
Chapter 3: Vector Calculus
3.1 Vector fields

Definition Vector Fields in Two Dimensions
Let 𝑓 and 𝑔 be defined on a region R of  𝐑$.	   A vector field in 𝐑$ is a function 
𝐹 that assigns to each point in R a vector 𝑓 𝑥, 𝑦 , 𝑔(𝑥, 𝑦) . The vector field is 
written as

𝐹 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 , 𝑔(𝑥, 𝑦) 	  or	  𝐹 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 𝐢 + 𝑔 𝑥, 𝑦 𝐣.
A vector field 𝐹 = 𝑓,𝑔 is continuous or differentiable on a region R of  𝐑$ if 
𝑓	  and 𝑔	  are continuous or differentiable on R, respectively.

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Example 1 Vector Fields Sketch representative vector of the following fields.
a) 𝐹 𝑥, 𝑦 = 0, 𝑥 = 𝑥𝐣; (a shear field). 
b) 𝐹 𝑥, 𝑦 = 1 − 𝑦$, 0 = 1− y$ 𝐢, 	  for	  	  |𝑦| ≤ 1; (channel flow). 
c) 𝐹 𝑥, 𝑦 = −𝑦, 𝑥 = −𝑦𝐢 + 𝑥𝐣;  (a rotation field). 
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Channel flow
𝐹 𝑥, 𝑦 = 1− 𝑦$, 0 .

Rotation vector field
𝐹 𝑥, 𝑦 = −𝑦, 𝑥 .

Shear vector field
𝐹 𝑥, 𝑦 = 0, 𝑥 .
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Definition Vector Fields in Three Dimensions
Let 𝑓, 𝑔, and ℎ be defined on a region D of  𝐑;.	   A vector field in 𝐑; is a functi
on 𝐅 that assigns to each point in D a vector 𝑓 𝑥, 𝑦, 𝑧 , 𝑔 𝑥, 𝑦, 𝑧 , ℎ 𝑥, 𝑦, 𝑧 , . 
The vector field is written as

𝐅 𝑥, 𝑦, 𝑧 = 𝑓 𝑥, 𝑦, 𝑧 , 𝑔 𝑥, 𝑦, 𝑧 , ℎ 𝑥, 𝑦, 𝑧 	  or	  
𝐅 𝑥, 𝑦, 𝑧 = 𝑓 𝑥, 𝑦, 𝑧 𝐢 + 𝑔 𝑥, 𝑦, 𝑧 𝐣 + ℎ 𝑥, 𝑦, 𝑧 𝐤.

Example 2 Vector Fields in 𝐑;.
a) 𝐅 𝑥, 𝑦, 𝑧 = 𝑥, 𝑦, 𝑒@A , for 𝑧 ≥ 0;
b) 𝐅 𝑥, 𝑦, 𝑧 = 0,0,1 − 𝑥$ −𝑦$ , for 𝑥$+𝑦$≤ 1.

Definition of Inverse Square Field
Let 𝐫 𝑡 = 𝑥 𝑡 𝐢+ 𝑦 𝑡 𝐣 + 𝑧 𝑡 𝐤	  be a position vector. The vector field 𝐅	   is 
an inverse vector field if 

𝐅 𝑥, 𝑦, 𝑧 =
𝑘
𝐫 $ 	  𝐮	  ,

where k is a real number and 𝐮 = 𝐫
𝐫

is a unit vector in the direction of 	  𝐫.
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Definition Gradient Fields and Potential Functions
Let 𝑧 = 𝑓 𝑥,𝑦  and  𝑤 = 𝑓 𝑥, 𝑦, 𝑧  be differentiable functions on regions 
of  𝐑$	  and	  𝐑;, respectively. The vector field 𝐅 = 𝛁𝜑	  is a gradient field, 
and the function	  𝜑 a is a potential function of 𝐅.

Let 𝑓 and  𝑔 have continuous first partial derivatives on an open disk 𝑅.
The vector field given by  𝐅(𝑥, 𝑦) = 𝑓 𝑥,𝑦 𝐢 + 𝑔 𝑥, 𝑦 𝐣	  is conservative if and only if 

𝜕𝑔
𝜕𝑥 =

𝜕𝑓
𝜕𝑦 .

Definition Conservative vector Fields
A	  vector	  field	  𝐅	  is called conservative	   if there exists a differentiable function	  𝜑	  such that 
𝐅 = 𝛁𝜑. The function 𝜑	  is called the a  potential function for 𝐅.
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Definition of Curl of a vector field 
The curl of	  	  𝐅(𝑥, 𝑦, 𝑧) = 𝑓 𝑥, 𝑦, 𝑧 𝐢 + 𝑔 𝑥, 𝑦, 𝑧 𝐣 + ℎ 𝑥,𝑦, 𝑧 𝐤	  	  is
 𝐜𝐮𝐫𝐥	  𝐅 𝑥, 𝑦, 𝑧 = 𝛁×𝐅 𝑥, 𝑦, 𝑧

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =
𝜕ℎ
𝜕𝑦 −

𝜕𝑔
𝜕𝑧 𝐢 −

𝜕ℎ
𝜕𝑥 −

𝜕𝑓
𝜕𝑧 𝐣 +

𝜕𝑔
𝜕𝑥 −

𝜕𝑓
𝜕𝑦 𝐤.

Suppose	  that	  𝑓, 𝑔	  and  ℎ have continuous first partial derivatives on an open sphere 𝑄	  in	  space.
The vector field given by 𝐅(𝑥, 𝑦, 𝑧) = 𝑓 𝑥,𝑦, 𝑧 𝐢 + 𝑔 𝑥, 𝑦, 𝑧 𝐣 + ℎ 𝑥, 𝑦, 𝑧 𝐤
is conservative if and only if 

𝐜𝐮𝐫𝐥	  𝐅 𝑥, 𝑦, 𝑧 =0,
that  is, 𝐅	  is conservative if and only if 

𝜕ℎ
𝜕𝑦 =

𝜕𝑔
𝜕𝑧 , 	  	  	  	  	  

𝜕ℎ
𝜕𝑥 =

𝜕𝑓
𝜕𝑧 ,and              

𝜕𝑔
𝜕𝑥 =

𝜕𝑓
𝜕𝑦 .
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Example 1 Testing for conservative fields. Determine	  whether	  the	  following	  vector	  fields	  
are	  conservative	  on	  𝐑$	  and	  𝐑;, respectively.  
a) 𝐅 𝑥,𝑦 = 𝑒d cos𝑦 , −𝑒d sin𝑦 ;
b) 𝐅 𝑥,𝑦, 𝑧 = 2𝑥𝑦	   − 𝑧$, 𝑥$ + 2𝑧, 2𝑦 − 2𝑥𝑧 .

Solution  a. Letting 𝑓 𝑥, 𝑦 = 𝑒d cos𝑦 and	  𝑓 𝑥, 𝑦 = −𝑒d sin𝑦 , 	  we	  see	  that	  
𝜕𝑔
𝜕𝑥 = −𝑒d sin𝑦 =

𝜕𝑓
𝜕𝑦 .

Then F is conservative.

b. Letting 𝑓 𝑥, 𝑦, 𝑧 = 2𝑥𝑦	   − 𝑧$, 𝑔 𝑥, 𝑦, 𝑧 = 𝑥$ + 2𝑧, 	  and	  ℎ 𝑥, 𝑦, 𝑧 = 2𝑦 − 2𝑥𝑧,
we	  see	  that	  

𝜕𝑔
𝜕𝑥 = 2𝑥 =

𝜕𝑓
𝜕𝑦 ;	  	  

𝜕ℎ
𝜕𝑥 = −2𝑧 =

𝜕𝑓
𝜕𝑧 ; 	  	  

𝜕𝑔
𝜕𝑧 = 2 =

𝜕ℎ
𝜕𝑦 .	  

Then F is conservative.

Example 2 Finding potential functions. Find	  a	  potential	  function	  for	  the	  concervative
	  vector	  fields	  in	  Example 1.
a) 𝐅 𝑥,𝑦 = 𝑒d cos𝑦 , −𝑒d sin𝑦 ;
b) 𝐅 𝑥,𝑦, 𝑧 = 2𝑥𝑦	   − 𝑧$, 𝑥$ + 2𝑧, 2𝑦 − 2𝑥𝑧 .
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Solution  a. A potential function 𝜑	  for	  	  𝐅 = 𝑓, 𝑔 	  has	  the	  property	  that	  𝐅 = 𝛁𝜑	  
and	  satisfies	  the	  conditions	  see	  that	  

𝜑d = 𝑓 𝑥, 𝑦 = 𝑒d cos𝑦 	  and	  	  𝜑h = 𝑔 𝑥, 𝑦 = −𝑒d sin 𝑦 .
The first equation is integrated with respect to 𝑥	  (holding 𝑦	  fixed) to obtain

∫ 𝜑d𝑑𝑥 = ∫ 𝑒dcos𝑦𝑑𝑥 , 	  	  which	  implies	  that	  

𝜑 𝑥, 𝑦 = 𝑒d cos𝑦 + 𝑐 𝑦 .

In this case the “constant of integration” 𝑐 𝑦 	  is	  an	  arbitrary	  function	  of	  𝑦.
To find the arbitrary function 𝑐 𝑦 , we differentiate 𝜑 𝑥,𝑦 = 𝑒d cos𝑦 + 𝑐 𝑦
with respect to 𝑦  and	  equate	  the	  result	  to	  	  𝑔 𝑥,𝑦 :

	  	  𝜑h= −𝑒dsin 𝑦 + 𝑐n 𝑦 	  	  	  	  	  	  	  and	  	  	  	  	  	  	  	  	  𝑔 𝑥, 𝑦 = −𝑒dsin 𝑦 .
We	  conclude	  that	  𝑐n 𝑦 =0,	  which	  implies	  that	  𝑐 𝑦 	  is	  any	  real	  number,
	  which	  ensures	  that	  

𝜑 𝑥, 𝑦 = 𝑒d cos𝑦 + 𝑐.
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b. Let 𝜑	  be a potential function of  𝐅 = 𝑓, 𝑔, ℎ ,	  that	  is,	  𝐅 = 𝛁𝜑	  .	  Then
𝜑d = 𝑓 𝑥,𝑦, 𝑧 = 2𝑥𝑦	   − 𝑧$, 	  	  𝜑h= 𝑔 𝑥, 𝑦, 𝑧 = 𝑥$ + 2𝑧, and	  	  𝜑A = ℎ 𝑥, 𝑦, 𝑧 = 2𝑦 − 2𝑥𝑧.

Integrating the first equation with respect to 𝑥	  (holding 𝑦	  and 𝑧	   fixed) we obtain
	  	  	  𝜑 𝑥, 𝑦, 𝑧 = ∫ 2𝑥𝑦	   − 𝑧$𝑑𝑥 = 𝑥$𝑦− 𝑥𝑧$ + 𝑐 𝑦, 𝑧 .

Because the integration is with respect to 𝑥, the arbitrary “constant” is a function of 𝑦 and 𝑧.
To find 𝑐 𝑦, 𝑧 ,we differentiate 	  𝜑 with respect to 𝑦,which results in

	  	  𝜑h= 𝑥$ + 𝑐h 𝑦, 𝑧 .	  
Equating 	  	  𝜑h and 𝑔 𝑥, 𝑦, 𝑧 = 𝑥$ + 2𝑧, we see that 𝑐h 𝑦, 𝑧 = 2𝑧 . 
To obtain 𝑐 𝑦, 𝑧 , we	  integrate	  𝑐h 𝑦, 𝑧 = 2𝑧 with respect to 𝑦 (holding 𝑧	  fixed), which
results in 𝑐 𝑦, 𝑧 = 2𝑦𝑧 + 𝑑 𝑧 . The constant of integration is now a function of 𝑧, which we 
call 𝑑 𝑧 . At this point, a potential functions looks like 

𝜑 𝑥, 𝑦, 𝑧 = 𝑥$𝑦− 𝑥𝑧$ + 2𝑦𝑧 + 𝑑 𝑧 .
To determine 𝑑 𝑧 , we differentiate  𝜑 with respect to 𝑧	  :

𝜑A 𝑥, 𝑦, 𝑧 = −2𝑥𝑧 + 2𝑦 + 𝑑′ 𝑧 .
Equating	  	  𝜑A and ℎ 𝑥, 𝑦, 𝑧 = 2𝑦 − 2𝑥𝑧, we see that	  𝑑n 𝑧 = 0, that	  is, 𝑑 𝑧 = 𝑑	  (constant).
So

𝜑 𝑥, 𝑦, 𝑧 = 𝑥$𝑦− 𝑥𝑧$ + 2𝑦𝑧 + 𝑑.
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Line Integral in the plane.
𝐶: 	  	  	  𝐫 𝐬 = 𝑥 𝑠 , 𝑦 𝑠 , 	  	  	  	  	  for	  	  	  𝑎 ≤ 𝑠 ≤ 𝑏	  ;

𝑎 = 𝑠w < 𝑠y < ⋯ < 𝑠{@y < 𝑠{ = 𝑏.

Suppose that the scalar-valued function 𝑓	  	  is	  defined	  on	  the	  smooth	  curve
𝐶: 	  	  	  𝐫 𝐬 = 𝑥 𝑠 , 𝑦 𝑠 , 	  	  	  	  	  for	  	  	  𝑎 ≤ 𝑠 ≤ 𝑏.

The line integral of 𝑓	  	  over	  𝐶	  is	  defined	  to	  be	  	  

|𝑓 𝑥 𝑠 , 𝑦 𝑠 𝑑𝑠
}

= lim
{→�

�𝑓 𝑥 𝑠�∗ , 𝑦 𝑠�∗ Δ𝑠�

{

��y

,

provided this limit exists over all partitions of 𝐶.  When the limit exists 𝑓	  	  is	  said	  to	  be	  
integrable	  on	  𝐶.

area ≈ �𝑓 𝑥 𝑠�∗ ,𝑦 𝑠�∗ Δ𝑠�

{

��y

.
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Procedure Evaluating Line Integrals ∫ 𝑓𝑑𝑠}

1. Find a parametric description of 𝐶	  in the form 𝐫 𝑡 = 𝑥 𝑡 ,𝑦 𝑡 , for	  	  	  𝑎 ≤ 𝑡 ≤ 𝑏.	  
2. T Compute 𝑟n 𝑡 = 𝑥n 𝑡 $ + 𝑦n 𝑡 $.
3. Make substitutions for 𝑥	  and 𝑦	   and evaluate an ordinary integral

|𝑓𝑑𝑠
}

= | 𝑓 𝑥 𝑡 , 𝑦(𝑡) |𝑟′(𝑡)|𝑑𝑡	  
�

�
.

Evaluating Line Integrals in the plane.  
Let 𝑓	  be continuous on a region containing a smooth curve 𝐶: 	  	  	  𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 ,
	  	  for	  	  	  𝑎 ≤ 𝑡 ≤ 𝑏.	  Then 

|𝑓𝑑𝑠
}

= | 𝑓 𝑥 𝑡 , 𝑦(𝑡) |𝑟′(𝑡)|𝑑𝑡	  
�

�
= | 𝑓 𝑥 𝑡 , 𝑦(𝑡) 𝑥n 𝑡 $ + 𝑦n 𝑡 $𝑑𝑡	  

�

�
,
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Evaluating Line Integral in 𝐑𝟑
The	  line	  integral	  𝑓	  of	  	  over	  	  𝐶	  is	  

|𝑓𝑑𝑠
}

= | 𝑓 𝑥 𝑡 ,𝑦 𝑡 , 𝑧(𝑡) |𝑟′(𝑡)|𝑑𝑡	  
�

�

	  	  	  	  	  	  	  	  	  	  	  	  	  = | 𝑓 𝑥 𝑡 ,𝑦 𝑡 , 𝑧(𝑡) 𝑥n 𝑡 $ + 𝑦n 𝑡 $ + 𝑧n 𝑡 $𝑑𝑡	  
�

�
.

If 𝑓 𝑥, 𝑦, 𝑧 = 1, then the line integral gives the length of 𝐶. Then

Length	  of	  𝐶 = |𝑑𝑠
}

= | 𝑥n 𝑡 $ + 𝑦n 𝑡 $ + 𝑧n 𝑡 $𝑑𝑡	  
�

�
.

Line Integral in 𝐑𝟑
Suppose that the scalar-valued function 𝑓 𝑥,𝑦, 𝑧 	  is	  defined	  on	  the	  smooth	  curve

𝐶: 	  	  	  𝐫 𝐬 = 𝑥 𝑡 ,𝑦 𝑡 , 𝑧(𝑡) , 	  	  	  	  	  for	  	  	  𝑎 ≤ 𝑡 ≤ 𝑏.
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Example 3 Line integrals in 𝐑;. 	  Evaluate	   ∫ 𝑥𝑦 + 2𝑧 𝑑𝑠} 	  on	  the	  following	  line	  segments.
a) The	  line	  segment	  from	  𝑃 1,0,0 	  to	  𝑄 0,1,1 ;
b) The	  line	  segment	  from	  𝑄 0,1,1 	  to	  𝑃 1,0,0 .

Solution  a. A parametric description of the line segment from 𝑃 1,0,0 	  to	  𝑄 0,1,1 is 
	  	  𝐫 𝑡 = 1,0,0 + 𝑡 −1,1,1 = 1− 𝑡, 𝑡, 𝑡 , 	  	  	  	  	  for	  	  	  0 ≤ 𝑡 ≤ 1.

The speed factor is 
𝑟n 𝑡 = 𝑥n 𝑡 $ + 𝑦n 𝑡 $ + 𝑧n 𝑡 $ = −1 $ + 1$ + 1$ = 3	  .

Substituting 𝑥 𝑡 = 1− 𝑡, 𝑦 𝑡 = 𝑡, and	  𝑧 𝑡 = 𝑡	  , the value of the line integral is 

|𝑥𝑦 + 2𝑧	  𝑑𝑠
}

= | 1− 𝑡 𝑡 + 2 𝑡 3	  𝑑𝑡	  
y

w
= 3	  | 𝑡 − 𝑡$ + 2𝑡 𝑑𝑡	  

y

w

	  	  	  	  	  	  	  	  	  	  	  	  	  = 3	  | 3𝑡 − 𝑡$ 𝑑𝑡	  
y

w
= 3	  

3𝑡$

2 −
𝑡;

3 w

y

=
7 3	  
6 .
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b. The line segment from	  𝑄 0,1,1 	  to	  𝑃 1,0,0 may be described parametrically by  
	  	  𝐫 𝑡 = 0,1,1 + 𝑡 1, −1, −1 = 𝑡,1 − 𝑡, 1 − 𝑡 , 	  	  	  	  	  for	  	  	  0 ≤ 𝑡 ≤ 1.

The speed factor is 
𝑟n 𝑡 = 𝑥n 𝑡 $ + 𝑦n 𝑡 $ + 𝑧n 𝑡 $ = −1 $ + 1$ + 1$ = 3	  .

We substitute  𝑥 𝑡 = 𝑡, 𝑦 𝑡 = 1− 𝑡, and	  	  𝑧 𝑡 = 1− 𝑡	  , the value of the line integral is 

|𝑥𝑦 + 2𝑧	  𝑑𝑠
}

= | 𝑡 1 − 𝑡 + 2 1 − 𝑡 3	  𝑑𝑡	  
y

w
= 3	   | 𝑡 − 𝑡$ + 2 − 2𝑡 𝑑𝑡	  

y

w

	  	  	  	  	  	  	  	  	  	  	  	  	  = 3	   | 2 − 𝑡 − 𝑡$ 𝑑𝑡	  
y

w
= 3	   2𝑡 −

𝑡$

2 −
𝑡;

3 w

y

=
7 3	  
6 .

Conclusion. The line integral is independent of the orientation and parametrization of the curve.
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Line Integrals of Vector fields 
Let	  𝐅	  be	  a	  vector	  field	  that	  is	  continuous	  on	  a	  region	  containing	  a	  smooth	  
oriented	  curve	  𝐶. 	  Let	  𝐓	  be	  the	  unit	  tangent	  vector	  at	  each	  point	  of	  𝐶	  

aconsistent	  with	  the	  orientation.The	  line	  integral	  of	  𝐅	  over	  𝐶	  is	   |𝐅	   ⋅ 𝐓𝑑𝑠.
}

This	  integral	  may	  be	  written	  in	  several	  different	  forms.	  If	  𝐅 = 𝑓, 𝑔, ℎ , then
	  the	  line	  integral	  may	  be	  evaluated	  in	  component	  form	  as	  

|𝐅	   ⋅ 𝐓𝑑𝑠
}

= | 𝐅	   ⋅ 𝐫′(𝑡)
�

�
𝑑𝑡 = | 𝑓𝑥n 𝑡 + 𝑔𝑦n 𝑡 + ℎ𝑧′(𝑡)

�

�
𝑑𝑡,

where 𝑓 stands for 𝑓 𝑥 𝑡 , 𝑦n 𝑡 , 𝑧(𝑡) 	  with analogous expression for 𝑔	   and ℎ.

𝐓 =
𝐫′(𝑡)
𝐫′(𝑡)

𝑑𝑠 = 𝐫′(𝑡) 𝑑𝑡

Another	  useful	  form	  is	  obtained	  by	  using	  that	  
𝑑𝑥 = 𝑥n 𝑡 𝑑𝑡, 	  	  	  	  	  	  	  	  	  	  𝑑𝑦 = 𝑦n 𝑡 𝑑𝑡, 	  	  	  	  	  	  	  	  	  	  	  	  	  𝑑𝑧 = 𝑧n 𝑡 𝑑𝑡.	  

Making	  these	  replacements	  in	  the	  previous	  integral	  results	  in	  the	  form

This	  integral	  may	  be	  written	  in	  several	  different	  forms.	  If	  𝐅 = 𝑓, 𝑔, ℎ ,
then	  the	  line	  integral	  may	  be	  evaluated	  in	  component	  form	  as	  

|𝐅	   ⋅ 𝐓𝑑𝑠
}

= |𝑓𝑑𝑥 + 𝑔𝑑𝑦+ ℎ𝑑𝑧.	  
}

Finally, if we let 𝑑𝐫 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧), then 𝑓𝑑𝑥 + 𝑔𝑑𝑦 + ℎ𝑑𝑧 = 𝐅	   ⋅ 𝑑𝐫, and we 
have 

|𝐅	   ⋅ 𝐓𝑑𝑠
}

= |𝐅	   ⋅ 𝑑𝐫
}

.
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Different	  Forms	  of	  Line	  Integrals	  of	  Vector	  Fields

The	  line	  integral|𝐅	   ⋅ 𝐓𝑑𝑠
}

may	  be	  expressed	  in	  the	  following	  forms,where	  vector	  

𝐅 = 𝑓, 𝑔, ℎ 	   and	  𝐶	  has	  a	  parameterization	  𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) , 	  for	  	  	  𝑎 ≤ 𝑡 ≤ 𝑏.

| 𝐅	   ⋅ 𝐫′(𝑡)
�

�
𝑑𝑡 = | 𝑓𝑥n 𝑡 + 𝑔𝑦n 𝑡 + ℎ𝑧′(𝑡)

�

�
𝑑𝑡 = | 𝑓𝑑𝑥 + 𝑔𝑑𝑦+ ℎ𝑑𝑧 = |𝐅	   ⋅ 𝑑𝐫

}
.

}

Example	  5Different	  paths.

Evaluate	  |𝐅	   ⋅ 𝐓𝑑𝑠
}

	  with	  𝐅 = 𝑦 − 𝑥, 𝑥 	  on	  the	  following	  oriented	  paths	  in	  𝐑𝟐:

a) The	  quarter	  circle	  𝐶y	  from	  𝑃(0,1) to	  𝑄(1,0) ;
b) Type	  equation	  here.The	  quarter	  circle	  −𝐶y from	  𝑄(1,0)	   to	  𝑃(0,1) ;
c) 	  The	  path	  𝐶$ from	  𝑃(0,1) to	  𝑄(1,0)	   via	  two	  line	  segments	  through	  𝑂(0,0) .
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Solution	  
a) Working	  in 𝐑𝟐, a	  parametric	  description	  of	  the	  curve	  with	  the	  required	   clockwise 	  

orientation	  is	  𝐫 𝑡 = sin 𝑡 , cos𝑡 , 	  for	  	  	  0 ≤ 𝑡 ≤ 2𝜋. Along 𝐶y the vector field is 
𝐅 = 𝑦 − 𝑥, 𝑥 = cos 𝑡 − sin 𝑡 , sin 𝑡 .

The	  velocity	  vector	  is	  𝐫n 𝑡 = cos 𝑡 , −sin 𝑡 ,
so	  the	  integrand	  of	  the	  line	  line	  integral	  is

𝐅	   ⋅ 	   𝐫n 𝑡 = cos 𝑡 − sin 𝑡 , sin 𝑡 ⋅ cos 𝑡 ,−sin 𝑡 = cos$ 𝑡 − sin$ 𝑡 − sin 𝑡 cos 𝑡 .
The	  value	  of	  the	  line	  integral	  of	  𝐅	  over	  𝐶y	  is	  expressed	  in	  the	  following	  forms,where	  
vector	  
𝐅 = 𝑓, 𝑔, ℎ 	   and	  𝐶	  has	  a	  parameterization	  𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) , 	  for	  	  	  𝑎 ≤ 𝑡 ≤ 𝑏.

| 𝐅	   ⋅ 𝐫′(𝑡)
�
$

w
𝑑𝑡 = | cos$ 𝑡 − sin$ 𝑡 − sin 𝑡 cos 𝑡

�
$

w
𝑑𝑡 = | cos2𝑡 −

1
2 sin	  2𝑡

�
$

w
𝑑𝑡

=
1
2 sin	  2𝑡 +

1
4 cos	  2𝑡 w

�
$
= −

1
2 .
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b)	  A	  parametrization	  of	  the	  curve −𝐶y from	  𝑄	  to	  𝑃	  is	  𝐫 𝑡 = cos 𝑡 , sin 𝑡 ,	  
for	  	  0 ≤ 𝑡 ≤ �

$ .
The vector field along the curve is 

𝐅 = 𝑦 − 𝑥, 𝑥 = sin 𝑡 − cos 𝑡 , cos𝑡 .
The	  velocity	  vector	  is	  𝐫n 𝑡
= −sin 𝑡 , cos𝑡 . so	  the	  integrand	  of	  the	  line	  line	  integral	  is

𝐅	   ⋅ 	  𝐫n 𝑡 = sin 𝑡 − cos 𝑡 , cos 𝑡 ⋅ − sin 𝑡 , cos 𝑡
= −sin$ 𝑡 + sin 𝑡 cos 𝑡 + cos$ 𝑡 .

Then	  

| 𝐅	   ⋅ 𝐫′(𝑡)
�
$

w
𝑑𝑡 = | sin 𝑡 cos 𝑡 + cos$ 𝑡 −sin$ 𝑡

�
$

w
𝑑𝑡

= |
1
2 sin 2𝑡 + cos	  2𝑡

�
$

w
𝑑𝑡

=
−1
4 cos	  2𝑡 +

1
2 sin	  2𝑡 w

�
$

=
−1
4 cos𝜋 +

1
2 sin𝜋 −

−1
4 cos	  0 +

1
2 sin	  0

=
1
2 .
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The	  results	  of	  parts	   a and	   b illustrate	  the	  important	  fact	  that	  reversing	  the	  
orientation	  of	  a	  curve	  reverses	  the	  sign	  of	  the	  line	  integral	  of	  a	  vector	  field.
The path 𝐶$ consists of two line segments:
1. The segment from 𝑃	  to	  𝑂 is parameterized by 𝐫 𝑡 = 0,1 − 𝑡 , 	  for	  	  0 ≤ 𝑡 ≤ 1.
Therefore, 𝐫′ 𝑡 = 0,−1 and 𝐅 = 𝑦 − 𝑥, 𝑥 = 1 − 𝑡, 0 .
2. The segment from 𝑂	  to	  𝑄 is parameterized by 𝐫 𝑡 = 𝑡, 0 , 	  for	  	  0 ≤ 𝑡 ≤ 1.
Therefore, 𝐫′ 𝑡 = 1,0 and 𝐅 = 𝑦 − 𝑥, 𝑥 = −𝑡, 𝑡 .
The line integral is split into two parts and evaluated as follows:

| 𝐅	   ⋅ 𝐓𝑑𝑠
}�

= | 𝐅	   ⋅ 𝐓𝑑𝑠
� 

+ | 𝐅	   ⋅ 𝐓𝑑𝑠
 ¡

= | 1− 𝑡, 0 ⋅ 0, −1
y

w
𝑑𝑡 + | −𝑡, 𝑡 ⋅ 1,0

y

w
𝑑𝑡

= | 0
y

w
𝑑𝑡 + | −𝑡

y

w
𝑑𝑡

= −
1
2 .
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Example	  6

Evaluate	  |𝐅	   ⋅ 𝐓𝑑𝑠
}

	  with	  𝐅 = −𝑦 + 𝑥, 𝑥 	  on	  the	  following	  oriented	  paths	  in	  𝐑𝟐:

a) The	  quarter	  circle	  𝐶y	  from	  𝑃(0,1) to	  𝑄(1,0) ;
b) The	  path	  𝐶$ from	  𝑃(0,1) to	  𝑄(1,0)	   via	  two	  line	  segments	  through	  𝑂(0,0) .
Solution	  
a) Working	  in 𝐑𝟐, a	  parametric	  description	  of	  the	  curve	  with	  the	  required	   clockwise 	  

orientation	  is	  𝐫 𝑡 = sin 𝑡 , cos𝑡 , 	  for	  	  	  0 ≤ 𝑡 ≤ 2𝜋. Along 𝐶y the vector field is 
𝐅 = −𝑦 + 𝑥, 𝑥 = −cos 𝑡 + sin 𝑡 , sin 𝑡 .

The	  velocity	  vector	  is	  𝐫n 𝑡 = cos 𝑡 , −sin 𝑡 ,
so	  the	  integrand	  of	  the	  line	  line	  integral	  is

𝐅	   ⋅ 	   𝐫n 𝑡 = −cos 𝑡 + sin 𝑡 , sin 𝑡 ⋅ cos 𝑡 ,−sin 𝑡 = −cos$ 𝑡 − sin$ 𝑡 + sin 𝑡 cos𝑡 .
The	  value	  of	  the	  line	  integral	  of	  𝐅	  over	  𝐶y	  is	  expressed	  in	  the	  following	  forms,where	  
vector	  
𝐅 = 𝑓, 𝑔, ℎ 	   and	  𝐶	  has	  a	  parameterization	  𝐫 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) , 	  for	  	  	  𝑎 ≤ 𝑡 ≤ 𝑏.

| 𝐅	   ⋅ 𝐫′(𝑡)
�
$

w
𝑑𝑡 = | −cos$ 𝑡 − sin$ 𝑡 + sin 𝑡 cos 𝑡

�
$

w
𝑑𝑡 = | −1 +

1
2 sin	  2𝑡

�
$

w
𝑑𝑡

= −𝑡 −
1
4 cos	  2𝑡 w

�
$
= −

𝜋
2 +

1
4 − 0−

1
4 =

1− 𝜋
2 .
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The path 𝐶$ consists of two line segments:
1. The segment from 𝑃	  to	  𝑂 is parameterized by 𝐫 𝑡 = 0,1 − 𝑡 , 	  for	  	  0 ≤ 𝑡 ≤ 1.
Therefore, 𝐫′ 𝑡 = 0,−1 and 𝐅 = −𝑦 + 𝑥,𝑥 = 𝑡 − 1,0 .
2. The segment from 𝑂	  to	  𝑄 is parameterized by 𝐫 𝑡 = 𝑡, 0 , 	  for	  	  0 ≤ 𝑡 ≤ 1.
Therefore, 𝐫′ 𝑡 = 1,0 and 𝐅 = −𝑦 + 𝑥, 𝑥 = 𝑡, 𝑡 .
The line integral is split into two parts and evaluated as follows:

| 𝐅	   ⋅ 𝐓𝑑𝑠
}�

= | 𝐅	   ⋅ 𝐓𝑑𝑠
� 

+ | 𝐅	   ⋅ 𝐓𝑑𝑠
 ¡

= | 𝑡 − 1,0 ⋅ 0, −1
y

w
𝑑𝑡 +| 𝑡, 𝑡 ⋅ 1,0

y

w
𝑑𝑡 = | 0

y

w
𝑑𝑡 +| 𝑡

y

w
𝑑𝑡 =

1
2 .

The line integral in parts (a) and (c) in Example 5 have the same value and run on different 
paths from P to Q and the line integral in parts (a) and (b) in Example 6 have different value
s and run on different paths from P to Q. Therefore we might ask: For what vector fields 
are the values of a line integral independent of path?  The answer is : the class of all 
conservative vector fields, that is, the line integral of conservative vector fields does not 
dependent on the path.
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Definition Work Done in a Force Field
Let be a continuous force field in a region of and let , be a smooth curve in with a unit tangent 
vector consistent with the orientation. The work done in moving an object along in the positive 
direction is 

𝑊 = |𝐅	   ⋅ 𝐓𝑑𝑠
}

= | 𝐅	   ⋅ 𝐫′(𝑡)
�

�
𝑑𝑡.

Example Work Done in a Force Field
Find the work done by the force field 𝐅 = 𝑥, 𝑦 + 2 in moving an object along the smooth 
curve  𝐫 𝑡 = 𝑡 − sin 𝑡 , 1 − cos𝑡 , 	  for	  	  0 ≤ 𝑡 ≤ 2𝜋.
Solution Clearly we have

𝐅 = 𝑥, 𝑦 + 2 = 𝑡 − sin 𝑡 , 3 − cos𝑡 	  and	   𝐫′ 𝑡 = 1 − cos 𝑡 , sin 𝑡

𝑊 = |𝐅	   ⋅ 𝐓𝑑𝑠
}

= | 𝐅	   ⋅ 𝐫′(𝑡)
$�

w
𝑑𝑡 = | 𝑡 − sin 𝑡 , 3 − cos𝑡 ⋅ 1 − cos𝑡 , sin 𝑡

$�

w
𝑑𝑡

= | 𝑡 − 𝑡	  cos 𝑡	   − sin 𝑡 + sin 𝑡 cos 𝑡 + 3 sin 𝑡 − sin	  𝑡	  cos 𝑡
$�

w
𝑑𝑡

= | 𝑡 + 2sin 𝑡 − 𝑡	  cos 𝑡	  
$�

w
𝑑𝑡 =

𝑡$

2 − 2cos 𝑡 − 𝑡	  sin	   𝑡	   − cos 𝑡
w

$�

= 2𝜋$.



Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Let 𝐅	  be a continuous vector force field on an open connected region R in 𝐑𝟐	   (or D in 𝐑𝟑). There 
exists a potential function 𝜑	   with 𝐅 = 𝛁𝜑 (which means that 𝐅	   is conservative)  if and only if 

𝑊 = |𝐅	   ⋅ 𝐓𝑑𝑠
}

= |𝐅	   ⋅ 𝑑𝐫
}

= 𝜑 𝐵 − 𝜑(𝐴)

For all points 𝐴	   and 𝐵	  in R and all smooth oriented curves 𝐶	  from 𝐴	  to 𝐵 .

Fundamental Theorem for Line Integrals and Path Independence

Fundamental Theorem for Line Integrals

Example 3 Verifying path independence
Consider the vector field 𝐅 = (𝑥, −𝑦)	  with potential function 𝜑 𝑥, 𝑦 = y

$ (𝑥
$ − 𝑦$).	  Let	  𝐶y be th

e quarter circle 𝐫 𝑡 = cos 𝑡, sin 𝑡 , for	  0 ≤ 𝑡 ≤ �
$ , from	  𝐴 1,0 	  to	  𝐵 0,1 .	  Let	  𝐶$ be the line 

𝐫 𝑡 = 1− 𝑡, 𝑡 , for	  0 ≤ 𝑡 ≤ 1, 	  also	  from	  𝐴 1,0 	  to	  𝐵 0,1 .	   Evaluate the line integrals of 	  𝐅	  
on 𝐶y and  𝐶$, and show that both are equal to 𝜑 𝐵 − 𝜑(𝐴).

Solution  On 𝐶y we have 𝐫′ 𝑡 = −sin 𝑡, cos 𝑡 and	  𝐅 = 𝑥,−𝑦 = cos	  𝑡, −sin	  	  𝑡 .
The line integral on 𝐶y is

| 𝐅	   ⋅ 𝑑𝐫
}¥

= | 𝐅	   ⋅ 𝐫n 𝑡 𝑑𝑡
}¥

= | cos 𝑡 , − sin 𝑡 ⋅ − sin 𝑡 , cos𝑡
�
$

w
𝑑𝑡

= | −sin 2𝑡
�
$

w
𝑑𝑡 =

1
2 sin 2𝑡 w

�
$
= −1.
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On 𝐶$ we have 𝐫′ 𝑡 = −1 ,1 and	  𝐅 = 𝑥,−𝑦 = 1 − 𝑡, −𝑡 . 	  Therefore

| 𝐅	   ⋅ 𝑑𝐫
}�

= | 𝐅	   ⋅ 𝐫n 𝑡 𝑑𝑡
}�

= | 1 − 𝑡, −𝑡 ⋅ −1 ,1
y

w
𝑑𝑡

= | −1
y

w
𝑑𝑡 = −𝑡 wy = −1.

The	  two	  line	  integrals	  have	  the	  same	  value,	  which	  is	  equal	  to
𝜑 0,1 − 𝜑 1,0 = − y

$ −
y
$ = −1.

Example 4 Line integral of a conservative vector field.
Evaluate 

| 2𝑥𝑦 − 𝑧$ 𝐢 + 𝑥$ + 2𝑧 𝐣 + 2𝑦 − 2𝑥𝑧 𝐤 	   ⋅ 𝑑𝐫
}

where	  𝐶 is	  a	  simple	  curve	  from	  𝐴 −3,−2, −1 to	  𝐵 1,2,3 .

Solution This vector field is conservative and has a potential function 
𝜑 𝑥, 𝑦, 𝑧 = 𝑥$𝑦− 𝑥𝑧$ + 2𝑦𝑧.	  	   Bv the Fundamental Theorem for line integrals,

| 2𝑥𝑦 − 𝑧$ 𝐢 + 𝑥$ + 2𝑧 𝐣 + 2𝑦 − 2𝑥𝑧 𝐤 	   ⋅ 𝑑𝐫
}

= |𝛻 𝑥$𝑦− 𝑥𝑧$ + 2𝑦𝑧 	   ⋅ 𝑑𝐫
}

=

𝜑 1,2,3 − 𝜑 −3,−2,−1 = 16.
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Green’s  Theorem
Let’s start with a simple closed curve 𝐶	  and let 𝐷	  be the region enclosed by the curve. Here is a 
sketch of such a curve and

Green’s Theorem  
Let 𝐶 be a positively oriented, piecewise smooth simple, closed curve and let 𝐷	  be the region enc
losed by the curve. If 𝑃 and 𝑄	  have continuous first order partial derivatives on 𝐷	  then,   

|𝑃𝑑𝑥 + 𝑄𝑑𝑦
}

= ||
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 𝑑𝐴

¨
.

where	  𝐶 is	  a	  simple	  curve	  from	  𝐴 −3,−2, −1 to	  𝐵 1,2,3 .

We will say that the curve 𝐶	  has a positive orientation if it 
is traced out in a counter-clockwise direction.

Example 1 Use Green’s Theorem to evaluate ∫ 𝑥𝑦𝑑𝑥 + 𝑥$𝑦;𝑑𝑦} where 𝐶	  is the triangle with vert
ices 0,0 , 1,0 , 1,2 	  with positive orientation.
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Solution Here we have 𝑃 𝑥, 𝑦 = 𝑥𝑦 and 𝑄 𝑥, 𝑦 = 𝑥$𝑦;.	   Clearly the region 𝐷	  is given by 
0 ≤ 𝑥 ≤ 1	  	  	  and	  0 ≤ 𝑦 ≤ 2𝑥.

So, using Green’s Theorem the line integral becomes,

|𝑥𝑦𝑑𝑥 + 𝑥$𝑦;𝑑𝑦
}

= |𝑃𝑑𝑥 + 𝑄𝑑𝑦
}

= ||
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 𝑑𝐴

¨
= | | 2𝑥𝑦; − 𝑥 𝑑𝑦𝑑𝑥

𝟐𝒙

𝟎

𝟏

𝟎

= |
2𝑥𝑦¬

4 − 𝑥𝑦
𝟎

𝟐𝒙𝟏

𝟎
𝑑𝑥 = | 8𝑥® − 2𝑥$

𝟏

𝟎
𝑑𝑥 =

8𝑥¯

6 −
2𝑥𝟑

3 𝟎

y

=
4
3−

2
3 =

2
3 .
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circle of radius 2 centered at the origin. 

Solution Here we have 𝑃 𝑥, 𝑦 = 𝑦; and 𝑄 𝑥,𝑦 = −𝑥;.	   Since  𝐷	  is  a disk of radius 
2 and centered at the origin, so it is  given by 

0 ≤ 𝑟 ≤ 2	  	  	  and	  0 ≤ 𝜃	   ≤ 2𝜋.

So, using Green’s Theorem the line integral becomes,

|𝑦;𝑑𝑥 − 𝑥;𝑑𝑦
}

= |𝑃𝑑𝑥 + 𝑄𝑑𝑦
}

= ||
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 𝑑𝐴

¨

= || −3𝑥$ − 3𝑦$ 𝑑𝐴
¨

= −3| | 𝑟;
𝟐

𝟎
𝑑𝑟

𝟐𝝅

𝟎
𝑑𝜃

= −3|
𝑟¬

4 𝟎

𝟐𝟐𝝅

𝟎
𝑑𝜃

= −3| 4
𝟐𝝅

𝟎
𝑑𝜃

= −24𝜋.
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Application of Green’s  Theorem 
We will use Green’s Theorem to determine the area of a region 𝐷 with the following double 
integral  

Area = ||𝑑𝐴
¨

.

We have to take 𝑃 and 𝑄	   so that  
𝜕𝑄
𝜕𝑥 −

𝜕𝑃
𝜕𝑦 = 1.

There are many functions that will satisfy this equation. Here are some of the more common 
functions. 
1. 𝑃 = 0 and	  𝑄 = 𝑥;
2. 𝑃 = −𝑦 and	  𝑄 = 0;
3. 𝑃 = −h

$ and	  𝑄 = d
$.

Then, if we use Green’s Theorem in reverse we see that the area of the region 𝐷	   can also be 
computed by evaluating any of the following line integrals

Area = |𝑥𝑑𝑦
}

= −|𝑦𝑑𝑥
}

=
1
2|𝑥𝑑𝑦}

− 𝑦𝑑𝑥,

where 𝐶	   is the boundary of the region 𝐷.
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Example 1 Use Green’s Theorem to find the area of a disk of radius 𝑎.

Solution We use either of the integrals above.

Area =
1
2|𝑥𝑑𝑦}

− 𝑦𝑑𝑦,

where 𝐶	  is the circle of radius 𝑎.  So, to do this we will need a parameterization of 𝐶.
𝑥 = a	  cos 𝑡; 	  	  	  	  	  	  	  	  	  	  	  	  	  𝑦 = 𝑎 sin 𝑡	  	  	  	  	  	  	  	  for	  all	   	  	  0 ≤ 𝑡 ≤ 2𝜋.

The area is then

Area =
1
2|𝑥𝑑𝑦}

− 𝑦𝑑𝑦

=
1
2 | 𝑎 cos 𝑡 𝑎 cos𝑡 𝑑𝑡

$�

w
− | 𝑎 sin 𝑡 −𝑎 sin 𝑡 𝑑𝑡

$�

w

=
1
2 | 𝑎$ cos$ 𝑡 + 𝑎$ sin$ 𝑡 𝑑𝑡

$�

w

=
1
2 | 𝑎$𝑑𝑡

$�

w
= 𝜋𝑎$.
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Surface Integrals
It is now time to think about integrating functions over some surface 𝑆,	   in 
three-dimension. First, let’s look at the surface integral in which the surface 
𝑆	   is given by 𝑧 = 𝑔 𝑥, 𝑦 . In this case the surface integral is 

||𝑓 𝑥, 𝑦, 𝑧 𝑑𝑆
³

=|| 𝑓 𝑥, 𝑦, 𝑔 𝑥, 𝑦
𝜕𝑔
𝜕𝑥

$
+

𝜕𝑔
𝜕𝑦

$
+ 1	  𝑑𝐴

¨
,

where 𝐷 is the projection of 𝑆	  on 𝑥𝑦 − plane.

Example 1 Evaluate	  	  ∫ ∫ 6𝑥𝑦𝑑𝑆³ 	  where 𝑆	  is the portion of the plane 𝑥 + 𝑦 + 𝑧 = 1	  
that lies in the first octant. 

Solution Here we have 𝑓 𝑥,𝑦, 𝑧 = 6𝑥𝑦 and 𝑧 = 𝑔 𝑥, 𝑦 = 1 − 𝑥 − 𝑦. So
𝜕𝑔
𝜕𝑥 = −1	  and

𝜕𝑔
𝜕𝑦 = −1.

Then

||6𝑥𝑦𝑑𝑆
³

=||6𝑥𝑦 −1 $ + −1 $ + 1	  𝑑𝐴
¨

.

We	  need	  to	  determine	  the	  region	  D.



Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

The region 𝐷	  is given by 0 ≤ 𝑥 ≤ 1	  and	  0 ≤ 𝑦 ≤ 1− 𝑥. Then

||6𝑥𝑦𝑑𝑆
³

= ||6𝑥𝑦 −1 $ + −1 $ + 1	  𝑑𝐴
¨

= 6 3| | 𝑥𝑦𝑑𝑦𝑑𝑥
y@d

w

y

w

= 6 3|
𝑥𝑦$

2 w

y@d

𝑑𝑥
y

w
= 3 3| 𝑥 1 − 𝑥 $𝑑𝑥 =

y

w
3 3| 𝑥 − 2𝑥$ + 𝑥;𝑑𝑥

y

w

= 3 3
𝑥$

2 −
2𝑥;

3 +
𝑥¬

4 w

y

= 3 3
1
2 −

2
3 +

1
4 =

3
4 .

𝑦 = 1 − 𝑥
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Surface Integrals of Vector Fields
Given a vector field F with unit normal vector n, then the surface integral of F over   the surf
ace 𝑆	  is given by 

||F	  𝑑𝑆
³

=||F ⋅ 𝑛	  
³

𝑑𝑆,

where the right hand integral is a surface integral of a scalar function.  This integral is called 
the flux of F across 𝑆.	  

If the surface 𝑆	  is given by 𝑧 = 𝑔 𝑥, 𝑦 	  and that the orientation is upward. Assume that the v
ector field is given by F = (M,N,P) . In this case the unit vector normal is 

𝑛 =
−𝜕𝑔𝜕𝑥 𝐢 −

𝜕𝑔
𝜕𝑥 𝐣 + 𝐤

𝜕𝑔
𝜕𝑥

$
+ 𝜕𝑔

𝜕𝑦
$
+ 1

.
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Clearly we have 

F ⋅ 𝑛 = 𝑀𝐢 + 𝑁𝐣+ 𝑃𝐤 ⋅
−𝜕𝑔𝜕𝑥 𝐢 −

𝜕𝑔
𝜕𝑥 𝐣 + 𝐤

𝜕𝑔
𝜕𝑥

$
+ 𝜕𝑔

𝜕𝑦
$
+ 1

=
−𝑀𝜕𝑔

𝜕𝑥 − 𝑁
𝜕𝑔
𝜕𝑥 + 𝑃

𝜕𝑔
𝜕𝑥

$
+ 𝜕𝑔

𝜕𝑦
$
+ 1

and  so

F ⋅ 𝑛	  𝑑𝑆 =
−𝑀𝜕𝑔

𝜕𝑥 − 𝑁
𝜕𝑔
𝜕𝑥 + 𝑃

𝜕𝑔
𝜕𝑥

$
+ 𝜕𝑔

𝜕𝑦
$
+ 1

𝜕𝑔
𝜕𝑥

$
+

𝜕𝑔
𝜕𝑦

$
+ 1𝑑𝐴 = −𝑀

𝜕𝑔
𝜕𝑥 − 𝑁

𝜕𝑔
𝜕𝑥 + 𝑃 𝑑𝐴

Therefore 

surface integral becomes

||F	  𝑑𝑆
³

=||F ⋅ 𝑛	  
³

𝑑𝑆 = || −𝑀
𝜕𝑔
𝜕𝑥 − 𝑁

𝜕𝑔
𝜕𝑥 + 𝑃

¨
𝑑𝐴.
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Similarly, if the surface is oriented downward, then the unit normal vector is given by   

𝑛 =
𝜕𝑔
𝜕𝑥 𝐢 +

𝜕𝑔
𝜕𝑥 𝐣 − 𝐤

𝜕𝑔
𝜕𝑥

$
+ 𝜕𝑔

𝜕𝑦
$
+ 1

.

In this case the surface integral becomes

||F	  𝑑𝑆
³

=|| 𝑀
𝜕𝑔
𝜕𝑥 + 𝑁

𝜕𝑔
𝜕𝑦 − 𝑃¨

𝑑𝐴.

Example 1 Evaluate	  	  ∫ ∫ F	  𝑑𝑆³ 	  where	  F = (0,y,−z)	  and	  𝑆	  is the surface oriented outward and 
given by the paraboloid 𝑦 = 𝑥$ + 𝑧$	  , 0 ≤ 𝑦 ≤ 1 and the disk 𝑥$ + 𝑧$ ≤ 1	  at 𝑦 = 1.  
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disk by 𝑆$	  and	  𝑆	  is	  composed	  of	  the	  two	  surfaces. We will evaluate the s
urface integral on each and then add the results to get the overall surface int
egral. Let’s start with the paraboloid. In this case we have  𝑦 = 𝑔 𝑥, 𝑧 =
𝑥$ + 𝑧$ and the surface integral has the form

|| F	  𝑑𝑆
³¥

=|| 𝑀
𝜕𝑔
𝜕𝑥 − 𝑁 + 𝑃

𝜕𝑔
𝜕𝑧¨¥

𝑑𝐴

= || 0 ⋅ 2𝑥 − 𝑦 + −𝑧 2𝑧
¨¥

𝑑𝐴 = −|| 𝑦 + 2𝑧$
¨¥

𝑑𝐴

= −|| 𝑥$ + 3𝑧$
¨¥

𝑑𝐴.

Here 𝐷y is  the disk in the xz-plane with radius 1 and centered at the origin so it is given by 
𝐷y = { 𝑟, 𝜃 : 0 ≤ 𝑟 ≤ 1	  	  	  and	  0 ≤ 𝜃 ≤ 2𝜋}. In this case we have 𝑥 = 𝑟cos	  𝜃	  𝑎𝑛𝑑	  𝑧 = 𝑟	  sin	  𝜃
Therefore, 

|| F	  𝑑𝑆
³¥

= − || 𝑥$ + 3𝑧$
¨¥

𝑑𝐴 = −| | 𝑟$ + 2𝑟$ sin$ 𝜃
𝟏

𝟎

𝟐𝝅

𝟎

𝑟𝑑𝑟𝑑𝜃

= −| | 1 + 2sin$ 𝜃
𝟏

𝟎

𝟐𝝅

𝟎

𝑟;𝑑𝑟𝑑𝜃 = −
1
4| 2− cos2𝜃
𝟐𝝅

𝟎

𝑑𝜃 = −
1
4 2𝜃 −

1
2 sin 2𝜃 w

$�
= −𝜋.
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𝑆$: The	  cap	  of	  the	  paraboloid. 	  and	  𝑆	  is	  composed	  of	  the	  two	  surfaces.
We will evaluate the surface integral on each and then add the results to get 
the overall surface integral. Let’s start with the paraboloid. In this case we h
ave  𝑦 = 𝑔 𝑥, 𝑧 = 𝑥$ + 𝑧$ and the surface integral has the form

|| F	  𝑑𝑆
³¥

=|| 𝑀
𝜕𝑔
𝜕𝑥 − 𝑁 + 𝑃

𝜕𝑔
𝜕𝑧¨¥

𝑑𝐴

= || 0 ⋅ 2𝑥 − 𝑦 + −𝑧 2𝑧
¨¥

𝑑𝐴 = −|| 𝑦 + 2𝑧$
¨¥

𝑑𝐴

= −|| 𝑥$ + 3𝑧$
¨¥

𝑑𝐴.

Here 𝐷y is  the disk in the xz-plane with radius 1 and centered at the origin so it is given by 
𝐷y = { 𝑟, 𝜃 : 0 ≤ 𝑟 ≤ 1	  	  	  and	  0 ≤ 𝜃 ≤ 2𝜋}. In this case we have 𝑥 = 𝑟cos	  𝜃	  𝑎𝑛𝑑	  𝑧 = 𝑟	  sin	  𝜃
Therefore, 

|| F	  𝑑𝑆
³¥

= − || 𝑥$ + 3𝑧$
¨¥

𝑑𝐴 = −| | 𝑟$ + 2𝑟$ sin$ 𝜃
𝟏

𝟎

𝟐𝝅

𝟎

𝑟𝑑𝑟𝑑𝜃

= −| | 1 + 2sin$ 𝜃
𝟏

𝟎

𝟐𝝅

𝟎

𝑟;𝑑𝑟𝑑𝜃 = −
1
4| 2− cos2𝜃
𝟐𝝅

𝟎

𝑑𝜃 = −
1
4 2𝜃 −

1
2 sin 2𝜃 w

$�
= −𝜋.



Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

𝑆$: The	  cap	  of	  the	  paraboloid. 	  	  In	  this	  case	  we	  obviously	  have	  𝑛 = 𝐣	  .	  
Then 

|| F	  𝑑𝑆
³�

=|| F ⋅ 𝑛	  
³�

𝑑𝑆 = || 0, 𝑦, −𝑧 ⋅ 0,1,0 	  
³�

𝑑𝑆 = || 𝑦	  
³�

𝑑𝑆.

In this case we have  𝑦 = 𝑔 𝑥,𝑧 = 1 and so 

𝑑𝑆 =
𝜕𝑔
𝜕𝑥

$
+

𝜕𝑔
𝜕𝑧

$
+ 1 𝑑𝐴 = 𝑑𝐴.	  

Thus 

|| F	  𝑑𝑆
³�

= || 𝑦	  
³�

𝑑𝑆 = || 1
¨�

𝑑𝐴 = || 𝑑𝐴
¨�

= | | 𝑟𝑑𝑟𝑑𝜃
𝟏

𝟎

𝟐𝝅

𝟎

=
1
2| 𝑑𝜃
𝟐𝝅

𝟎

= 𝜋.

Finally, we obtain 

||F	  𝑑𝑆
³

=|| F	  𝑑𝑆
³¥

+ || F	  𝑑𝑆
³�

= −𝜋 + 𝜋 = 0.
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Divergence Theorem      Let 𝐸	  be a simple solid region and 𝑆	  is the boundary surface of 𝐸	  
with positive orientation. Let F be a vector field whose components have continuous first 
order partial derivatives. Then

||F	  𝑑𝑆
³

=ºdiv	  F𝑑𝑉
¼

.

Divergence Theorem 
In this section we are going to relate surface integrals to triple integrals. We will do this with 
the Divergence Theorem. 

Example 1 Use the divergence theorem to evaluate	  ∫ ∫ F	  𝑑𝑆³ , 	  where F = 𝑥𝑦𝐢 − y
$𝑦

$𝐣 + 𝑧𝐤
and the surface consists of the three surfaces, 𝑧 = 4 − 3𝑥$ − 3𝑦$, 1 ≤ 𝑧 ≤ 4	  on	  the	  top,
	  𝑥$+𝑦$ = 1,	   1 ≤ 𝑧 ≤ 1	  on the sides and  𝑧 = 0	   on the bottom.

Solution. Let’s start with a sketch of the surface.
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The region 𝐸	  for the triple integral is then the region enclosed by these surfaces. So the regio
n 𝐸 is given by (in cylindrical coordinates system):
𝐸 = 𝑟, 𝜃, 𝑧 : 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ 1, 0 ≤ 𝑧 ≤ 4− 3𝑟$ .	   We will also need the divergen
ce of the vector field 

div	  F =
𝜕 𝑥𝑦
𝜕𝑥 +

𝜕 −12𝑦
$

𝜕𝑦 +
𝜕 𝑧
𝜕𝑧 = 𝑦 − 𝑦 + 1 = 1.

would be be a simple solid region and 𝑆	  is the boundary surface of 𝐸	  with positive orientati
on. Let F be a vector field whose components have continuous first 
order partial derivatives.

The integral is then, 

||F	  𝑑𝑆
³

=ºdiv	  F𝑑𝑉
¼

= | | | 𝑟𝑑𝑧𝑑𝑟𝑑𝜃
¬@;½�

w

y

w

$�

w

= | |4𝑟 − 3𝑟;𝑑𝑟𝑑𝜃
y

w

= | 2𝑟$ −
3
4𝑟

¬
w

y
𝑑𝜃 =

$�

w

|
5
4𝑑𝜃 =

$�

w

$�

w

5𝜋
2 .
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Stokes Theorem 
In this section we are going to take a look at a theorem that is a higher dimensional version
of Green’s Theorem. In Green’s Theorem we related a line integral to a double integral over 
some region. In this section we are going to relate a line integral to surface integral

Stokes Theorem     Let	  𝑆 be an oriented smooth surface that is 
bounded by a simple, closed, smooth boundary curve 𝐶 with 
positive orientation. Let F be a vector field then

|F	  𝑑𝐫
}

= ||curl	  F	  𝑑𝑆
³

.
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Example 1 Use Stokes Theorem to evaluate	  ∫ ∫ curl	  F	  𝑑𝑆³ , 	  where F = 𝑧$𝐢 − 3𝑥𝑦𝐣 + 𝑥;𝑦;𝐤 a
nd the surface 𝑆 is the part of 𝑧 = 5 − 𝑥$ − 𝑦$	  above	  the	  plane	  𝑧 = 1	  and oriented upward.

Solution In this case the boundary curve 𝐶	  is the intersection of the surface and the plane 𝑧 = 1
and so 1 = 5 − 𝑥$ − 𝑦$, that	  is, 	   𝑥$ + 𝑦$ = 4	  	  at	  𝑧 = 1.
So the boundary curve will be the circle of radius 2 which is in the plane	  𝑧 = 1	  .
The parameterization of the curve is 

r(t) = 2 cos𝑡 𝐢 + 2 sin 𝑡 𝐣 + 𝐤,   for     0 ≤ 𝑡 ≤ 2𝜋.
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Using Stokes Theorem we can write the surface integral as the following line integral

||curl	  F	  𝑑𝑆
³

= |	  F	  𝑑𝐫
}

= | F	   𝐫(𝑡) ⋅ 𝐫(𝑡)𝑑𝑡
$�

w
.

	  where
F	   𝐫(𝑡) = 1 ⋅ 𝐢 − 3 2cos 𝑡	   2 sin 𝑡 𝐣 + 2 cos 𝑡	   ; 2sin 𝑡 ;𝐤

= 𝐢 − 12 cos 𝑡 sin 𝑡 𝐣 + 64cos; 𝑡	   sin; 𝑡 𝐤,
and 

F	   𝐫(𝑡) ⋅ r(t) = 𝐢 − 12cos 𝑡 sin 𝑡 𝐣 + 64 cos; 𝑡	   sin; 𝑡 𝐤 ⋅ 2cos 𝑡 𝐢 + 2 sin 𝑡 𝐣 + 𝐤
= 2 cos 𝑡 − 24 cos 𝑡 sin$ 𝑡 + 64 cos; 𝑡	   sin; 𝑡

||curl	  F	  𝑑𝑆
³

= |	  F	  𝑑𝐫
}

= | 2 cos 𝑡 − 24cos 𝑡 sin$ 𝑡 + 64cos; 𝑡	   sin; 𝑡 𝑑𝑡
$�

w



Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

||curl	  F	  𝑑𝑆
³

= |	  F	  𝑑𝐫
}

= | 2 cos 𝑡 − 24cos 𝑡 sin$ 𝑡 + 64cos; 𝑡	   sin; 𝑡 𝑑𝑡
$�

w

= 2| cos 𝑡 𝑑𝑡
$�

w
− 24| cos 𝑡 sin$ 𝑡 𝑑𝑡

$�

w
+ 64| cos; 𝑡	   sin; 𝑡 𝑑𝑡

$�

w
=

= 2| cos 𝑡 𝑑𝑡
$�

w
− 24| sin$ 𝑡 cos 𝑡 𝑑𝑡

$�

w
+ 64| cos$ 𝑡	   sin; 𝑡 cos 𝑡 𝑑𝑡

$�

w

= 2| cos 𝑡 𝑑𝑡
$�

w
− 24| sin$ 𝑡 cos 𝑡 𝑑𝑡

$�

w
+ 64| 1− sin$ 𝑡 sin; 𝑡 cos 𝑡 𝑑𝑡

$�

w

= 2| cos 𝑡 𝑑𝑡
$�

w
− 24| sin$ 𝑡 cos 𝑡 𝑑𝑡

$�

w
+ 64| sin; 𝑡 − sin® 𝑡 cos 𝑡 𝑑𝑡

$�

w

= 2 sin 𝑡 w
$� − 24

1
2
sin$ 𝑡

w

$�

+ 64
1
4
sin¬ 𝑡 −

1
6
sin¯ 𝑡

w

$�

= 0.
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Example 2 Use Stokes Theorem to evaluate ∫ F	  𝑑𝐫,	  } where F = 𝑧$𝐢 + 𝑦$𝐣 + 𝑥𝐤 and 𝐶 is the tr
iangle with vertices 1,0,0 , 0,1,0 	  	  and	  (0,0,1) with counter-clockwise direction.

Solution By Stokes Theorem we have  

|	  F	  𝑑𝐫
}

= ||curl	  F	  𝑑𝑆
³

where 𝑆 is any surface having 𝐶 as a boundary. We need first to compute the curl of the
given vector field 

curl	  𝐅 =

𝐢 𝐣 𝐤
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝑧$ 𝑦$ 𝑥

= 𝟎 𝐢 − 1 − 2𝑧 𝐣 + 0 𝐤 = 2𝑧 − 1 𝐣.

The surface is shown in the following figure:

Obviously, since 𝐶	  has counter-clockwise direction, then  
the surface 𝑆 is oriented upward. 
The equation of the plane containing 𝑆	  is given by 

𝑥 + 𝑦 + 𝑧 = 1
and so 𝑆 is given by 𝑧 = 𝑔 𝑥, 𝑦 = 1 − 𝑥 − 𝑦.
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The unit upward normal vector  is given by 

𝑛 =
−𝜕𝑔𝜕𝑥 𝐢 −

𝜕𝑔
𝜕𝑥 𝐣 + 𝐤

𝜕𝑔
𝜕𝑥

$
+ 𝜕𝑔

𝜕𝑦
$
+ 1

=
𝐢 + 𝐣 + 𝐤

3
.

Therefore,    

|	  F	  𝑑𝐫
}

= ||curl	  F	  𝑑𝑆
³

= ||curl	  F ⋅ 𝑛	  𝑑𝑆
³

= || 2𝑧 − 1 𝐣 ⋅
𝐢 + 𝐣 + 𝐤

3
𝑑𝑆

³

=
𝟏
3
|| 2𝑧 − 1 𝑑𝑆

³
=

𝟏
3
|| 2𝑧 − 1 3𝑑𝐴

¨
,

where 𝐷 is the projection of the surface on the xy-plane which is given by 
𝐷 = { 𝑥, 𝑦 : 0 ≤ 𝑥 ≤ 1	  and	  0 ≤ 𝑦 ≤ 1− 𝑥}. 



Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Prof. Messaoud Bounkhel
Department of Mathematics

King Saud University

Then,    

|	  F	  𝑑𝐫
}

= || 2𝑧 − 1 𝑑𝐴
¨

= | | 2𝑔(𝑥, 𝑦) − 1 𝑑𝑦𝑑𝑥
y@d

w

y

w

= | | 1 − 2𝑥 − 2𝑦 𝑑𝑦𝑑𝑥
y@d

w
= | 1 − 2𝑥 𝑦 − 𝑦$ w

y@d𝑑𝑥
y

w

y

w

= | 1 − 2𝑥 1− 𝑥 − 1 − 𝑥 $ 𝑑𝑥
y

w

= | 1 − 𝑥 − 2𝑥 + 2𝑥$ − 1 − 2𝑥 + 𝑥$ 𝑑𝑥
y

w

= | 1 − 𝑥 − 2𝑥 + 2𝑥$ − 1 + 2𝑥 − 𝑥$ 𝑑𝑥
y

w

= | 𝑥$ − 𝑥 𝑑𝑥
y

w
=

𝑥;

3 −
𝑥$

2 w

y

=
1
3−

1
2 = −

1
6 .


