INTEGRAL CALCULUS (MATH 106)

Dr. Borhen Halouani

King Saud University
February 5, 2020
(1) Area Between Curves

(2) Volume Of A Solid Revolution

(3) Arc Length

Area Between Two Curves

In this section we are going to look at finding the area between two curves.
we want to determine the area between $y=f(x)$ and $y=g(x)$ on the interval $[a, b]$
We are also going to assume that $f(x) \geq g(x)$.

$$
A=\int_{a}^{b}(\text { upper function })-(\text { lower function }) d x, \quad a \leq x \leq b
$$

$$
A=\int_{a}^{b} f(x)-g(x) d x
$$

Area Between Two Curves (Example)

Example 2.1

Find the area enclosed between the graphs $y=x$ and $y=x^{2}-2$.
Note that upper function is $y=x$ and lower function is $y=x^{2}-2$ Note that $y=x^{2}-2$ is a parabola opens upward with vertex $(0,-2)$, and $y=x$ is a straight line passing through the origin. Points of intersection between $y=x^{2}-2$ and $y=x$ is:
$x^{2}-2=x \Rightarrow x^{2}-x-2=0 \Rightarrow(x+1)(x-2)=0$
$\Rightarrow x=-1$ and $x=2$
$A=\int_{-1}^{2} x-\left(x^{2}-2\right) d x=\int_{-1}^{2} x-x^{2}+2 d x=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}+2 x\right]_{-1}^{2}=\frac{27}{6}$

Area Between Curves (Example)

Example 2.2

Find the area enclosed between the graphs $y=e^{x}, y=x^{2}-1, x=-1$, and $x=1$

Area Between Curves (Example)

Note that upper function is $y=e^{x}$ and lower function is
$y=x^{2}-1$

$$
\begin{aligned}
A=\int_{-1}^{1} e^{x}-\left(x^{2}-1\right) d x=\int_{-1}^{1} e^{x}-x^{2}+1 d x & =\left[e^{x}-\frac{1}{3} x^{3}+x\right]_{-1}^{1} \\
& =e-\frac{1}{e}+\frac{4}{3}
\end{aligned}
$$

Area Between Curves (Example)

Example 2.3

Compute the area oh the region bounded by the curves $y=x^{3}$ and $y=3 x-2$

Area Between Curves (Example)

Note that upper function is $y=x^{3}$ and lower function is $y=3 x-2$
Points of intersection between $y=x^{3}$ and $y=3 x-2$
$x^{3}-3 x+2=0 \Rightarrow(x-1)\left(x^{2}+x-2\right)=0 \Rightarrow x=-2$ and $x=1$
$A=\int_{-2}^{1} x^{3}-(3 x-2) d x=\int_{-2}^{1} x^{3}-3 x+2 d x=\left[\frac{x^{4}}{4}-\frac{3}{2} x^{2}+2 x\right]_{-2}^{1}$
$=\frac{3}{4}+6=\frac{27}{4}$

Area Between Curves (Example)

Example 2.4

Find the area enclosed between the graphs $f(x)=x^{2}$ and $g(x)=x$ between $x=0$, and $x=2$.

Dr. Borhen Halouani

Area Between Curves (Example)

we see that the two graphs intersect at $(0,0)$ and $(1,1)$. In the interval $[0,1]$, we have $g(x)=x \geq f(x)=x^{2}$, and in the interval $[1,2]$, we have $f(x)=x^{2} \geq g(x)=x$ Therefore the desired area is:

$$
\begin{aligned}
\int_{0}^{1}\left(x-x^{2}\right) d x+\int_{1}^{2}\left(x^{2}-x\right) d x & =\left[\frac{x^{2}}{2}-\frac{x^{3}}{0}\right]_{0}^{1}+\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}\right]_{1}^{2} \\
& =\frac{1}{6}+\frac{5}{6}=1
\end{aligned}
$$

Volume Of A Solid Revolution (The Disk Method)

Suppose we have a curve $y=f(x)$

Imagine that the part of the curve between the ordinates $x=a$ and $x=b$ is rotated about the x-axis through 360 degree.

Volume Of A Solid Revolution (The Disk Method)

Now if we take a cross-section of the solid, parallel to the y-axis, this cross-section will be a circle.

But rather than take a cross-section, let us take a thin disc of thickness δx, with the face of the disc nearest the y-axis at a distance \times from the origin.

The radius of this circular face will then be y. The radius of the other circular face will be $y+$ deltay, where δy is the change in y caused by the small positive increase in $x, \delta x$.

The volume δV of the disc is then given by the volume of a cylinder, $\pi r^{2} h$, so that

$$
\delta V=\pi r^{2} \delta x
$$

So the volume V of the solid of revolution is given by

$$
V=\lim _{\delta x \rightarrow 0} \sum_{x=a}^{x=b} \delta V=\lim _{\delta x \rightarrow 0} \sum_{x=a}^{x=b} \pi y^{2} \delta x=\pi \int_{a}^{b}[f(x)]^{2} d x
$$

Example 3.1

The curve $y=x^{2}-1$ is rotated about the x-axis through 360 degree. Find the volume of the solid generated when the area contained between the curve and the x-axis is rotated about the x-axis by 360 degree.

The graph of $y=x^{2}-1$
$\pi \int_{a}^{b}[f(x)]^{2} d x=\pi \int_{-1}^{1}\left[x^{2}-1\right]^{2} d x=\pi \int_{-1}^{1}\left(x^{4}-2 x^{2}+1\right) d x$
$=\left[\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x\right]_{-1}^{1}=\frac{16 \pi}{15}$

Example 3.2

Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=-x^{2}+x$ and the x-axis about the x-axis.

Using the Disk Method, you can find the volume of the solid of revolution.
$V=\pi \int_{0}^{1}[f(x)]^{2} d x=\pi \int_{0}^{1}\left[\left(-x^{2}+x\right)^{2} d x=\pi \int_{0}^{1}\left(x^{4}-2 x^{3}+x^{2}\right) d x\right.$
$=\pi\left[\frac{x^{5}}{5}-\frac{2 x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1}=\frac{\pi}{30}$

Volume Of A Solid Revolution (The Washer Method)

The Washer Method

Let f and g be continuous and nonnegative on the closed interval $[a, b]$, if $f(x) \geq g(x)$ for all x in the interval, then the volume of the solid formed by revolving the region bounded by the graphs of $f(x)$ and $g(x)(a \leq x \leq b)$, about the x-axis is:
$V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x$
$f(x)$ is the outer radius and $g(x)$ is the inner radius.

(a)

(b)

Example 3.3

Find the volume of the solid formed by revolving the region bounded by the graphs of $f(x)=\sqrt{25-x^{2}}$ and $g(x)=3$

(a)

(b)

First find the points of intersection of f and g, by setting $f(x)$ equal to $g(x)$ and solving for x.
$\sqrt{25-x^{2}}=3 \Rightarrow 25-x^{2}=9 \Rightarrow x^{2}=16 \Rightarrow x= \pm 4$
Using $f(x)$ as the outer radius and $g(x)$ as the inner radius, you can find the volume of the solid as shown.
$V=\pi \int_{a}^{b}\left\{[f(x)]^{2}-[g(x)]^{2}\right\} d x=\pi \int_{-4}^{4}\left(\sqrt{25-x^{2}}\right)^{2}-(3)^{2} d x$
$=\pi \int_{-4}^{4}\left(16-x^{2}\right) d x=\pi\left[16 x-\frac{x^{3}}{3}\right]_{-4}^{4}=\frac{256 \pi}{3}$

Volume Of A Solid Revolution (Cylindrical shells method)

The method of cylindrical shells

 the cylindrical shell with inner radius r_{1}, outer radius r_{2}, and height h. Its volume V is calculated by subtracting the volume V_{1} of the inner cylinder from the volume V_{2} of the outer cylinder:

$$
\begin{aligned}
& V=V_{2}-V_{1}=\pi r_{2}^{2} h-\pi r_{1}^{2} h=\pi\left(r_{2}^{2}-r_{1}^{2}\right) h=\pi\left(r_{2}-r_{1}\right)\left(r_{2}+r_{1}\right) h \\
& =2 \pi \frac{r_{2}+r_{1}}{2} h\left(r_{2}-r_{1}\right) \Rightarrow V=2 \pi r h \Delta r
\end{aligned}
$$

Volume Of A Solid Revolution (Cylindrical shells method)

let be the solid obtained by rotating about the -axis the region bounded by $y=f(x)$, where $f(x) \geq 0, y=0, x=a$ and $x=b$, where $b>a \geq 0$.

Volume Of A Solid Revolution (Cylindrical shells method)

We divide the interval into n subintervals $\left[x_{i-1}, x_{i+1}\right.$] of equal width and let $\overline{x_{i}}$ be the midpoint of the i th subinterval. If the rectangle with base $\left[x_{i-1}, x_{i}\right]$ and height $f\left(\bar{x}_{i}\right)$ is rotated about the y - axis then the result is a cylindrical shell with average radius \bar{x}_{i} height $f\left(\bar{x}_{i}\right)$ and thickness Δx so its volume is:

$$
V_{i}=(2 \pi) \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

Volume Of A Solid Revolution (Cylindrical shells method)

An approximation to the volume of is given by the sum of the volumes of these shells:

$$
V \approx \sum_{i=1}^{n} V_{i}=\sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x
$$

This approximation appears to become better as $n \rightarrow \infty$ But, from the definition of an integral, we know that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi \bar{x}_{i}\left[f\left(\bar{x}_{i}\right)\right] \Delta x=\int_{a}^{b} 2 \pi x f(x) d x
$$

The volume of the solid, obtained by rotating about the y-axis the region under the curve $y=f(x)$ from a to b, is

$$
V=\int_{a}^{b} 2 \pi x f(x) d x \quad \text { where } 0 \leq a<b
$$

The best way to remember the last Formula is to think of a typical shell, cut and flattened as in Figure with radius x, circumference $2 \pi x$, height $f(x)$ and thickness Δx or $d x$:

$$
\int_{a}^{b} \underbrace{(2 \pi x)}_{\text {circumferencee }} \underbrace{[f(x)]}_{\text {height }} d x
$$

Dr. Borhen Halouani

Cylindrical shells method (Examples)

Example 3.4

Find the volume of the solid obtained by rotating about the y-axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$

by the shell method, the volume is

$$
\begin{aligned}
V=\int_{0}^{2}(2 \pi x)\left(2 x^{2}-x^{3}\right) d x & =2 \pi \int_{0}^{2}\left(2 x^{3}-x^{4}\right) d x=2 \pi\left[\frac{x^{4}}{2}-\frac{x^{5}}{5}\right]_{0}^{2} \\
& =2 \pi\left(8-\frac{32}{5}\right)=\frac{16}{5} \pi
\end{aligned}
$$

Example 3.5

Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.

$$
\begin{aligned}
V & =\int_{0}^{1}(2 \pi x)\left(x-x^{2}\right) d x \\
& =2 \pi \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =2 \pi\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1}=\frac{\pi}{6}
\end{aligned}
$$

Example 3.6

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1.

For rotation about the x-axis we see that a typical shell has radius y, circumference $2 \pi y$, and height $1-y^{2}$. So the volume is

$$
\begin{aligned}
V & =\int_{0}^{1}(2 \pi y)\left(1-y^{2}\right) d y \\
& =2 \pi \int_{0}^{1}\left(y-y^{3}\right) d y \\
& =2 \pi\left[\frac{y^{2}}{2}-\frac{y^{4}}{4}\right]_{0}^{1}=\frac{\pi}{2}
\end{aligned}
$$

Example 3.7

Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$.
the region and a cylindrical shell formed by rotation about the line $x=2$. It has radius $2-x$, circumference $2 \pi(2-x)$, and height $x-x^{2}$.

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi(2-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}\left(x^{3}-3 x^{2}+2 x\right) d x \\
& =2 \pi\left[\frac{x^{4}}{4}-x^{3}+x^{2}\right]_{0}^{1}=\frac{\pi}{2}
\end{aligned}
$$

Arc Length

Definition 4.1

(1) If $f(x)$ is continuous function on the interval $[a, b]$, then the arc length of $f(x)$ from $x=a$ to $x=b$ is:

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

(2) If $g(y)$ is continuous function on the interval $[c, d]$, then the arc length of $g(y)$ from $y=c$ to $y=d$ is:

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y
$$

Arc Length (Example)

Example 4.1

Determine the length of $y=\ln (\sec x)$ between $0 \leq x \leq \frac{\pi}{4}$
$f^{\prime}(x)=\frac{\sec x \tan x}{\sec c}=\tan x \Rightarrow\left[f^{\prime}(x)\right]^{2}=\tan ^{2} x$
$\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=\sqrt{1+\tan ^{2} x}=\sqrt{\sec ^{2} x}=|\sec x|=\sec x$
The arc length is then,
$\int_{0}^{\frac{\pi}{4}} \sec x d x=[\ln |\sec x+\tan x|]_{0}^{\frac{\pi}{4}}=\ln (\sqrt{2}+1)$

Arc Length (Example)

Example 4.2

Determine the length of $x=\frac{2}{3}(y-1)^{\frac{3}{2}}$ between $1 \leq y \leq 4$

$$
\frac{d x}{d y}=(y-1)^{\frac{1}{2}} \Rightarrow \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+y-1}=\sqrt{y}
$$

The arc length is then,

$$
\begin{aligned}
L & =\int_{1}^{4} \sqrt{y} d y \\
& =\left.\frac{2}{3} y^{\frac{3}{2}}\right|_{1} ^{4} \\
& =\frac{14}{3}
\end{aligned}
$$

Arc Length (Example)

Example 4.3

Determine the length of $x=\frac{1}{2} y^{2}$ between $0 \leq x \leq \frac{1}{2}$. Assume that y is positive.
$\frac{d x}{d y}=y \quad \Rightarrow \quad \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+y^{2}}$
Before writing down the length notice that we were given \times limits and we will need y limits. $0 \leq y \leq 1$
The integral for the arc length is then,

$$
L=\int_{0}^{1} \sqrt{1+y^{2}} d y
$$

Arc Length (Example)

$$
L=\int_{0}^{1} \sqrt{1+y^{2}} d y
$$

This integral will require the following trig substitution.
$y=\tan \theta \quad d y=\sec ^{2} \theta d \theta$

$$
\begin{aligned}
& y=0 \quad \Rightarrow \quad 0=\tan \theta \quad \Rightarrow \quad \theta=0 \\
& y=1 \quad \Rightarrow \quad 1=\tan \theta \quad \Rightarrow \quad \theta=\frac{\pi}{4}
\end{aligned}
$$

$\sqrt{1+y^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}=|\sec \theta|=\sec \theta$

Arc Length (Example)

The length is then,

$$
\begin{aligned}
L & =\int_{0}^{\frac{\pi}{4}} \sec ^{3} \theta d \theta \\
& =\left.\frac{1}{2}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|)\right|_{0} ^{\frac{\pi}{4}} \\
& =\frac{1}{2}(\sqrt{2}+\ln (1+\sqrt{2}))
\end{aligned}
$$

Area of a Surface of Revolution

Let $f(x)$ be a nonnegative smooth function over the interval $[a, b]$. We wish to find the surface area of the surface of revolution created by revolving the graph of $y=f(x)$ around the x-axis as shown in the following figure.

Area of a Surface of Revolution

(1) We'll start by dividing the interval into n equal subintervals of width Δx
(2) On each subinterval we will approximate the function with a straight line that agrees with the function at the endpoints of each interval.
(3) Here is a sketch of that for our representative function using $n=4$

Area of a Surface of Revolution

Now, rotate the approximations about the x-axis and we get the following solid.

The approximation on each interval gives a distinct portion of the solid and to make this clear each portion is colored differently.

Area of a Surface of Revolution

The area of each of these is:

$$
A=2 \pi r l
$$

where,

$$
r=\frac{1}{2}\left(r_{1}+r_{2}\right) \quad \begin{aligned}
& r_{1}=\text { radius of right end } \\
& r_{2}=\text { radius of left end }
\end{aligned}
$$

and l is the length of the slant of each interval.

Area of a Surface of Revolution

We know from the previous section that,

$$
\left|P_{i-1} P_{i}\right|=\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \text { where } x_{i}^{*} \text { is some point in }\left[x_{i-1}, x_{i}\right]
$$

Before writing down the formula for the surface area we are going to assume that Δx is "small" and since $f(x)$ is continuous we can then assume that,

$$
f\left(x_{i}\right) \approx f\left(x_{i}^{*}\right) \quad \text { and } \quad f\left(x_{i-1}\right) \approx f\left(x_{i}^{*}\right)
$$

Area of a Surface of Revolution

So, the surface area of each interval $\left[x_{i-1}, x_{i}\right]$ is approximately,

$$
\begin{aligned}
A_{i} & =2 \pi\left(\frac{f\left(x_{i}\right)+f\left(x_{i-1}\right)}{2}\right)\left|P_{i-1} P_{i}\right| \\
& \approx 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
\end{aligned}
$$

The surface area of the whole solid is then approximately,

$$
S \approx \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

Area of a Surface of Revolution

and we can get the exact surface area by taking the limit as n goes to infinity.

$$
\begin{aligned}
S & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x \\
& =\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

If we wanted to we could also derive a similar formula for rotating $x=h(y)$ on $[c, d]$ about the y-axis. This would give the following formula.

$$
S=\int_{c}^{d} 2 \pi h(y) \sqrt{1+\left[h^{\prime}(y)\right]^{2}} d y
$$

Area of a Surface of Revolution (Example)

Example 4.4

Determine the surface area of the solid obtained by rotating $y=\sqrt{9-x^{2}},-2 \leq x \leq 2$ about the x-axis.

$$
\begin{gathered}
S=\int_{c}^{d} 2 \pi h(y) \sqrt{1+\left[h^{\prime}(y)\right]^{2}} d y \\
\frac{d y}{d x}=\frac{1}{2}\left(9-x^{2}\right)^{-\frac{1}{2}}(-2 x)=-\frac{x}{\left(9-x^{2}\right)^{\frac{1}{2}}} \\
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\frac{x^{2}}{9-x^{2}}}=\sqrt{\frac{9}{9-x^{2}}}=\frac{3}{\sqrt{9-x^{2}}}
\end{gathered}
$$

Here's the integral for the surface area,

$$
S=\int^{2} 2 \pi v \frac{3}{d x}
$$

Area of a Surface of Revolution (Example)

There is a problem however. The $d x$ means that we shouldn't have any y's in the integral. So, before evaluating the integral we'll need to substitute in for y as well.

$$
\begin{aligned}
S & =\int_{-2}^{2} 2 \pi \sqrt{9-x^{2}} \frac{3}{\sqrt{9-x^{2}}} d x \\
& =\int_{-2}^{2} 6 \pi d x \\
& =24 \pi
\end{aligned}
$$

Area of a Surface of Revolution (Example)

Example 4.5

Determine the surface area of the solid obtained by rotating $y=\sqrt[3]{x}, 1 \leq y \leq 2$ about the y-axis.

Solution

$$
\begin{aligned}
& x=y^{3} \quad \frac{d x}{d y}=3 y^{2} \\
& \sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{1+9 y^{4}}
\end{aligned}
$$

The surface area is then,

$$
S=\int_{1}^{2} 2 \pi x \sqrt{1+9 y^{4}} d y
$$

we'll need to substitute in for the x. Doing that gives,

$$
\begin{aligned}
S & =\int_{1}^{2} 2 \pi y^{3} \sqrt{1+9 y^{4}} d y \quad u=1+9 y^{4} \\
& =\frac{\pi}{18} \int_{10}^{145} \sqrt{u} d u \\
& =\frac{\pi}{27}\left(145^{\frac{3}{2}}-10^{\frac{3}{2}}\right)=199.48
\end{aligned}
$$

Parametric equations

To this point we've looked almost exclusively at functions in the form $y=f(x)$ or $x=h(y)$
It is easy to write down the equation of a circle centered at the origin with radius r.

$$
x^{2}+y^{2}=r^{2}
$$

However, we will never be able to write the equation of a circle down as a single equation in either of the forms above. Sure we can solve for x or y as the following two formulas show

$$
y= \pm \sqrt{r^{2}-x^{2}} \quad x= \pm \sqrt{r^{2}-y^{2}}
$$

but there are in fact two functions in each of these. Each formula gives a portion of the circle.

Parametric equations

$$
\begin{array}{llll}
y=\sqrt{r^{2}-x^{2}} & \text { (top) } & x=\sqrt{r^{2}-y^{2}} \\
y=-\sqrt{r^{2}-x^{2}} & (\text { bottom }) & x=-\sqrt{r^{2}-y^{2}} & \text { (light side) } \\
\text { (left side) }
\end{array}
$$

There are also a great many curves out there that we can't even write down as a single equation in terms of only x and y. So, to deal with some of these problems we introduce parametric equations.

Parametric equations

Instead of defining y in terms of $x, y=f(x)$ or x in terms of y $x=h(y)$ we define both x and y in terms of a third variable called a parameter as follows,

$$
x=f(t) \quad y=g(t)
$$

This third variable is usually denoted by t. Each value of t defines a point $(x, y)=(f(t), g(t))$ that we can plot. The collection of points that we get by letting t be all possible values is the graph of the parametric equations and is called the parametric curve.

Parametric equations (Example)

Example 4.6

Sketch the parametric curve for the following set of parametric equations.

$$
x=t^{2}+t \quad y=2 t-1 \quad-2 \leq t \leq 2
$$

At this point our only option for sketching a parametric curve is to pick values of t, plug them into the parametric equations and then plot the points. So, let's plug in some t's.

Parametric equations (Example)

t	x	y
-2	2	-5
-1	0	-3
$-\frac{1}{2}$	$-\frac{1}{4}$	-2
0	0	-1
1	2	1

Example 4.7

Sketch the parametric curve for the following set of parametric equations.

$$
x=t^{2}+t \quad y=2 t-1 \quad-1 \leq t \leq 1
$$

The slope of the tangent line to a parametric curve

If $C: x=x(t), y=y(t) ; a \leq t \leq b$ is a differentiable parametric curve then the slope of the tangent line to C at $t_{0} \in[a, b]$ is:

$$
m=\left.\frac{d y}{d x}\right|_{t=t_{0}}=\left.\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}\right|_{t=t_{0}}
$$

Remark

(1) The tangent line to the parametric curve is horizontal if the slope equals zero, which means that $\frac{d y}{d t}=0$ and $\frac{d x}{d t} \neq 0$
(2) The tangent line to the parametric curve is vertical if $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$

The second derivative is $\frac{d^{2} y}{d x^{2}}=\frac{d y^{\prime}}{d x}=\frac{\left(\frac{d y^{\prime}}{d t}\right)}{\left(\frac{d x}{d t}\right)}$

The slope of the tangent line to a parametric curve (Example)

Example 4.8

Find the slope of the tangent line(s) to the parametric curve given by

$$
x=t^{5}-4 t^{3} \quad y=t^{2} \quad \text { at }(0,4)
$$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t}{5 t^{4}-12 t^{2}}=\frac{2}{5 t^{3}-12 t}
$$

$$
\begin{array}{ll}
0=t^{5}-4 t^{3}=t^{3}\left(t^{2}-4\right) & \Rightarrow \quad t=0, \pm 2 \\
4=t^{2} & \Rightarrow \quad t= \pm 2
\end{array}
$$

(1) at $t=-2$:

$$
m=\left.\frac{d y}{d x}\right|_{t=-2}=-\frac{1}{8}
$$

(2) at $t=2$

$$
m=\left.\frac{d y}{d x}\right|_{t=2}=\frac{1}{8}
$$

Example 4.9

Find the equation of the tangent line to
$C: x=t^{3}-3 t, y=t^{2}-5 t$ at $t=2$

$$
\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{2 t-5}{3 t^{2}-3}
$$

The slope of the tangent line is $\left.\frac{d y}{d x}\right|_{t=2}=-\frac{1}{9}$
At $t=2: x=2$ and $y=-7$
The tangent line to C at $t=2$ passes through the point $(2,-7)$ and its slope is $-\frac{1}{9}$ therefore its equation is $\frac{y+7}{x-2}=-\frac{1}{9}$

Example 4.10

Find the points on $C: x=e^{t}, y=e^{-t}$ at which the slope of the tangent line to C equals $-e^{-2}$
$m=\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{-e^{-t}}{e^{t}}=-e^{-2 t}$
$\Rightarrow m=e^{-2 t} \Rightarrow e^{-2 t}=-e^{-2} \Rightarrow t=1$.
At $t=1: x=e^{1}=e$ and $y=e^{-1}=\frac{1}{e}$.
Hence, the point at which the slope of the tangent line to C equals $-e^{-2}$ is $\left(e, \frac{1}{e}\right)$

Arc Length of a Parametric Equations

Definition 4.2

If $C: x=x(t), y=y(t) ; a \leq t \leq b$ is a differentiable parametric curve ,then its arc length equals

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example 4.11

Determine the length of the parametric curve given by the following parametric equations.

$$
x=3 \sin (3 t) \quad y=3 \cos (3 t) \quad 0 \leq t \leq 2 \pi
$$

$$
\frac{d x}{d t}=9 \cos (3 t) \quad \frac{d y}{d t}=-9 \sin (3 t)
$$

and the length formula gives,

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{81 \sin ^{2}(3 t)+81 \cos ^{2}(3 t)} d t \\
& =\int_{0}^{2 \pi} 9 d t \\
& =18 \pi
\end{aligned}
$$

Example 4.12

Determine the length of the parametric curve given by the following set of parametric equations.

$$
x=8 t^{\frac{3}{2}} \quad y=3+(8-t)^{\frac{3}{2}} \quad 0 \leq t \leq 4
$$

$$
\begin{gathered}
\frac{d x}{d t}=12 t^{\frac{1}{2}} \frac{d y}{d t}=-\frac{3}{2}(8-t)^{\frac{1}{2}} \\
L=\int_{0}^{4} \sqrt{\left[12 t^{\frac{1}{2}}\right]^{2}+\left[-\frac{3}{2}(8-t)^{\frac{1}{2}}\right]^{2}} d t=\int_{0}^{4} \sqrt{144 t+\frac{9}{4}(8-t)} d t \\
=\int_{0}^{4} \sqrt{\frac{567}{4} t+18} d t=\left.\frac{4}{567}\left(\frac{2}{3}\right)\left(\frac{567}{4} t+18\right)^{\frac{3}{2}}\right|_{0} ^{4} \\
=\frac{8}{1701}\left(585^{\frac{3}{2}}-18^{\frac{3}{2}}\right)=66.1865
\end{gathered}
$$

Surface Area Generated By Revolving A Parametric Curve

If $C: x=x(t), y=y(t) ; a \leq t \leq b$ is a differentiable parametric curve ,then the surface area generated by revolving C around the x-axis is

$$
S A=2 \pi \int_{a}^{b}|y(t)| \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

The surface area generated by revolving C around the y-axis is

$$
S A=2 \pi \int_{a}^{b}|x(t)| \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example 4.13

Determine the surface area of the solid obtained by rotating the following parametric curve about the x-axis.

$$
x=\cos ^{3} \theta \quad y=\sin ^{3} \theta \quad 0 \leq \theta \leq \frac{\pi}{2}
$$

We'll first need the derivatives of the parametric equations.

$$
\begin{aligned}
& \frac{d x}{d \theta}=-3 \cos ^{2} \theta \sin \theta \quad \frac{d y}{d \theta}=3 \sin ^{2} \theta \cos \theta \\
& \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{9 \cos ^{4} \theta \sin ^{2} \theta+9 \sin ^{4} \theta \cos ^{2} \theta} d \theta \\
& =3|\cos \theta \sin \theta| \sqrt{\cos ^{2} \theta+\sin ^{2} \theta} \\
& =3 \cos \theta \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
S A & =2 \pi \int_{0}^{\frac{\pi}{2}} \sin ^{3} \theta(3 \cos \theta \sin \theta) d \theta \\
& =6 \pi \int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \cos \theta d \theta \\
& =6 \pi \int_{0}^{1} u^{4} d u \\
& =\frac{6 \pi}{5}
\end{aligned}
$$

Example 4.14

Determine the surface area of the object obtained by rotating the parametric curve about the y-axis.

$$
x=3 \cos (\pi t) \quad y=5 t+2 \quad 0 \leq t \leq \frac{1}{2}
$$

The first thing we'll need here are the following two derivatives.

$$
\frac{d x}{d t}=-3 \pi \sin (\pi t) \quad \frac{d y}{d t}=5
$$

$\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}=\sqrt{[-3 \pi \sin (\pi t)]^{2}+[5]^{2}}=\sqrt{9 \pi^{2} \sin ^{2}(\pi t)+25}$

$$
\begin{gathered}
S A=\int_{0}^{\frac{1}{2}} 2 \pi(3 \cos (\pi t)) \sqrt{9 \pi^{2} \sin ^{2}(\pi t)+25} d t \\
=6 \pi \int_{0}^{\frac{1}{2}} \cos (\pi t) \sqrt{9 \pi^{2} \sin ^{2}(\pi t)+25} d t \\
u=\sin (\pi t) \rightarrow \quad \sin ^{2}(\pi t)=u^{2} \quad d u=\pi \cos (\pi t) \\
t=0: \quad u=\sin (0)=0 \quad t=\frac{1}{2}: \quad u=\sin \left(\frac{1}{2} \pi\right)=1 \\
S A=6 \int_{0}^{1} \sqrt{9 \pi^{2} u^{2}+25} d u
\end{gathered}
$$

$$
\begin{gathered}
u=\frac{5}{3 \pi} \tan \theta \quad d u=\frac{5}{3 \pi} \sec ^{2} \theta d \theta \\
\sqrt{9 \pi^{2} u^{2}+25}=\sqrt{25 \tan ^{2} \theta+25}=5 \sqrt{\tan ^{2} \theta+1}=5 \sqrt{\sec ^{2} \theta}=5|\sec \theta| \\
u=0: 0=\frac{5}{3 \pi} \tan \theta \quad \rightarrow \tan \theta=0 \quad \rightarrow \quad \theta=0 \\
u=1: 1=\frac{5}{3 \pi} \tan \theta \quad \rightarrow \tan \theta=\frac{3 \pi}{5} \rightarrow \theta=\tan ^{-1}\left(\frac{3 \pi}{5}\right)=1.0830
\end{gathered}
$$

$$
\begin{aligned}
S A & =\int_{0}^{\frac{1}{2}} 2 \pi(3 \cos (\pi t)) \sqrt{9 \pi^{2} \sin ^{2}(\pi t)+25} d t \\
& =6 \int_{0}^{1} \sqrt{9 \pi^{2} u^{2}+25} d u \\
& =6 \int_{0}^{1.0830}(5 \sec \theta)\left(\frac{5}{3 \pi} \sec ^{2} \theta\right) d \theta \\
& =6 \int_{0}^{1.0830} \frac{25}{3 \pi} \sec ^{3} \theta d \theta \\
& =\left.\frac{25}{\pi}(\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|)\right|_{0} ^{1.0830}=43.0705
\end{aligned}
$$

