X"a minimal sufficient statistic? Is X complete ?

Let X,, ..., X. be a random sample from the negative exponential density

f(x; 0) = Oe="Io, o)(x)-

(@) Find the uniformly minimum-variance unbiased estimator of var [X,]if such
exists.

(b)) Find an unbiased estimator of 1/6 based only on Y{” =min [X], ..., X.].
Is your sequence of estimators mean-squared-error consistent ?

Let Xi,:.., X, be a random sample from the density

log @
S(x; 6)=9_'__'T 9x1(o.1)(x), 0>1.

(@) Find a complete sufficient statistic if there is one.
(b) Find a function of & for which there exists an unbiased estimator whose

variance coincides with the Cramér-Rao lower bound if such exists.
Show that

a 2
(3’9[{8—9 log f(X; B)} ] = “g"[aez log f(X; 9)]

Let X, ..., X, be a random sample from the density

Jfx; ) =¢--0 exp (—e==~9),
where — o0 < < .

(@) Find a method-of-moments estimator of 6.

(b)) Find a maximum-likelihood estimator of 6.

(¢0) Find a complete sufficient statistic.

(d) Find the Cramér-Rao lower bound for unbiased estimators of 6.

(e) Ts there a function of 6 for which there exists an unbiased estimator, the

variance of which coincides with the Cramér-Rao lower bound?  If 80, find it.
*(f) Show that I'(n)/T'(n) — log (3 e7*1) is the UMVUE of 6.
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Let Xi, ..., X, denote a random sample from
S(x; 0) =fo(x) = 0f1(x) + (1 — 0) fo(x),

where 0 < 8 <1 and f,(-) and fo(-) are known densities.

(@) Estimate 8 by the method of moments.

(b) For n=2, find a maximum-likelihood estimator of 8.

(¢) Find the Cramér-Rao lower bound for the variance of unbiased estimators
of 6.

Suppose that a(-) and b(-) are two nonnegative functions such that f(x; 6) =

a()b(x)Io. 0)(x) is a probability density function for each 6 > 0.

(@) What is a maximum-likelihood estimator of 6?

(b) Is there a complete sufficient statistic? If so, find it.

(¢) Is there an UMVUE of 6?7 If so, find it.

Let Xi, ..., X, be a random sample from N(@, 8), 6 > 0.

(@) Find a complete sufficient statistic if such exists.

(b) Argue that X is not an UMVUE of 6.

(¢) Is 8 either a location or scale parameter ?

Let Xy, ..., X. be a random sample from N(0, 0%), — 0 < 0 < .

(a) Is there a unidimensional sufficient statistic?

(b) Find a two-dimensional sufficient statistic.

(¢ Is XanUMVUEof#? {HinT: Find an unbiased estimator of & based on 82;
call it 7*. Find a constant g to minimize var [aX + (1 — a)T*].}

(d) Is 6@ either a location or scale parameter ?

Let X3, ..., X. be a random sample of size » from the density

|
f(x; 0) = 9 Ite. 261(X), 0 >0.

(a) Find a maximum-likelihood estimator of 6.

(b)) We know that Y, and Y, are jointly sufficient. Are they jointly complete ?

(¢) Find the Pitman estimator for the scale parameter 6.

(d) For a and b constant (they may depend on #), find an unbiased estimator of
8 of the form aY, + b7, satisfying P[Y,/2 <aY, + bY,< Yi]=1 if such
exists. Why is P[Y,./2<aY,+ bY,< Y,]=1 desirable?

Let Zy, --., Z, be a random sample from N(0, 62), ¢ > 0. Define X, = |Z,|, and

consider estimation of 8 and 82 on the basis of the random sample Xj, ..., X,.

(@) Find the UMVUE of 62 if such exists.

(b) Find an estimator of 62 that has uniformly smaller mean-squared error than
the estimator that you found in part (a).

(¢) Find the UMVUE of § if such exists.

(d) Find the Pitman estimator for the scale parameter 6.

() Does the estimator that you found in part (d) have uniformly smaller mean-
squared error than the estimator that you found in part (¢)?
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Let Xi, ..., X» be a random sample from
f(x; 0) =e~ "L, o)(X) for —o0 < 8 < oo,

(a) Find a sufficient statis tic.

(b) Find a maximum-likelihood estimator of 6.

© Find a method-of-moments estimator of 6.

(d) Ts there a complete sufficient statistic? If so, find it.

() Find the UMVUE of 8 if one exists.

(/) Find the Pitman estimator for the location parameter 6.

(g9) Using the prior density g(6) = e~*/ 0. «)(6), find the posterior Bayes estimator
of 6.

Let Xy, ..., X, be a random sample from f(x|8) = 6x°~*10,1,(x), where 8 > 0.

Assume that the prior distribution of @ is given by

go(0) =[/T()N 0 e~ 0, (D),

where r and A are known.

(@) What is the posterior distribution of ©?

(b) Find the Bayes estimator of 6 with respect to the given gamma prior distribu-
tion using a squared-error loss function.

Let X be a single observation from the density f(x| ) = (2x/0%)I,. 6)(x), where

6 >0. Assume that © has a uniform prior distribution over the interval (0, 1).

For the loss function £(¢; 8) = 02(+ — 0)2, find the Bayes estimator of .

Let X, X2, ..., X, be a random sample of size » from the following discrete

density:

2
flx; 0) = (x) 0" (1 — 0)>~*L0. 1, 21(%),

where 0 > 0.

(a) Is there a unidimensional sufficient statistic? If so, is it complete?

(6) Find a maximum-likelihood estimator of 2 = P[X, =2]. Is it unbiased ?

(¢) Find anunbiased estimator of # whose variance coincides with the correspond-
ing Cramér-Rao lower bound if such exists. If such an estimate does not
exist, prove that it does not.

(d) Find a uniformly minimum-variance unbiased estimator of 62 if such exists.

(e) Using the squared-error loss function find a Bayes estimator of 8 with respect
to the beta prior distribution

g(0) =

1
B b 0= 0 Lo, 16).

(f) Using the squared-error loss function, find a minimax estimator of 0.
(9) Find a mean-squared error consistent estimator of 62.
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Let X, ..., X, be a random sample from a Poisson density

e“"H"
1 Io. 1. ..5(x),

where 8 > 0. For a squared-error loss function find the Bayes estimator of 6 for
a gamma prior distribution. Find the posterior distribution of ©. Find the
posterior Bayes estimator of 7(6) = P[X: = 0].

Let Xy, ..., X, be a random sample from f(x|8) = (1/0)1,e,(x), where 6 > 0.
For the loss function (#— #)2/6> and a prior distribution proportional to
0-21,, «¥(0) find the Bayes estimator of 6.

Let Xi, ..., X, be a random sample from the Bernoulli distribution. Using the
squared-error loss function, find that estimator of € which has minimum area
under its risk function.

Let Xy, ..., X, be a random sample from the geometric density

f(x; 0) =00 — )L, . ..,(x)

where 0 < 0 < 1.

(@) Find a method-of-moments estimator of 0.

(b)) Find a maximum-likelihood estimator of 6.

(¢) Find a maximum-likelihood estimator of the mean.

(d) Find the Cramér-Rao lower bound for the variance of unbiased estimators of
1—0.

(&) Is there a function of 6 for which there exists an unbiased estimator the
variance of which coincides with the Cramér-Rao lower bound? If so,
find it.

(f) Find the UMVUE of (1 — 6)/8 if such exists.

(9) Find the UMVUE of ¢ if such exists.

(n) Assume a uniform prior distribution and find the posterior distribution of ©.
For a squared-error loss function, find the Bayes estimator of € with respect
to a uniform prior distribution.

Let € be the true 1.Q. of a certain student. To measure his 1.Q., the student takes

a test, and it is known that his test scores are normally distributed with mean ¢ and

standard deviation 5. ,

(@) Thestudent takes the 1.Q. test and gets ascore of 130. 'What is the maximum-
likelihood estimate of 6?

(b) Suppose that it is known that 1.Q.’s of students of a certain age are distri-
buted normally with mean 100 and variance 225; that is, ® ~ N(100, 225).
Let X denote a student’s test score [ X is distributed N(6, 25)]. Find the pos-
terior distribution of ® given X = x. What is the posterior Bayes estimate
of the student’s 1.Q. if X =130.

*53 Let Xy, ..., X» be a random sample from the density

S0, ) =f(x; 0, ) =B e CMEDL, (),
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where — o0 < a < o and 8>0. Show that Y, and > X, are jointly sufficient.
It can be shown that Y; and > (X; — Y,) arejointly complete and independent of
each other. Using such results, find the estimator of (o, B) that has an ellipsoid of
concentration that is contained in the ellipsoid of concentration of any other un-
biased estimator of (&, §)- (¥, =min[Xy,..., X,])

54 Let X,, ..., X, be a random sample from the density

f(x; o, 6) = (1 - 0)9:&—31{“, a+1, ...)(x)s

where —0 <a<wand 0< 6 <1,
(@) Find a two-dimensional set of sufficient statistics.
*(b) Find the maximum-likelihood estimator of (e, 6).
55 Let X.,..., X. bea random sample from the density

2 2(1 —
flx; )= _B-E Iio,0(X) + 'Sl""_—"'ex) Lo, 11(X),

where 0 <6 <1.
(a) Estimate 8 by the method of moments.
(b) Find the maximum-likelihood estimator of  forn =1and n = 2.
(¢) For n =1 find a complete sufficient statistic if such exists. Find a UMVUE
of ¢ for n=1 if such exists.
*(d) Find the maximum-likelihood estimator of 6.
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PARAMETRIC INTERVAL ESTIMATION

1 INTRODUCTION AND SUMMARY

Chapter VII dealt with the point estimation of a parameter, or more precisely,
point estimation of a value of a function of a parameter. Such point estimates
are quite useful, yet they leave something to be desired. In all those cases when
the point estimator under consideration had a probability density function, the
probability that the estimator actually equaled the value of the parameter being
estimated was 0. (The probability that a continuous random variable equals
any one value is 0.) Hence, it seems desirable that a point estimate should be
accompanied by some measure of the possible error of the estimate. For in-
stance, a point estimate might be accompanied by some interval about the point
estimate together with some measure of assurance that the true value of the
parameter lies within the interval. Instead of making the inference of estimating
the true value of the parameter to be a point, we might make the inference of
estimating that the true value of the parameter is contained in some interval.
We then speak of interval estimation, which is to be the subject of this chapter.

Like point estimation, the problem of interval estimation is twofold. First,
there is the problem of finding interval estimators, and, second, there is the prob-
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lem of determining good, or optimum, interval estimators. The considerations
of these two problems that will appear in this chapter will be incomplete.
Further considerations will be presented at the end of the next chapter on testing
hypotheses. The mathematics of interval estimation and hypotheses testing are
closely related. Either concept could be used to introduce the other. In this
book, we have decided to introduce interval estimation first, right after our
presentation of point estimation, then introduce hypotheses testing, and finally
point out the close mathematical relationship between the two.

The introduction to interval estimation that appears in this chapter will
not be as thorough as was our discussion of point estimation in the last chapter.
One should not infer from this that interval estimation is less important since in
practice the opposite is usually true. It is just easier to present the basic theory
of point estimation. No concerted effort will be given to the problem of finding
optimum interval estimators. The chapter will be divided into six main sections,
the first being this introductory section. Section 2 will be devoted to confidence
intervals, where the notion is introduced and defined. One method of finding
confidence intervals will also be given as well as some idea as to what an optimum
confidence interval might be. Section 3 will consider several examples of con-
fidence intervals that are associated with sampling from the normal distribution.
Such discussion will hinge on the results of Sec. 4 of Chap. VI. Several general
methods of finding confidence intervals are given in Sec. 4; another method,
which utilizes the theory of hypotheses testing, will be given at the end of Chap.
IX. A brief discussion of large-sample confidence intervals appears in Sec. 5,
and Sec. 6 presents another type of interval estimation, namely, Bayesian interval
estimation.

2 CONFIDENCE INTERVALS

2.1 An Introduction to Confidence Intervals

In practice, estimates are often given in the form of the estimate plus or minus a
certain amount. For instance, an electric charge may be estimated to be
(4.770 1 .005)107!° electrostatic unit with the idea that the first factor is very
unlikely to be outside the range 4.765t0 4.775. A cost accountant for a publish-
ing company in trying to allow for all factors which enter into the cost of produc-
ing a certain book (actual production costs, proportion of plant overhead, pro-
portion of executive salaries, etc.) may estimate the cost to be 83 + 4.5 cents per
volume with the implication that the correct cost very probably lies between



374 PARAMETRIC INTERVAL ESTIMATION VII

78.5 and 87.5 cents per volume. The Bureau of Labor Statistics may estimate
the number of unemployed in a certain area to be 2.4 4+ .3 million at a given
time, feeling rather sure that the actual number is between 2.1 and 2.7 million.
What we are saying is that in practice one is quite accustomed to seeing estimates
in the form of intervals.

In order to give precision to these ideas, we shall consider a particular
example. Suppose that a random sample (1.2, 3.4, .6, 5.6) of four observations
is drawn from a normal population with an unknown mean y and a known
standard deviation 3. The maximume-likelihood estimate of u is the mean of the
sample observations:

X =21
We wish to determine upper and lower limits which are rather certain to contain

the true unknown parameter value between them.
In general, for samples of size 4 from the given distribution the quantity

X_
A

ke

will be normally distributed with mean 0 and unit variance. X is the sample
mean, and # is a/\/ n. Thus the quantity Z has a density

1_ i,
\/ 2n
which is independent of the true value of the unknown parameter; so we can

compute the probability that Z will be between any two arbitrarily chosen
numbers. Thus, for example,

f2(2) = ¢(2) =

1,96

P[—1.96 <Z <1.96] = f é(z) dz = .95. (1)
—-1.96

In this relation the inequality —1.96 < Z, or

is equivalent to the inequality
p <X +3(1.96) = X + 2.94,
and the inequality
Z <1.96
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is equivalent to

u>X —294
We may therefore rewrite Eq. (1) in the form
P[X —2.94 < pu <X +2.94] = .95, (2)
and substituting 2.7 for X we obtain the interval
(.24, 5.64).

It is at this point that a certain abuse of language takes place since the
random interval (X — 2.94, X + 2.94) and the interval (—.24, 5.64) are each
called a confidence interval, or more precisely a 95 percent confidence interval.
[The interval (— .24, 5.64) is the value of the random interval (X — 2.94, X + 2.94)
when X = 2.7.] The meaning of Eq. (2) is the following: The probability that
the random interval (X — 2.94, X + 2.94) covers the unknown true mean u is .95.
That is, if samples of size 4 were repeatedly drawn from the normal population
and if the random interval (X — 2.94, X 4 2.94) were computed for each sample,
then the relative frequency of those intervals that contain the true unknown mean
p would approach 95 percent. We therefore have considerable confidence that
the observed interval, here (—.24, 5.64), covers the true mean. The measure of
our confidence is .95 because before the sample was drawn .95 was the prob-
ability that the interval that we were going to construct would cover the true
mean. .95 is called the confidence coefficient.

Similarly, intervals with any desired degree of confidence between 0 and 1
can be obtained. Thus, since

P[—2.58 < Z < 2.58] = .99,

a 99 percent confidence interval for the true mean is obtained by converting the
inequalities as before to get

P[X —3.87 <p <X +3.87] = .99

and then substituting 2.7 for X to get the interval (— 1.17, 6.57).

It is to be observed that there are, in fact, many possible intervals with the
same probability (with the same confidence coefficient). Thus, for example,
since

P[—1.68 <Z < 2.70] = .95,

another 95 percent confidence interval for y is given by the interval (— 1.35, 5.22).
This interval is inferior to the one obtained before because its length 6.57 is
greater than the length 5.88 of the interval (—.24, 5.64); it gives less precise
information about the location of u. Any two numbers a and b such that
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FIGURE 1 a 5

95 percent of the area under ¢(z) lies between a and b will determine a 95 percent
confidence interval. Ordinarily one would want the confidence interval to be
as short as possible, and it is made so by making a and b as close together as
possible because the relation Pla < Z < b] = .95 gives rise to a confidence in-
terval of length (a/ﬁ)(b — a). The distance b — a will be minimized for a
fixed area when ¢(a) = ¢(b), as 1s evident on referring to Fig. 1. If the point b
is moved a short distance to the left, the point a will need to be moved a lesser
distance to the left in order to keep the area the same; this operation decreases
the length of the interval and will continue to do so as long as ¢(b) < ¢(a).
Since ¢(z) is symmetrical about z = 0 in the present example, the minimum value
of b — a for a fixed area occurs when b = —a. Thus for X = 2.7, (—.24, 5.64)
gives the shortest 95 percent confidence interval, and (—1.17, 6.57) gives the
shortest 99 percent confidence interval for pu.

In most problems it is not possible to construct confidence intervals which
are shortest for a given confidence coefficient. In these cases one may wish to
find a confidence interval which has the shortest expected length or is such that
the probability that the confidence interval covers a value p* is minimized, where
p* # p.

The method of finding a confidence interval that has been illustrated in the
example above is a general method. The method entails finding, if possible, a
function (the quantity Z above) of the sample and the parameter to be estimated
which has a distribution independent of the parameter and any other parameters.
Then any probability statement of the form Pla < Z < b] =7 for known a and
b, where Z is the function, will give rise to a probability statement about the
parameter that we hope can be rewritten to give a confidence interval. This
method, or technique, is fully described in Subsec. 2.3 below. This technique
is applicable in many important problems, but in others it is not because in these
others it is either impossible to find functions of the desired form or it is impos-
sible to rewrite the derived probability statements. These latter problems can
be dealt with by a more general technique to be described in Sec. 4.

The idea of interval estimation can be extended to include simultaneous
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FIGURE 2 .l

estimation of several parameters. Thus the two parameters of the normal distri-
bution may be estimated by some plane region R in the so-called parameter
space, that is, the space of all possible combinations of values of p and 62. A
95 percent confidence region is a region constructible from the sample such that
if samples were repeatedly drawn and a region constructed for each sample,
95 percent of those regions in a long-term relative-frequency sense would include
the true parameter point (i, , 63)(see Fig. 2).

Confidence intervals and regions provide good illustrations of uncertain
inferences. In Eq. (2) the inference 1s made that the interval — .24 to 5.64 covers
the true parameter value, but that statement is not made categorically. A
measure, .05, of the uncertainty of the inference is an essential part of the
statement.

~

2.2 Definition of Confidence Interval

In the previous subsection we attempted to give some feel for the concept of a
confidence interval by discussing a simple example. In this subsection we define,
in general, what a confidence interval is and in the next subsection describe one
method of finding confidence intervals.

We assume that we have a random sample X, ..., X, from a density
Sf(+; 0) parameterized by 6. Previously, in Chap. VII, we considered point

estimates of say 7(f), some real function of 8. Now we look for an interval
estimate of 7(6).

Definition 1 Confidence interval Let X, ..., X, be a random sample
from the density f( - ;6). LetT; = ¢,(X,,..., X,))and T, = £,(X,,..., X,)
be two statistics satisfying T; < T, for which Py[T, < 7(6) < T,] =y, where
7 does not depend on 6; then the random interval (T}, T},) is called a 100y
percent confidence interval for ©(0); y is called the confidence coefficient ; and
T, and T, are called the lower and upper confidence limits, respectively,
Sor 1(6). A value (¢, t,) of the random interval (T}, T>) is also called a
100y percent confidence interval for ©(0). 1
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We note that one or the other, but not both, of the two statistics
£1(X,, ..., X,) and ¢,(X;, ..., X,) may be constant; that is, one of the two end
points of the random interval (T}, T,) may be constant.

Definition 2 One-sided confidence interval Let X, ..., X, be a random
sample from the density f(-; 0). Let T, = ¢,(X,, ..., X,) be a statistic
for which Py[T, < ©(6)] = y; then T, is called a one-sided lower confidence
limit for ©(6). Similarly, let T, = #,(X,, ..., X,) be a statistic for which
Py[1(0) < T,] = y; then T, is called a one-sided upper confidence limit for
7(6). (y does not depend on 6.) /1]

EXAMPLE 1 Let X, ..., X, be a random sample from f(x; ) = ¢, o(x).
Set T, = #,(Xy, ..., X)=X—6//n and T, = £5(X}, ..., X) =X +
6/\/; ; then (T}, T,) constitutes a random interval and is a confidence
interval for 7(6) = 6 withconfidencecoefficienty = P,[X — 6/\/ n<@<X+
6/\/;1-]= P2 < (X — 0)/(3/ﬁ) <2]= ©2) — ®(—2)=.9772 —.0228 =
9544. Also, if a random sample of 25 observations has a sample mean
of, say, 17.5, then the interval (17.5 — 6/\/55, 17.5 + 6/\/23) is also
called a 95.44 percent confidence interval for 6, .

Remark If a confidence interval for 0 has been determined, then, in
essence, a whole family of confidence intervals has been determined.
More specifically, for a given 100y percent confidence interval estimator of
6 a 100y percent confidence-interval estimator of 7(6) can be obtained,
where 7(-) 1s any strictly monotone function. For example if (‘)
is a monotone, increasing function and (T; = ¢,(X;, ..., X,), T, =
£,(Xy, ..., X)) 15 a 100y percent confidence interval for 6, then
(z(Ty), ©(T,)) 1s a 100y percent confidence interval for z(#) since

Py[1(T)) <1(8) < 1(T,)] = Po[T; <0 <T,]1=1. /1!

As was the case in point estimation, our problem is twofold: First, we need
methods of finding a confidence interval, and, second, we need criteria for‘
comparing competing confidence intervals or for assessing the goodness of a
confidence interval. In the next subsection, we will describe one method of
finding confidence intervals and call it the pivoral-quantity method.
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2.3 Pivotal Quantity

As before, we assume a random sample X, ..., X, from some density f(-; 6)
parameterized by 6. Our object is to find a confidence-interval estimate of 7(6),
a real-valued function of 8. @ itself may be vector-valued.

Definition 3 Pivotal quantity Let X, ..., X, be a random sample from
the density f(-; 8). Let Q = ¢(X}, ..., X,; 0); thatis, let Q be a function
of X;,..., X, and 8. If Q has a distribution that does not depend on 6,
then Q@ is defined to be a pivotal quantity. /111

EXAMPLE 2 Let X|, ..., X, be a random sample from f(x; 0) = ¢y, o(x).
X — 0 is a pivotal quantity since X — 6 is normally distributed with mean 0

and variance 9/n. Also (X — 6)/(3/</n) has a standard normal distribution
and, hence, is a pivotal quantity. On the other hand, X/ is not a pivotal
quantity since X/6 is normally distributed with mean unity and variance
9/6%n, which depends on 6. /1]

Our hope is to utilize a pivotal quantity to obtain a confidence interval.

Pivotal-quantity method If O = ¢(Xy, ..., X,; 0) is a pivotal quantity and
has a probability density function, then for any fixed 0 < y < 1 there will exist ¢,
and g, depending on y such that Plg, < Q@ <g¢,] =y. Now, if for each possible
sample value (xy, ..., x,), ¢; < ¢(xy,...,x,; 0) <g,ifand onlyif #,(x,,...,x,) <
©(0) < £5(xy, ..., x,) for functions #; and #, (not depending on 6), then (T}, T,)
is a 100y percent confidence interval for 7(0), where T; = #,(X,, ..., X,), i=1, 2.

Before 1llustrating the pivotal-quantity method with a simple example we
make several comments, First, ¢, and ¢, are independent of @ since the distribu-
tion of Q is. Second, for any fixed y there are many possible pairs of numbers
g, and g, that can be selected so that P[g, < Q <g¢,] =7y. SeeFig.3. Different
pairs of ¢, and ¢, will produce different ¢, and #,. We should want to select
that pair of ¢, and ¢, that will make Z, and ¢, close together in some sense. For
instance, if #5(X;, ..., X,) — #,(X,, ..., X,), which is the length of the confidence
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interval, is notrandom, then we might select that pair of ¢, and ¢, that makes the
length of the interval smallest; or if the length of the confidence interval is
random, then we might select that pair of q; and g, that makes the average
length of the interval smallest.

As a third and final comment, note that the essential feature of the pivotal-
quantity method is that the inequality {¢, < #(xy, ..., x,; 6) <g,} can be re-
written, or inverted or *“ pivoted,” as {#,(x,, ..., X,) < 1(0) < £;(x,, ..., x,)} for
any possible sample value x;, ..., x,. [This last comment indicates that
“ pivotal quantity”’ may be a misnomer since according to our definition Q =
#(X1, ..., X,; 0) may be a pivotal quantity, yet it may be impossible to * pivot ™
it.]

EXAMPLE 3 Let X, ..., X, be a random sample from ¢, ;(x). Consider
estimating (@) =0. Q= g(X;, ..., X,; 0)=(X —0)/(/1/n) has a
standard normal distribution and, hence, is a pivotal quantity. fy(g) =
¢(q). For given y there exist g¢; and g, such that Plg; < Q <g,] =7 (in
fact, there exist many such ¢, and ¢,). See Fig. 4.

Now {g, < (% — 0)/x/1/n <g,} if and only if {¥ —g,/1/n <0 <
X -—ql\/ I/_n}; so (X — qz\/ﬁ’l, X - ql\/ 1/n) is a 100y percent confidence
interval for 0. The length of the confidence interval is given by
(X —q13/1n) = (X ~q23/1/n) = (a2 — q)\/1/n; so the length will be
made smallest by selecting ¢, and ¢, so that ¢, — ¢, is a minimum under the
restriction that y = P[q, < 0 <¢q,] = ®(g,) — ®(¢q,), and g, — g, will be a
minimum if ¢, = —¢,, as can be seen from Fig. 4. 1]

The steps in the pivotal-quantity method of finding a confidence interval
are two: First, find a pivotal quantity, and, second, invert it. We will comment
further on techniques for finding pivotal quantities in Sec. 4. The method is
thoroughly exploited in the next section.
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3 SAMPLING FROM THE NORMAL DISTRIBUTION

Let Xy, ..., X, be a random sample from the normal distribution with mean p
and variance 62. The first three subsections of this section are generated by.
the cases (i) confidence interval for u only, (ii) confidence interval for 6% only,
and (iii) simultaneous confidence interval for 4 and o. The fourth subsection
considers a confidence interval for the difference between two means.

3.1 Confidence Interval for the Mean

There are really two cases to consider depending on whether or not o2 is known.
We leave the case 62 known as an exercise. (The technique is given in Example 3.)
We want a confidence interval for y when g2 is unknown. In our general dis-
cussion in Sec. 2 above our parameter was denoted by 6. Here 8 = (u, o), and
7(0) = u. We need a pivotal quantity. (X — p)/ (0/\/;) has a standard normal
distribution; so it is a pivotal quantity, but {g, < (x — ,u)/(a/ﬁ) < ¢,}cannot be
inverted to give {£;(xy, ..., X,) <u < £,(xy, ..., X,)} for any statistics ¢, and /.
The problem with (X — u)/(a/\/ r;) seems to be the presence of 6. We look for a
pivotal quantity involving only u. We know that

X -wie\yn) _X—u

VY (X=X —1)o* 8/ /n
has a ¢ distribution with n» — 1 degrees of freedom. [Recall that 82 =
Y (X;— X)*/(n—1).] So (X — w)/(S/s/n) has a density that is independent of
pand 62; hence it is a pivotal quantity. Now onehas{g, < (X — u)/(a/ﬁ) <q,}
if and only if {X — qz(a/\/ n<p<%-—gq (a/\/ n)}, where ¢, and q, are such that
Plg; <(X — p)/(8//n) < ;] = ; therefore, (X — g3(S/x/n), X —qy(S/</n)) is
a 100y percent confidence interval for u. The length of this confidence interval

is (42 — 4,)(8/~/n), which is random. For any given sample the length will be
minimized if ¢, and ¢, are selected so that d; — ¢, 1S a minimum. A little
reflection will convince one that g, and ¢, should be symmetrically selected about
0, or the following argument can be advanced. We seek to minimize

S
L=—_ _
\/;(95 q1)

subject to

C @O di=y, 3)

q1
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where f(?) is the density of the ¢ distribution with n — 1 degrees of freedom.
Equation (3) gives g, as a function of g, and differentiating Eq. (3) with respect
to g, yields

d
f(g2) ;g% — f1(g)) =0

To minimize L, we set dL/dg, = 0; that is,

dL_S(dq2 1)_0
d~‘h ﬁd41 ’

but

) - -

if and only if fi(q,) =fr(g,), which implies that ¢, =g, [in which case
2 fr(f)dt #v] or g = —q,. q; = —q, is the desired solution, and such ¢,
and ¢, can be readily obtained from a table of the ¢ distribution.

3.2 Confidence Interval for the Variance

Again there are two cases depending on whether or not u is assumed known, and
again we leave the case ;4 known as an exercise. We want a confidence interval
for * when p is unknown. We need a pivotal quantity that can be inverted.
We know that

=2(Xz—X)2=(n — 1)82

a2 o2

Y

has a chi-square distribution with n — 1 degrees of freedom; hence Q is a pivotal
quantity. Also, one has
(n— 1)
{41 < T < Qz}

if and only if

{(n — 1)4? co? < (n— 1)42}
qz2 q1

SO
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Chi-square density with
n — 1 degrees of freedom

is a 100y percent confidence interval for o2, where g, and ¢, are given by
Plg, < Q@ <q,]=7. See Fig. 5.

g, and q, are often selected so that P[Q <q,] =P[Q > ¢q,] = (1 —y)/2.
Such a confidence interval is sometimes referred to as the equal-rails confidence
interval for ¢2. ¢, and ¢, can be obtained from a table of the chi-square
distribution. Again, we might be interested in selecting ¢, and ¢, so as to
minimize the length, say L, of the confidence interval.

1 1
L= n—lSz(—-——)
( ) 49 492

Let fo(g) be a chi-square density with n — 1 degrees of freedom; then differen-
tiating

[ oty da =

with respect to ¢, yields

ai
zg—jfg(qz) — folg) =0,

and so

aL - 1 1

o (n—l)Sz(—-—-}._.z..di)__( _1)32( +1fQ(ql)) N
1 9i 2d ai 43 fo(2)

which implies that ¢ifp(q1) = ¢3/5(q2). The length of the confidence interval
will be minimized if ¢, and ¢, are selected so that

aifo(d1) = 43 fo(q2)

subject to

C pd2
J, Jo@da=v.

A solution for ¢, and g, can be obtained by trial and error or numerical integra-
tion.
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We might note that for any ¢, and ¢, satisfying

[ tata da =

\/(n — 1)82 fn — 1)82)

is a 100y percent confidence interval for o.

3.3 Simultaneous Confidence Region for the Mean and Variance

In constructing a region for the joint estimation of the mean p and variance o2
of a normal distribution, one might at first be inclined to use Subsec. 3.1 and 3.2
above. That is, for example, one might construct a confidence region as in
Fig. 6 by using the two relations

PIX — t 475/8%n < < X + 1.975./8%/n] = .95 @)

and

[(f__:ﬁs_z < g2 (_11;____1)82] — .95, (5)

X.975 ons

where 7 o5 is the .975th quantile point of the r distribution with n — 1 degrees
of freedom and x%,s and x 2,5 are the .025th quantile point and .975th quantile
point, respectively, of the chi-square distribution with n — 1 degrees of freedom.
The region displayed in Fig. 6 does indeed give a confidence region for (u, ¢2),
but we do not know what its corresponding confidence coefficient is. [It is not
.952 since the two events given in Egs. (4) and (5) are not independent.]

A confidence regi