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Area Between Two Curves

In this section we are going to look at finding the area between two
curves.
we want to determine the area between y = f (x) and y = g(x) on
the interval [a, b]
We are also going to assume that f (x) ≥ g(x).
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A =
b∫
a
(upper function) - (lower function) dx , a ≤ x ≤ b

A =
b∫

a

f (x)− g(x) dx
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Area Between Two Curves (Example)

Example 2.1
Find the area enclosed between the graphs y = x and y = x2 − 2.

Note that upper function is y = x and lower function is y = x2 − 2
Note that y = x2 − 2 is a parabola opens upward with vertex
(0,−2), and y = x is a straight line passing through the origin.
Points of intersection between y = x2 − 2 and y = x is:
x2 − 2 = x ⇒ x2 − x − 2 = 0⇒ (x + 1)(x − 2) = 0
⇒ x = −1 and x = 2
A =

2∫
−1

x − (x2−2) dx =
2∫
−1

x − x2 +2 dx = [ x2

2 −
x3

3 +2x ]2−1 = 27
6
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Area Between Curves (Example)

Example 2.2
Find the area enclosed between the graphs
y = ex , y = x2 − 1, x = −1, and x = 1

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area Between Curves (Example)

Note that upper function is y = ex and lower function is
y = x2 − 1

A =
1∫
−1

ex − (x2 − 1) dx =
1∫
−1

ex − x2 + 1 dx = [ex − 1
3x

3 + x ]1−1

= e − 1
e + 4

3
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Area Between Curves (Example)

Example 2.3
Compute the area oh the region bounded by the curves
y = x3 and y = 3x − 2
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Area Between Curves (Example)

Note that upper function is y = x3 and lower function is
y = 3x − 2
Points of intersection between y = x3 and y = 3x − 2
x3 − 3x + 2 = 0⇒ (x − 1)(x2 + x − 2) = 0⇒ x = −2 and x = 1

A =
1∫
−2

x3 − (3x − 2) dx =
1∫
−2

x3 − 3x + 2 dx = [ x4

4 −
3
2x

2 + 2x ]1−2

= 3
4 + 6 = 27

4
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Area Between Curves (Example)

Example 2.4
Find the area enclosed between the graphs
f (x) = x2 and g(x) = x between x = 0, and x = 2.
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Area Between Curves (Example)

we see that the two graphs intersect at (0, 0) and (1, 1).
In the interval [0, 1], we have g(x) = x ≥ f (x) = x2,
and in the interval [1, 2], we have f (x) = x2 ≥ g(x) = x
Therefore the desired area is:
1∫
0

(x − x2) dx +
2∫
1

(x2 − x) dx = [ x2

2 −
x3

0 ]10 + [ x3

3 −
x2

2 ]21
= 1

6 + 5
6 = 1
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Volume Of A Solid Revolution (The Disk Method)

Suppose we have a curve y = f (x)

Imagine that the part of the curve between the ordinates x = a
and x = b is rotated about the x-axis through 360 degree.
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Volume Of A Solid Revolution (The Disk Method)

Now if we take a cross-section of the solid, parallel to the y-axis,
this cross-section will be a circle.

But rather than take a cross-section, let us take a thin disc of
thickness δx , with the face of the disc nearest the y-axis at a
distance x from the origin.
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The radius of this circular face will then be y. The radius of the
other circular face will be y + deltay , where δy is the change in y
caused by the small positive increase in x , δx .
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The volume δV of the disc is then given by the volume of a
cylinder, πr2h, so that

δV = πr2δx

So the volume V of the solid of revolution is given by

V = lim
δx→0

x=b∑
x=a

δV = lim
δx→0

x=b∑
x=a

πy2δx = π

b∫
a

[f (x)]2 dx

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Example 3.1
The curve y = x2 − 1 is rotated about the x-axis through 360
degree. Find the volume of the solid generated when the area
contained between the curve and the x-axis is rotated about the
x-axis by 360 degree.

π
b∫
a

[f (x)]2 dx = π
1∫
−1

[x2 − 1]2 dx = π
1∫
−1

(x4 − 2x2 + 1) dx

= [ x5

5 −
2x3

3 + x ]1−1 = 16π
15
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Example 3.2
Find the volume of the solid formed by revolving the region
bounded by the graph of f (x) = −x2 + x and the x-axis about the
x-axis.

Using the Disk Method, you can find the volume of the solid of
revolution.
V = π

1∫
0

[f (x)]2 dx = π
1∫
0

[(−x2 + x)2 dx = π
1∫
0

(x4 − 2x3 + x2) dx

= π[ x5

5 −
2x4

4 + x3

3 ]10 = π
30
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Volume Of A Solid Revolution (The Washer Method)

The Washer Method
Let f and g be continuous and
nonnegative on the closed interval
[a, b], if f (x) ≥ g(x) for all x in the
interval, then the volume of the solid
formed by revolving the region
bounded by the graphs of f (x) and
g(x) (a ≤ x ≤ b), about the x-axis
is:
V = π

b∫
a
{[f (x)]2 − [g(x)]2} dx

f (x) is the outer radius
and g(x) is the inner radius.
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Example 3.3
Find the volume of the solid formed by revolving the region
bounded by the graphs of f (x) =

√
25− x2 and g(x) = 3

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)



Outline
Area Between Curves

Volume Of A Solid Revolution
Arc Length

First find the points of intersection of f and g , by setting f (x)
equal to g(x) and solving for x .√
25− x2 = 3⇒ 25− x2 = 9⇒ x2 = 16⇒ x = ±4

Using f (x) as the outer radius and g(x) as the inner radius, you
can find the volume of the solid as shown.
V = π

b∫
a
{[f (x)]2 − [g(x)]2} dx = π

4∫
−4

(
√
25− x2)2 − (3)2 dx

= π
4∫
−4

(16− x2) dx = π[16x − x3

3 ]4−4 = 256π
3
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Volume Of A Solid Revolution (Cylindrical shells method)

The method of cylindrical shells
the cylindrical shell with inner radius r1, outer radius r2 , and
height h. Its volume V is calculated by subtracting the volume V1
of the inner cylinder from the volume V2 of the outer cylinder:

V = V2 − V1 = πr2
2 h − πr2

1 h = π(r2
2 − r2

1 )h = π(r2 − r1)(r2 + r1)h
= 2π r2+r1

2 h(r2 − r1)⇒ V = 2πrh∆r

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Volume Of A Solid Revolution (Cylindrical shells method)

let be the solid obtained by rotating about the -axis the region
bounded by y = f (x),
where f (x) ≥ 0, y = 0, x = a and x = b, where b > a ≥ 0.
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Volume Of A Solid Revolution (Cylindrical shells method)

We divide the interval into n subintervals [xi−1, xi+1] of equal
width and let xi be the midpoint of the i th subinterval. If the
rectangle with base [xi−1, xi ] and height f (x i ) is rotated about the
y− axis then the result is a cylindrical shell with average radius x i
height f (x i ) and thickness ∆x so its volume is:

Vi = (2π)x i [f (x i )]∆x
Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Volume Of A Solid Revolution (Cylindrical shells method)

An approximation to the volume of is given by the sum of the
volumes of these shells:

V ≈
n∑

i=1
Vi =

n∑
i=1

2πx i [f (x i )]∆x

This approximation appears to become better as n→∞ But, from
the definition of an integral, we know that

lim
n→∞

n∑
i=1

2πx i [f (x i )]∆x =
b∫

a

2πxf (x) dx

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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The volume of the solid, obtained by rotating about the y−axis
the region under the curve y = f (x) from a to b, is

V =
b∫

a

2πxf (x)dx where 0 ≤ a < b

The best way to remember the last Formula is to think of a typical
shell, cut and flattened as in Figure with radius x, circumference
2πx , height f (x) and thickness ∆x or dx :
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Cylindrical shells method (Examples)

Example 3.4
Find the volume of the solid obtained by rotating about the y−axis
the region bounded by y = 2x2 − x3 and y = 0

by the shell method, the volume is

V =
2∫
0

(2πx)(2x2 − x3) dx = 2π
2∫
0

(2x3 − x4) dx = 2π[ x4

2 −
x5

5 ]20
= 2π(8− 32

5 ) = 16
5 π
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Example 3.5
Find the volume of the solid obtained by rotating about the y−axis
the region between y = x and y = x2.

V =
1∫
0

(2πx)(x − x2) dx

= 2π
1∫
0

(x2 − x3) dx

= 2π[ x3

3 −
x4

4 ]10 = π
6
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Example 3.6
Use cylindrical shells to find the volume of the solid obtained by
rotating about the x−axis the region under the curve y =

√
x from

0 to 1.

For rotation about the x−axis we see that a typical shell has radius
y , circumference 2πy , and height 1− y2 . So the volume is

V =
1∫
0

(2πy)(1− y2) dy

= 2π
1∫
0

(y − y3) dy

= 2π[ y2

2 −
y4

4 ]10 = π
2
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Example 3.7
Find the volume of the solid obtained by rotating the region
bounded by y = x − x2 and y = 0 about the line x = 2.

the region and a cylindrical shell formed by rotation about the line
x = 2. It has radius 2− x , circumference 2π(2− x), and height
x − x2.

V =
1∫
0
2π(2− x)(x − x2) dx = 2π

1∫
0

(x3 − 3x2 + 2x) dx

= 2π[ x4

4 − x3 + x2]10 = π
2
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Arc Length

Definition 4.1
1 If f (x) is continuous function on the interval [a, b], then the

arc length of f (x) from x = a to x = b is:

L =
b∫

a

√
1 + [f ′(x)]2 dx

2 If g(y) is continuous function on the interval [c, d ], then the
arc length of g(y) from y = c to y = d is:

L =
d∫

c

√
1 + [g ′(y)]2 dy

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Arc Length (Example)

Example 4.1
Determine the length of y = ln(sec x) between 0 ≤ x ≤ π

4

f ′(x) = sec x tan x
sec c = tan x ⇒ [f ′(x)]2 = tan2 x√

1 + [f ′(x)]2 =
√
1 + tan2 x =

√
sec2 x = | sec x | = sec x

The arc length is then,
π
4∫

0
sec x dx = [ln | sec x + tan x |]

π
4
0 = ln(

√
2 + 1)

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Arc Length (Example)

Example 4.2

Determine the length of x = 2
3(y − 1)

3
2 between 1 ≤ y ≤ 4

dx
dy = (y − 1)

1
2 ⇒

√
1 +

(
dx
dy

)2
=
√
1 + y − 1 = √y

The arc length is then,

L =
∫ 4

1

√y dy

= 2
3y

3
2

∣∣∣∣4
1

= 14
3
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Arc Length (Example)

Example 4.3
Determine the length of x = 1

2y
2 between 0 ≤ x ≤ 1

2 . Assume that
y is positive.

dx
dy = y ⇒

√
1 +

(
dx
dy

)2
=
√
1 + y2

Before writing down the length notice that we were given x limits
and we will need y limits. 0 ≤ y ≤ 1
The integral for the arc length is then,

L =
∫ 1

0

√
1 + y2 dy

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Arc Length (Example)

L =
∫ 1

0

√
1 + y2 dy

This integral will require the following trig substitution.
y = tan θ dy = sec2θ dθ

y = 0 ⇒ 0 = tan θ ⇒ θ = 0

y = 1 ⇒ 1 = tan θ ⇒ θ = π

4√
1 + y2 =

√
1 + tan2θ =

√
sec2θ = |sec θ| = sec θ

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Arc Length (Example)

The length is then,

L =
∫ π

4

0
sec3θ dθ

= 1
2 (sec θ tan θ + ln |sec θ + tan θ|)

∣∣∣∣π
4

0

= 1
2
(√

2 + ln
(
1 +
√
2
))
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Area of a Surface of Revolution

Let f (x) be a nonnegative smooth function over the interval [a, b].
We wish to find the surface area of the surface of revolution
created by revolving the graph of y = f (x) around the x−axis as
shown in the following figure.

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution
1 We’ll start by dividing the interval into n equal subintervals of

width ∆x
2 On each subinterval we will approximate the function with a

straight line that agrees with the function at the endpoints of
each interval.

3 Here is a sketch of that for our representative function using
n = 4

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution

Now, rotate the approximations about the x−axis and we get the
following solid.

The approximation on each interval gives a distinct portion of the
solid and to make this clear each portion is colored differently.
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Area of a Surface of Revolution

The area of each of these is:

A = 2πrl

where,

r = 1
2 (r1 + r2) r1 =radius of right end

r2 =radius of left end

and l is the length of the slant of each interval.
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Area of a Surface of Revolution

We know from the previous section that,

|Pi−1 Pi | =
√
1 + [f ′ (x∗i )]2 ∆x where x∗i is some point in [xi−1, xi ]

Before writing down the formula for the surface area we are going
to assume that ∆x is "small" and since f (x) is continuous we can
then assume that,

f (xi ) ≈ f (x∗i ) and f (xi−1) ≈ f (x∗i )

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution

So, the surface area of each interval [xi−1, xi ] is approximately,

A i = 2π
( f (xi ) + f (xi−1)

2

)
|Pi−1 Pi |

≈ 2πf (x∗i )
√
1 + [f ′ (x∗i )]2 ∆x

The surface area of the whole solid is then approximately,

S ≈
n∑

i=1
2πf (x∗i )

√
1 + [f ′ (x∗i )]2 ∆x

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution

and we can get the exact surface area by taking the limit as n goes
to infinity.

S = lim
n→∞

n∑
i=1

2πf (x∗i )
√
1 + [f ′ (x∗i )]2 ∆x

=
∫ b

a
2πf (x)

√
1 + [f ′ (x)]2 dx

If we wanted to we could also derive a similar formula for rotating
x = h (y) on [c, d ] about the y−axis. This would give the
following formula.

S =
∫ d

c
2π h (y)

√
1 + [h′ (y)]2 dy

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution (Example)

Example 4.4
Determine the surface area of the solid obtained by rotating
y =
√
9− x2,−2 ≤ x ≤ 2 about the x−axis.

S =
∫ d

c
2π h (y)

√
1 + [h′ (y)]2 dy

dy
dx = 1

2
(
9− x2

)− 1
2 (−2x) = − x

(9− x2)
1
2√

1 +
(dy
dx

)2
=

√
1 + x2

9− x2 =
√

9
9− x2 = 3√

9− x2

Here’s the integral for the surface area,

S =
∫ 2

−2
2πy 3√

9− x2
dx

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution (Example)

There is a problem however. The dx means that we shouldn’t have
any y’s in the integral. So, before evaluating the integral we’ll need
to substitute in for y as well.

S =
∫ 2

−2
2π
√
9− x2 3√

9− x2
dx

=
∫ 2

−2
6π dx

= 24π

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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Area of a Surface of Revolution (Example)

Example 4.5
Determine the surface area of the solid obtained by rotating
y = 3
√
x , 1 ≤ y ≤ 2 about the y−axis.

Solution
x = y3 dx

dy = 3y2

√
1 +

(dx
dy

)2
=
√
1 + 9y4

The surface area is then,

S =
∫ 2

1
2πx

√
1 + 9y4 dy

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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we’ll need to substitute in for the x . Doing that gives,

S =
∫ 2

1
2πy3

√
1 + 9y4 dy u = 1 + 9y4

= π

18

∫ 145

10

√
u du

= π

27
(
145

3
2 − 10

3
2
)

= 199.48
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Parametric equations

To this point we’ve looked almost exclusively at functions in the
form y = f (x) or x = h (y)
It is easy to write down the equation of a circle centered at the
origin with radius r .

x2 + y2 = r2

However, we will never be able to write the equation of a circle
down as a single equation in either of the forms above. Sure we
can solve for x or y as the following two formulas show

y = ±
√
r2 − x2 x = ±

√
r2 − y2

but there are in fact two functions in each of these. Each formula
gives a portion of the circle.
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Parametric equations

y =
√
r2 − x2 (top) x =

√
r2 − y2 (right side)

y = −
√
r2 − x2 (bottom) x = −

√
r2 − y2 (left side)

There are also a great many curves out there that we can’t even
write down as a single equation in terms of only x and y . So, to
deal with some of these problems we introduce parametric
equations.
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Parametric equations

Instead of defining y in terms of x , y = f (x) or x in terms of y
x = h (y) we define both x and y in terms of a third variable called
a parameter as follows,

x = f (t) y = g (t)

This third variable is usually denoted by t.
Each value of t defines a point (x , y) = (f (t) , g (t)) that we can
plot. The collection of points that we get by letting t be all
possible values is the graph of the parametric equations and is
called the parametric curve.
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Parametric equations (Example)

Example 4.6
Sketch the parametric curve for the following set of parametric
equations.

x = t2 + t y = 2t − 1 − 2 ≤ t ≤ 2

At this point our only option for sketching a parametric curve is to
pick values of t, plug them into the parametric equations and then
plot the points. So, let’s plug in some t’s.
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Parametric equations (Example)
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Example 4.7
Sketch the parametric curve for the following set of parametric
equations.

x = t2 + t y = 2t − 1 − 1 ≤ t ≤ 1

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)
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The slope of the tangent line to a parametric curve
If C : x = x(t), y = y(t); a ≤ t ≤ b is a differentiable parametric
curve then the slope of the tangent line to C at t0 ∈ [a, b] is:

m = dy
dx |t=t0 =

(dy
dt )

(dx
dt )
|t=t0

Remark
1 The tangent line to the parametric curve is horizontal if the

slope equals zero, which means that dy
dt = 0 and dx

dt 6= 0
2 The tangent line to the parametric curve is vertical if dx

dt = 0
and dy

dt 6= 0

The second derivative is d2y
dx2 = dy ′

dx = ( dy′
dt )

( dx
dt )
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The slope of the tangent line to a parametric curve
(Example)

Example 4.8
Find the slope of the tangent line(s) to the parametric curve given
by

x = t5 − 4t3 y = t2 at (0, 4)

dy
dx =

dy
dt
dx
dt

= 2t
5t4 − 12t2 = 2

5t3 − 12t

0 = t5 − 4t3 = t3
(
t2 − 4

)
⇒ t = 0,±2

4 = t2 ⇒ t = ±2
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1 at t = −2 :
m = dy

dx

∣∣∣∣
t =−2

= −1
8

2 at t = 2
m = dy

dx

∣∣∣∣
t = 2

= 1
8
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Example 4.9
Find the equation of the tangent line to
C : x = t3 − 3t, y = t2 − 5t at t = 2

dy
dx =

(dy
dt )

(dx
dt )

= 2t − 5
3t2 − 3

The slope of the tangent line is dy
dx |t=2 = −1

9
At t = 2 : x = 2 and y = −7
The tangent line to C at t = 2 passes through the point (2,−7)
and its slope is −1

9
therefore its equation is y+7

x−2 = −1
9
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Example 4.10
Find the points on C : x = et , y = e−t at which the slope of the
tangent line to C equals −e−2

m = dy
dx = ( dy

dt )
( dx

dt ) = −e−t

et = −e−2t

⇒ m = e−2t ⇒ e−2t = −e−2 ⇒ t = 1.
At t = 1 : x = e1 = e and y = e−1 = 1

e .
Hence, the point at which the slope of the tangent line to C equals
−e−2 is (e, 1

e )
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Arc Length of a Parametric Equations

Definition 4.2
If C : x = x(t), y = y(t); a ≤ t ≤ b is a differentiable parametric
curve ,then its arc length equals

L =
b∫

a

√
(dxdt )2 + (dydt )2 dt
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Example 4.11
Determine the length of the parametric curve given by the
following parametric equations.

x = 3 sin (3t) y = 3 cos (3t) 0 ≤ t ≤ 2π

dx
dt = 9 cos (3t) dy

dt = −9 sin (3t)

and the length formula gives,

L =
∫ 2π

0

√
81sin2 (3t) + 81cos2 (3t) dt

=
∫ 2π

0
9 dt

= 18π
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Example 4.12
Determine the length of the parametric curve given by the
following set of parametric equations.

x = 8t
3
2 y = 3 + (8− t)

3
2 0 ≤ t ≤ 4

dx
dt = 12t

1
2

dy
dt = −3

2(8− t)
1
2

L =
∫ 4

0

√[
12t 1

2
]2

+
[
−3
2(8− t)

1
2

]2
dt =

∫ 4

0

√
144t + 9

4 (8− t) dt

=
∫ 4

0

√
567
4 t + 18 dt = 4

567

(2
3

)(567
4 t + 18

) 3
2
∣∣∣∣∣
4

0

= 8
1701

(
585

3
2 − 18

3
2
)

= 66.1865
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Surface Area Generated By Revolving A Parametric Curve

If C : x = x(t), y = y(t); a ≤ t ≤ b is a differentiable parametric
curve ,then the surface area generated by revolving C around the
x−axis is

SA = 2π
b∫

a

|y(t)|

√
(dxdt )2 + (dydt )2 dt

The surface area generated by revolving C around the y−axis is

SA = 2π
b∫

a

|x(t)|

√
(dxdt )2 + (dydt )2 dt
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Example 4.13
Determine the surface area of the solid obtained by rotating the
following parametric curve about the x−axis.

x = cos3θ y = sin3θ 0 ≤ θ ≤ π

2

We’ll first need the derivatives of the parametric equations.
dx
dθ = −3cos2θ sin θ dy

dθ = 3sin2θ cos θ

√
(dxdt )2 + (dydt )2 =

√
9cos4θsin2θ + 9sin4θcos2θ dθ

= 3 |cos θ sin θ|
√

cos2θ + sin2θ

= 3 cos θ sin θ
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SA = 2π
∫ π

2

0
sin3θ (3 cos θ sin θ) dθ

= 6π
∫ π

2

0
sin4θ cos θ dθ u = sin θ

= 6π
∫ 1

0
u4 du

= 6π
5
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Example 4.14
Determine the surface area of the object obtained by rotating the
parametric curve about the y−axis.

x = 3 cos (πt) y = 5t + 2 0 ≤ t ≤ 1
2

The first thing we’ll need here are the following two derivatives.

dx
dt = −3π sin (πt) dy

dt = 5

√
(dxdt )2 + (dydt )2 =

√
[−3π sin (πt)]2 + [5]2 =

√
9π2sin2 (πt) + 25
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SA =
∫ 1

2

0
2π (3 cos (πt))

√
9π2sin2 (πt) + 25 dt

= 6π
∫ 1

2

0
cos (πt)

√
9π2sin2 (πt) + 25 dt

u = sin (πt) → sin2 (πt) = u2 du = π cos (πt)

t = 0 : u = sin (0) = 0 t = 1
2 : u = sin

(1
2π
)

= 1

SA = 6
∫ 1

0

√
9π2u2 + 25 du
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u = 5
3π tan θ du = 5

3π sec2θ dθ√
9π2u2 + 25 =

√
25tan2θ + 25 = 5

√
tan2θ + 1 = 5

√
sec2θ = 5 |sec θ|

u = 0 : 0 = 5
3π tan θ → tan θ = 0 → θ = 0

u = 1 : 1 = 5
3π tan θ → tan θ = 3π

5 → θ = tan−1
(3π

5

)
= 1.0830
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SA =
∫ 1

2

0
2π (3 cos (πt))

√
9π2sin2 (πt) + 25 dt

= 6
∫ 1

0

√
9π2u2 + 25 du

= 6
∫ 1.0830

0
(5 sec θ)

( 5
3π sec2θ

)
dθ

= 6
∫ 1.0830

0

25
3π sec3θ dθ

= 25
π

(sec θtanθ + ln |sec θ + tan θ|)
∣∣∣∣1.0830

0
= 43.0705

Dr. Borhen Halouani INTEGRAL CALCULUS (MATH 106)


	Outline
	Area Between Curves
	Volume Of A Solid Revolution
	Arc Length

