Linear operators and Linear functionals on normed spaces

Preparation:

Heba Al-Halees \& Manal Al-Darwish

Supervision:

Dr. Fatmah Jamjoom

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in mathematics

Contents

Chapter1: Normed Spaces, Banach Spaces:
1.1: Normed and Banach Space 1
1.2: Linear operators 16
1.3: Bounded and continuous linear operators 24
1.4: Linear functionals 33
Chapter2: Fundamental theorem for normed and Banach spaces
2.1: Zorns lemma 38
2.2: Hahn-Banach theorem 40
2.3: Hahn Banach theorem for complex vector spaces and normed spaces 46
2.4: Open mapping theorem 53
2.5: Closed linear operators, Closed graph theorem 60
References 65

Normed Spaces, Banach Spaces

1.1 Normed and Banach Space

Definition (1.1.1)

A normed space X is a vector space with a norm defined on it A norm on a vector X is a real valued function $\|\|:. \mathrm{X} \rightarrow \Re$ value at an $x \in X$ is denoted by $\|x\|$ and which has the properties:

$$
\begin{aligned}
& \text { 1- }\|x\| \geq 0,\|x\|=0 \Leftrightarrow x=0 . \\
& \text { 2- }\|\alpha x\|=|\alpha|\|x\| . \\
& \text { 3- }\|x+y\| \leq\|x\|+\|y\| .
\end{aligned}
$$

where x, y are arbitrary vector in X and α is any scalar. A normed space is a pair $(X,\| \|)$ simply by X .

Remark (1.1.2)

Let $\|\|:. \mathrm{X} \rightarrow \mathfrak{R}$ be a norm on X, then the norm is continuous on X.

Proof:

Let x_{o} be an arbitrary point of X, and let $\varepsilon>0$ be given
Take $\delta=\varepsilon$
$x \in X \quad$ such that $\left\|x-x_{o}\right\|<\delta=\varepsilon$

$$
\begin{align*}
\|x\|=\left\|x+x_{o}-x_{o}\right\| \leq\left\|x-x_{o}\right\|+\left\|x_{o}\right\| & \rightarrow\|x\|-\left\|x_{o}\right\| \leq\left\|x-x_{o}\right\| \tag{1}\\
\left\|x_{o}\right\|=\left\|x_{o}+x-x\right\| \leq\left\|x_{o}-x\right\|+\|x\| & \rightarrow\left\|x_{o}\right\|-\|x\| \leq\left\|x-x_{o}\right\| \\
& \rightarrow\|x\|-\left\|x_{o}\right\| \geq-\left\|x-x_{o}\right\| \tag{2}
\end{align*}
$$

from (1) and (2) we have:
$-\left\|x-x_{o}\right\| \leq\|x\|-\left\|x_{o}\right\| \leq\left\|x-x_{o}\right\|$
$\rightarrow\|x\|-\left\|x_{o}\right\| \leq\left\|x-x_{o}\right\|<\delta=\varepsilon$
then $\|\|:. X \rightarrow \Re$ is continuous at x_{o}, since x_{o} is arbitrary point of X,then $\|$.$\| is continuous on X$.

Remark (Minkowski inequality) (1.1.3)
Given two sequences $\left(\xi_{i}\right)_{i=1}^{\infty},\left(\eta_{i}\right)_{i=1}^{\infty}$ s.t. $\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}<\infty, \sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}<\infty, p>1$
Then $\left(\sum_{i=1}^{\infty}\left|\xi_{i}+\eta_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}\right)^{1 / p}$.

Examples of normed spaces:

Example (1):
Define $\|\|:. \mathfrak{R}^{n} \rightarrow \mathfrak{R}$ by $\|x\|=\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2}, x=\left(\xi_{1}, \xi_{2}, \ldots ., \xi_{n}\right)$
Clearly ||.|| is well defined.
Now, Let $x, y \in \Re^{n}$ and α is any scalar:
$1-\|x\|=\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2} \geq 0$,

$$
\text { and }\|x\|=0 \Leftrightarrow\left(\sum_{i=0}^{n} \xi_{i}^{2}\right)^{1 / 2}=0 \Leftrightarrow \xi_{i}^{2}=0 \forall i \Leftrightarrow \xi_{i}=0 \forall i \Leftrightarrow x=0 .
$$

2- $\|\alpha x\|=\left(\sum_{i=1}^{n}\left(\alpha \xi_{i}\right)^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{n} \alpha^{2} \xi_{i}^{2}\right)^{1 / 2}=\left(\alpha^{2} \sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2}$ $=\left(\alpha^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2}=|\alpha|\|x\|$.
$3-\|x+y\|=\left(\sum_{i=1}^{n}\left(\xi_{i}+\eta_{i}\right)^{2}\right)^{1 / 2}$
$\leq\left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{1 / 2}+\left(\sum_{i=1}^{n} \eta_{i}^{2}\right)^{1 / 2}=\|x\|+\|y\|$. (by Minkowski inequality)
Hence, from 1, 2, and $3\left(\Re^{n},\| \|\right)$ is norm space.
Example (2):
Let $\Re^{2}=\left\{x=\left(\xi_{1}, \xi_{2}\right): \xi_{1}, \xi_{2} \in \mathfrak{R}\right\}$, Let $x=\left(\xi_{1}, \xi_{2}\right), y=\left(\eta_{1}, \eta_{2}\right)$ are any elements in \Re^{2}, α is any scalar, then the following equations are norms on \Re^{2} :
(a) $\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right|$

$$
1-\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right| \geq 0
$$

$$
\begin{aligned}
& \text { and }\|x\|_{1}=0 \Leftrightarrow\left|\xi_{1}\right|+\left|\xi_{2}\right|=0 \Leftrightarrow \xi_{1}=0, \xi_{2}=0 \Leftrightarrow x=0 . \\
& 2-\|\alpha x\|_{1}=\left\|\left(\alpha \xi_{1}, \alpha \xi_{2}\right)\right\|_{1}=\left|\alpha \xi_{1}\right|+\left|\alpha \xi_{2}\right|=|\alpha|\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)=|\alpha|\|x\|_{1} . \\
& 3-\|x+y\|_{1}=\left\|\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\right)\right\|_{1}=\left|\xi_{1}+\eta_{1}\right|+\left|\xi_{2}+\eta_{2}\right| \\
& \leq\left|\xi_{1}\right|+\left|\eta_{1}\right|+\left|\xi_{2}\right|+\left|\eta_{2}\right|=\left(\left|\xi_{1}\right|+\left|\xi_{2}\right|\right)+\left(\left|\eta_{1}\right|+\left|\eta_{2}\right|\right)=\|x\|_{1}+\|y\|_{1} .
\end{aligned}
$$

Hence, from 1,2 , and $3\left(\Re^{2},\|\cdot\|_{1}\right)$ is norm space.
(b) $\|x\|_{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}$

$$
\begin{aligned}
& \text { 1- }\|x\|_{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2} \geq 0, \\
& \text { and }\|x\|_{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}=0 \Leftrightarrow \xi_{1}^{2}+\xi_{2}^{2}=0 \Leftrightarrow \xi_{1}^{2}=0, \xi_{2}^{2}=0 \\
& \Leftrightarrow \xi_{1}=0, \xi_{2}=0 \Leftrightarrow x=0 . \\
& \begin{aligned}
2-\|\alpha x\|_{2} & =\left(\left(\alpha \xi_{1}\right)^{2}+\left(\alpha \xi_{2}\right)^{2}\right)^{1 / 2}=\left(\alpha^{2}\left(\xi_{1}^{2}, \xi_{2}^{2}\right)\right)^{1 / 2} \\
& =|\alpha|\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}=|\alpha|\|x\|_{2} . \\
3-\|x+y\|_{2} & =\left\|\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\right)\right\|_{2}=\left(\left(\xi_{1}+\eta_{1}\right)^{2}+\left(\xi_{2}+\eta_{2}\right)^{2}\right)^{1 / 2} \\
& \leq\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}+\left(\eta_{1}^{2}+\eta_{2}^{2}\right)^{1 / 2} \quad \text { (by Minkowski inequality) } \\
& =\|x\|_{2}+\|y\|_{2} \quad
\end{aligned}
\end{aligned}
$$

Hence, from 1, 2, and $3\left(\mathfrak{R}^{2},\|\cdot\|_{2}\right)$ is norm space.
(c) $\|x\|_{\infty}=\max \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\}$

$$
\begin{aligned}
& 1-\|x\|_{\infty}=\max \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\} \geq 0, \\
& \text { and }\|x\|_{\infty}=0 \Leftrightarrow \max \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\}=0 \Leftrightarrow \xi_{1}=0, \xi_{2}=0 \Leftrightarrow x=0 . \\
& 2-\|\alpha x\|_{\infty}=\max \left\{\left|\alpha \xi_{1}\right|,\left|\alpha \xi_{2}\right|\right\}=|\alpha| \max \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\}=|\alpha|\|x\|_{\infty} . \\
& 3-\|x+y\|_{\infty}=\max \left\{\left|\xi_{1}+\eta_{1}\right|,\left|\xi_{2}+\eta_{2}\right|\right\} \leq \max \left\{\left|\xi_{1}\right|+\left|\eta_{1}\right|,\left|\xi_{2}\right|+\left|\eta_{2}\right|\right\} \\
& =\max \left\{\xi_{1}\left|,\left|\xi_{2}\right|\right\}+\max \left\{\left|\eta_{1}\right|,\left|\eta_{2}\right|\right\}=\|x\|_{\infty}+\|y\|_{\infty} .\right.
\end{aligned}
$$

Hence, from 1,2 , and $3\left(\Re^{2},\|\cdot\|_{\infty}\right)$ is norm space.
Example (3):
There are several norms of practical importance on the vector space of ordered n-tuples of numbers, notably those defined by

$$
\begin{aligned}
& \text { (a) }\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right|+\ldots .+\left|\xi_{n}\right| \\
& \text { (b) }\|x\|_{p}=\left(\left|\xi_{1}\right|^{p}+\left|\xi_{2}\right|^{p}+\ldots .+\left|\xi_{n}\right|^{p}\right)^{1 / p} \quad 1<p<+\infty \\
& \text { (c) }\|x\|_{\infty}=\max \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|, \ldots .,\left|\xi_{n}\right|\right\} .
\end{aligned}
$$

Now, $x=\left(\xi_{1}, \xi_{2}, \ldots ., \xi_{n}\right), y=\left(\eta_{1}, \eta_{2}, \ldots ., \eta_{n}\right)$ and α is any scalar:
(a) $\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right|+\ldots .+\left|\xi_{n}\right|$

$$
\begin{aligned}
& 1-\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right|+\ldots .+\left|\xi_{n}\right| \geq 0 \\
& \text { and }\|x\|_{1}=0 \Leftrightarrow\left|\xi_{1}\right|+\ldots .+\left|\xi_{n}\right|=0 \Leftrightarrow \xi_{i}=0 \forall 1 \leq i \leq n \Leftrightarrow x=0 . \\
& 2-\|\alpha x\|_{1}=\left|\alpha \xi_{1}\right|+\ldots .+\left|\alpha \xi_{n}\right|=|\alpha|\left(\left|\xi_{1}\right|+\ldots .+\left|\xi_{n}\right|\right)=|\alpha|\|x\|_{1} . \\
& 3-\|x+y\|_{1}=\left|\xi_{1}+\eta_{1}\right|+\ldots .+\left|\xi_{n}+\eta_{n}\right| \\
& \leq\left|\xi_{1}\right|+\left|\eta_{1}\right|+\ldots .+\left|\xi_{n}\right|+\left|\eta_{n}\right|=\left(\left|\xi_{1}\right|+\ldots .+\left|\xi_{n}\right|\right)+\left(\left|\eta_{1}\right|+\ldots .+\left|\eta_{n}\right|\right) \\
& =\|x\|_{1}+\|y\|_{1} .
\end{aligned}
$$

(b)

$$
\begin{gathered}
\|x\|_{p}=\left(\left|\xi_{1}\right|^{p}+\ldots .+\left|\xi_{n}\right|^{p}\right)^{1 / p} \quad 1<p<+\infty \\
1-\|x\|_{p}=\left(\left|\xi_{1}\right|^{p}+\ldots .+\left|\xi_{n}\right|^{p}\right)^{1 / p} \geq 0
\end{gathered}
$$

and

$$
\begin{gathered}
\|x\|_{p}=0 \Leftrightarrow\left(\left|\xi_{1}\right|^{p}+\ldots .+\left|\xi_{n}\right|^{p}\right)^{1 / p}=0 \Leftrightarrow \xi_{i}=0 \forall 1 \leq i \leq n \Leftrightarrow x=0 . \\
\begin{array}{c}
2-\|\alpha x\|_{p}=\left(\left|\alpha \xi_{1}\right|^{p}+\ldots .+\left|\alpha \xi_{n}\right|^{p}\right)^{1 / p}=\left(|\alpha|^{p}\left(\left|\xi_{1}\right|^{p}+\ldots . .+\left|\xi_{n}\right|^{p}\right)^{1 / p}\right. \\
=|\alpha|\left(\left|\xi_{1}\right|^{p}+\ldots .+\left|\xi_{n}\right|^{p}\right)^{1 / p}=|\alpha|\|x\|_{p}
\end{array}
\end{gathered}
$$

$$
3-\|x+y\|_{p}=\left(\sum_{i=1}^{n}\left|\xi_{i}+\eta_{i}\right|^{p}\right)^{1 / p}
$$

$$
\leq\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|\eta_{i}\right|^{p}\right)^{1 / p} \quad \text { (by Minkowski inequality) }
$$

$$
=\|x\|_{p}+\|y\|_{p}
$$

(c)

$$
\begin{aligned}
& \|x\|_{\infty}=\max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{n}\right|\right\} \\
& 1-\|x\|_{\infty}=\max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{n}\right|\right\} \geq 0, \text { since }\left|\xi_{i}\right| \geq 0 \quad \forall 1 \leq i \leq n, \\
& \|x\|_{\infty}=0 \Leftrightarrow \max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{n}\right|\right\}=0 \Leftrightarrow \xi_{i}=0 \forall 1 \leq i \leq n \Leftrightarrow x=0 \\
& 2-\|\alpha x\|_{\infty}=\max \left\{\left|\alpha \xi_{1}\right|, \ldots,\left|\alpha \xi_{n}\right|\right\}=|\alpha| \max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{n}\right|\right\}=|\alpha|\|x\|_{\infty} \\
& 3-\|x+y\|_{\infty}=\max \left\{\left|\xi_{1}+\eta_{1}\right|, \ldots,\left|\xi_{n}+\eta_{n}\right|\right\} \leq \max \left\{\left|\xi_{1}\right|+\left|\eta_{1}\right|, \ldots,\left|\xi_{n}\right|+\left|\eta_{n}\right|\right\} \\
& =\max \left\{\left|\xi_{1}\right|, \ldots,\left|\xi_{n}\right|\right\}+\max \left\{\left|\eta_{1}\right|, \ldots\left|\eta_{n}\right|\right\}=\|x\|_{\infty}+\|y\|_{\infty} .
\end{aligned}
$$

Example (4):

(Unit sphere), the sphere $S(0 ; 1)=\{x \in X:\|x\|=1\}$ in a normed space X is called the unit sphere; we want to show that for the following norms:
(a) $\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right|$
$S(0 ; 1)=\left\{x \in \mathfrak{R}^{2}:\|x\|_{1}=1\right\}$
$\|x\|_{1}=\left|\xi_{1}\right|+\left|\xi_{2}\right|=1 \quad \Rightarrow\left|\xi_{2}\right|=1-\left|\xi_{1}\right|$
In $1^{\text {st }}$ quarter $\xi_{1} \geq 0, \xi_{2} \geq 0$, hence we get $L_{1}: \xi_{2}=1-\xi_{1}$, which is straight line of slope -1 , and cutting the y-axis at $(0,1)$, and the x-axis at $(1,0)$, In $2^{\text {sd }}$ quarter $\xi_{1} \leq 0, \xi_{2} \geq 0$, hence we get $L_{2}: \xi_{2}=1+\xi_{1}$, which is straight line of slope 1 , and cutting the y-axis at $(0,1)$, and the x-axis at $(-1,0)$,
In $3^{\text {rd }}$ quarter $\xi_{1} \leq 0, \xi_{2} \leq 0$, hence we get $L_{3}: \xi_{2}=-1-\xi_{1}$,
which is straight line of slope -1 , and cutting the y-axis at $(0,-1)$, and the x-axis at $(-1,0)$,
In $4^{\text {th }}$ quarter $\xi_{1} \geq 0, \xi_{2} \leq 0$, hence we get $L_{4}: \xi_{2}=-1+\xi_{1}$, which is straight line of slope 1 , and cutting the y-axis at $(0,-1)$, and the x-axis at $(1,0)$,
Then we have figure (1)
(b) $\|x\|_{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}$
$S(0 ; 1)=\left\{x \in \mathfrak{R}^{2}:\|x\|_{2}=1\right\}$
$\|x\|_{2}=\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{1 / 2}=1 \quad \Rightarrow \xi_{1}^{2}+\xi_{2}^{2}=1$,
which is equation of circle with center $(0,0)$ and radius1, then we have figure (2)

Figure (2)
c) $\|x\|_{\infty}=\max \left\{\xi_{1}|,| \xi_{2}\right\} \quad S(0 ; 1)=\left\{x \in \mathfrak{R}^{2}:\|x\|_{\infty}=1\right\}$
$\|x\|_{\infty}=\max \left\{\xi_{1}\left|,\left|\xi_{2}\right|\right\}=1 \quad \Rightarrow\left|\xi_{1}\right|=1 \quad\right.$ or $\quad\left|\xi_{2}\right|=1$,
if $\left|\xi_{1}\right|=1 \Rightarrow \xi_{1}=1 \quad$ or $\quad \xi_{1}=-1 \quad$ and $\quad \xi_{2}=0$,
hence we get $L_{1}: \xi_{1}=1$ and $L_{2}: \xi_{1}=-1$,
if $\left|\xi_{2}\right|=1 \Rightarrow \xi_{2}=1 \quad$ or $\quad \xi_{2}=-1 \quad$ and $\quad \xi_{1}=0$,
hence we get $L_{3}: \xi_{2}=1$ and $L_{4}: \xi_{2}=-1$, then we have figure (3)
hence the sphere
$S(0 ; 1)=\left\{x \in \mathfrak{R}^{2}:\|x\|_{\infty}=1\right\}$
is the square as given in figure(3)

(d) $\|x\|_{4}=\left(\xi_{1}^{4}+\xi_{2}^{4}\right)^{1 / 4}$
$S(0 ; 1)=\left\{x \in \mathfrak{R}^{2}:\|x\|_{4}=1\right\}$
$\|x\|_{4}=\left(\xi_{1}^{4}+\xi_{2}^{4}\right)^{1 / 4}=1 \quad \Rightarrow \xi_{1}^{4}+\xi_{2}^{4}=1$
Then we have the figure (4)

Definition (1.1.4)

A norm on a vector space X a metric d on $X \times X$ which is given by

$$
d(x, y)=\|x-y\| \quad x, y \in X
$$

d is well defined, since the norm is a well defined function

$$
\begin{aligned}
1-d(x, y) & =\|x-y\| \geq 0 . \\
2-d(x, y) & =0 \Leftrightarrow x=y, \\
d(x, y) & =0 \Leftrightarrow\|x-y\|=0 \Leftrightarrow x-y=0 \Leftrightarrow x=y . \\
3-d(x, y) & =d(y, x), \\
d(x, y) & =\|x-y\|=\|y-x\|=d(y, x) . \\
4-d(x, y) & \leq d(x, z)+d(z, y), \\
d(x, y) & =\|x-y\|=\|x-y+z-z\| \leq\|x-z\|+\|z-y\| \\
& =d(x, z)+d(z, y) .
\end{aligned}
$$

Thus true, every normed space is a metric space.
The converse is not true,

Counterexample:

Let $d: S \times S \rightarrow \Re^{+}$,where S is set of all sequences, d defined by

$$
d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|}
$$

Let $x=\left(\xi_{i}\right), y=\left(\eta_{i}\right), z=\left(\alpha_{i}\right), \quad x, y, z \in S$ ${ }_{1-} d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|} \geq 0$.
2- $d(x, y)=0 \Leftrightarrow \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|}=0 \Leftrightarrow\left|\xi_{i}-\eta_{i}\right|=0$ $\Leftrightarrow \xi_{i}=\eta_{i} \forall i \Leftrightarrow x=y$.
3- $d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|}=\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|\eta_{i}-\xi_{i}\right|}{1+\left|\eta_{i}-\xi_{i}\right|}=d(y, x)$.
4- $d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|}=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}+\alpha_{i}-\alpha_{i}\right|}{1+\left|\xi_{i}-\eta_{i}+\alpha_{i}-\alpha_{i}\right|}$

$$
\begin{aligned}
& \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\alpha_{i}\right|+\left|\alpha_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\alpha_{i}\right|+\left|\alpha_{i}-\eta_{i}\right|} \\
& =\sum_{i=1}^{\infty} \frac{1}{2^{i}}\left(\frac{\left|\xi_{i}-\alpha_{i}\right|}{1+\left|\xi_{i}-\alpha_{i}\right|+\left|\alpha_{i}-\eta_{i}\right|}+\frac{\left|\alpha_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\alpha_{i}\right|+\left|\alpha_{i}-\eta_{i}\right|}\right) \\
& \leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\alpha_{i}\right|}{1+\left|\xi_{i}-\alpha_{i}\right|}+\sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|\alpha_{i}-\eta_{i}\right|}{1+\left|\alpha_{i}-\eta_{i}\right|}=d(x, z)+d(z, y) .
\end{aligned}
$$

then (S, d) is metric space.
On the other hand,
Let $x=(1,1,0,0, \ldots .),. y=(1,0,0,0, \ldots .),. \alpha=3$
$\rightarrow \alpha x=(3,3,0,0, \ldots .),. \alpha y=(3,0,0,0, \ldots .$.
Now, $|\alpha| d(x, y)=\alpha \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|}=3 \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i}-\eta_{i}\right|}{1+\left|\xi_{i}-\eta_{i}\right|}$

$$
=3\left[\frac{1}{2^{1}} \frac{|1-1|}{1+|1-1|}+\frac{1}{2^{2}} \frac{|1-0|}{1+|1-0|}+0+\ldots\right]=\frac{3}{4} \cdot \frac{1}{2}=\frac{3}{8} .
$$

and $d(\alpha x, \alpha y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\alpha \xi_{i}-\alpha \eta_{i}\right|}{1+\left|\alpha \xi_{i}-\alpha \eta_{i}\right|}$

$$
=\left[\frac{1}{2^{1}} \frac{|3-3|}{1+|3-3|}+\frac{1}{2^{2}} \frac{|3-0|}{1+|3-0|}+0+\ldots\right]=\frac{1}{4} \cdot \frac{3}{4}=\frac{3}{16} .
$$

that means $|\alpha| d(x, y) \neq d(\alpha x, \alpha y)$,
hence d is not obtained from a norm, this may immediately be seen from the following lemma which states two basic properties of a metric d obtained from a norm.

Lemma (1.1.5)
A metric d induced by a norm on a norm space X satisfies:
(a) $d(x+a, y+a)=d(x, y)$.
(b) $d(\alpha x, \alpha y)=|\alpha| d(x, y)$.
for all $x, y, a \in X$ and every scalar α.

Proof:

$$
d(x+a, y+a)=\|x+a-(y+a)\|=\|x-y\|=d(x, y)
$$

and $d(\alpha x, \alpha y)=\|\alpha x-\alpha y\|=|\alpha\|x-y\|=|\alpha| d(x, y)$.

Definition (1.1.6)
Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in a normed vector space $(X,\| \| \|)$, we say $\left(x_{n}\right)$ converges to x_{0}, and denoted by $x_{n} \rightarrow x_{o}$ if for any $\varepsilon>0 \quad \exists k_{\varepsilon} \in \mathrm{N}$ such that $\forall n>k_{\varepsilon} \Rightarrow\left\|x_{n}-x_{o}\right\|<\varepsilon$.

Definition (1.1.7)

Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence in a normed vector space $(X,\| \| \|$), we say $\left(x_{n}\right)$ is a Cauchy sequence if $\forall \varepsilon>0 \quad \exists k_{\varepsilon} \in \mathrm{N}$ such that $\quad\left\|x_{n}-x_{m}\right\|<\varepsilon \quad \forall n, m>k_{\varepsilon}$.

Definition (1.1.8)

Let $(X,\| \|)$ be a normed vector space, we say X is complete or Banach if every Cauchy sequence in $(X,\| \| \|)$ is convergent.

Examples of complete normed spaces:

Example (1):

Let $C[a, b]=\{x: x:[a, b] \rightarrow \mathfrak{R}$ is continuous $\}$ we define a norm $\|\cdot\|: C[a, b] \rightarrow \Re$ by $\|x\|=\max _{t \in[a, b]}|x(t)|$
The norm is well defined, since x is continuous on a closed and bounded interval, that means x attains the maximum value on the interval, then $\max _{t \in[a, b]}|x(t)|$ exists and unique.
Now, we want to show that $(C[a, b],\| \| \|)$ is norm space
Let x, y are any elements in $C[a, b], \alpha$ is any scalar:
1- $\|x\|=\max _{t \in[a, b]}|x(t)| \geq 0$, since $|x(t)| \geq 0 \quad \forall t \in[a, b]$ and $\|x\|=\max _{t \in[a, b]}|x(t)|=0 \Leftrightarrow x(t)=0 \quad \forall t \in[a, b] \Leftrightarrow x=0$.
2- $\|\alpha x\|=\max _{t \in[a, b]}|\alpha x(t)|=\max _{t \in[a, b]}(|\alpha \| x(t)|)=|\alpha| \max _{t \in[a, b]}|x(t)|=|\alpha|\|x\|$.

$$
\begin{aligned}
& \text { 3- }\|x+y\|=\max _{t \in[a, b]}|(x+y)(t)|=\max _{t \in[a, b]}|x(t)+y(t)| \\
& \leq \max _{t \in[a, b]}(|x(t)|+|y(t)|)=\max _{t \in[a, b]}|x(t)|+\max _{t \in[a, b]}|y(t)|=\|x\|+\|y\| .
\end{aligned}
$$

Hence, from 1,2 , and $3(C[a, b],\| \|)$ is norm space.
Now, we want to show that $C[a, b]$ is complete,
Let $\left(x_{m}\right)_{m=1}^{\infty}$ is any Cauchy sequence in $C[a, b], x_{m}:[a, b] \rightarrow \Re$ is continuous $\Rightarrow \forall \varepsilon>0 \quad \exists k_{\varepsilon} \in \mathrm{N}$ such that

$$
\left\|x_{m}-x_{n}\right\|<\varepsilon \quad \forall n, m>k_{\varepsilon}
$$

from (1)
$\Rightarrow \max _{t \in[a, b]}\left|x_{m}(t)-x_{n}(t)\right|<\varepsilon$
$\Rightarrow \forall t \in[a, b] \quad n, m \geq k_{\varepsilon}$
$\Rightarrow\left|x_{m}(t)-x_{n}(t)\right| \leq \max _{t \in[a, b]}\left|x_{m}(t)-x_{n}(t)\right|<\varepsilon$
$\Rightarrow \forall t \in[a, b] \quad\left(x_{m}(t)\right)_{m=1}^{\infty}$ is a Cauchy sequence of numbers, since \mathfrak{R} is complete,
$\Rightarrow\left(x_{m}(t)\right)_{m=1}^{\infty}$ is convergent, i.e. $\lim _{m \rightarrow \infty} x_{m}(t)$ exists $\forall t \in[a, b]$
So, we can define a function $x:[a, b] \rightarrow \Re$ by

$$
\begin{equation*}
x(t)=\lim _{m \rightarrow \infty} x_{m}(t) \tag{3}
\end{equation*}
$$

clearly x is well defined, since the limit exists
Now, we using (2), for $t \in[a, b] \quad n \geq k_{\varepsilon}$

$$
\begin{aligned}
& \left|x_{n}(t)-x(t)\right|=\left|x_{n}(t)-\lim _{m \rightarrow \infty} x_{m}(t)\right| \quad \text { from (3) } \\
& \quad=\lim _{m \rightarrow \infty}\left|x_{n}(t)-x_{m}(t)\right| \text { (since the limit is a continuous function). } \\
& <\boldsymbol{\varepsilon}
\end{aligned}
$$

Since the limit depends ε
$\Rightarrow\left(x_{n}\right)$ Converges uniformly to x
$\Rightarrow x$ is continuous
that means $x \in C[a, b]$ and $x_{n} \rightarrow x$
$\Rightarrow C[a, b]$ is complete.

Example (2):

Let $l^{p}=\left\{x=\left(\xi_{i}\right): \xi_{i} \in C, \sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}<\infty\right\}$, we define a norm

$$
\begin{equation*}
\|\cdot\|: l^{p} \rightarrow \Re \text { by }\|x\|=\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

The norm is well defined by definition.
Now, we want to show that $\left(l^{p},\| \|\right)$ is norm space,
Let $x=\left(\xi_{i}\right), y=\left(\eta_{i}\right)$ are any elements in l^{p}, α is any scalar:
1- $\|x\|=\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p} \geq 0$
and $\|x\|=0 \Leftrightarrow\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}=0 \Leftrightarrow \xi_{i}=0 \forall i \Leftrightarrow\left(\xi_{i}\right)=0 \Leftrightarrow x=0$.
2- $\|\alpha x\|=\left\|\alpha\left(\xi_{i}\right)_{i=1}^{\infty}\right\|=\left(\sum_{i=1}^{\infty}\left|\alpha \xi_{i}\right|^{p}\right)^{1 / p}=\left(\sum_{i=1}^{\infty}|\alpha|^{p}\left|\xi_{i}\right|^{p}\right)^{1 / p}=\left(|\alpha|^{p} \sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}$
$=\left(|\alpha|^{p}\right)^{1 / p}\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}=|\alpha|\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}=|\alpha|\|x\|$.
3- $\|x+y\|=\left\|\left(\xi_{i}\right)+\left(\eta_{i}\right)\right\|=\left(\sum_{i=1}^{\infty}\left|\xi_{i}+\eta_{i}\right|^{p}\right)^{1 / p}$
$\leq\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{\infty}\left|\eta_{i}\right|^{p}\right)^{1 / p}$
$=\|x\|+\|y\|$.
(from Minkowski inequality)
Hence, from 1, 2 and $3\left(l^{p},\| \|\right)$ is norm space.
Now, we want to show that l^{p} is complete,
Let $\left(x_{m}\right)$ be a Cauchy sequence in l^{p}, where $x_{m}=\left(\xi_{j}^{(m)}\right)_{j=1}^{\infty}$, and let $\varepsilon>0$ be given, then $\exists k_{\varepsilon} \in \mathrm{N}$ such that

$$
\left\|x_{m}-x_{n}\right\|<\varepsilon \quad \forall m, n \geq k_{\varepsilon}
$$

from(1)
$\Rightarrow\left(\sum_{j=1}^{\infty}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|^{p}\right)^{1 / p}<\varepsilon \quad \forall m, n \geq k_{\varepsilon}$
$\Rightarrow \sum_{j=1}^{\infty}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|^{p}<\varepsilon^{p} \quad \forall m, n \geq k_{\varepsilon}$
$\Rightarrow \forall j \in \mathrm{~N}, \forall m, n \geq k_{\varepsilon} \quad,\left|\xi_{j}^{(m)}-\boldsymbol{\xi}_{j}^{(n)}\right| \leq \sum_{j=1}^{\infty}\left|\boldsymbol{\xi}_{j}^{(m)}-\boldsymbol{\xi}_{j}^{(n)}\right|<\boldsymbol{\varepsilon}$
so, $\forall m, n \geq k_{\varepsilon} \quad j \in \mathrm{~N} \Rightarrow\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\varepsilon$
$\Rightarrow \forall j \in \mathrm{~N}, \quad\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is a Cauchy sequence of numbers, since C is complete, $\Rightarrow\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is convergent for each $j \in \mathbf{N}$ say, $\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ converges to ξ_{j}, put $x=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots.\right)=\left(\xi_{j}\right)_{j=1}^{\infty}$
Claim:
$1-x \in l^{p}$ i.e. $\sum_{j=1}^{\infty}\left|\xi_{j}\right|^{p}<\infty$.
2- $\left(x_{m}\right) \rightarrow x$.

Now, from (2) $\forall k \in \mathbf{N}, \quad m \geq k_{\varepsilon}$
$\sum_{j=1}^{k}\left|\xi_{j}^{(m)}-\xi_{j}\right|=\sum_{j=1}^{k}\left|\xi_{j}^{(m)}-\lim _{n \rightarrow \infty} \xi_{j}^{(n)}\right|^{p}=\lim _{n \rightarrow \infty} \sum_{j=1}^{k}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|^{p}$
$\leq \lim _{n \rightarrow \infty} \sum_{j=1}^{\infty}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|^{p}<\boldsymbol{\varepsilon}^{p}$
$\Rightarrow\left\|x_{m}-x\right\|^{p}=\sum_{j=1}^{\infty}\left|\xi_{j}^{(m)}-\xi_{j}\right|<\mathcal{E}^{p}$
$\Rightarrow x_{m}-x$ belong to l^{p}
since $x_{m} \in l^{p}$, and l^{p} is a vector space
$\Rightarrow x=x_{m}-\left(x_{m}-x\right) \in l^{p}$,
and from (3) it clear that $\forall m \geq k_{\varepsilon}$,

$$
\Rightarrow\left(x_{m}\right) \rightarrow x
$$

from (4) $\operatorname{and}(5) \Rightarrow l^{p}$ is complete.
Example (3):
We proved that $\left(\Re^{n},\| \|\right)$ is norm space with norm given by

$$
\|x\|=\left(\sum_{j=1}^{n} \xi_{j}^{2}\right)^{1 / 2}, x \in \mathfrak{R}^{n}
$$

Now, we want to show that \Re^{n} is complete,
Let $\left(x_{m}\right)$ be a Cauchy sequence in $\Re^{n}, x_{m}=\left(\xi_{1}^{(m)}, \xi_{2}^{(m)}, \ldots, \xi_{n}^{(m)}\right)$
$\Rightarrow \forall \varepsilon>0 \quad \exists k_{\varepsilon} \in \mathrm{N}$ such that

$$
\left\|x_{m}-x_{r}\right\|<\varepsilon \quad \forall m, r>k_{\varepsilon}
$$

$\Rightarrow\left(\sum_{j=1}^{n}\left(\xi_{j}^{(m)}-\xi_{j}^{(r)}\right)^{2}\right)^{1 / 2}<\varepsilon \quad \forall m, r>k_{\varepsilon}$
$\Rightarrow \forall j \in \mathrm{~N}, \quad \forall m, r>k_{\varepsilon}, \quad\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\varepsilon$
since \Re is complete $\Rightarrow \forall j \in \mathrm{~N}, \quad\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is convergent $\forall j \in \mathrm{~N}$, say $\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ converges to ξ_{j}, put $x=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)=\left(\xi_{j}\right)_{j=1}^{n}, x \in \mathfrak{R}^{n}$ we want to prove that $x_{m} \rightarrow x, \operatorname{since}\left(\xi_{j}^{(m)}\right) \rightarrow \xi_{j}, \quad \lim _{m \rightarrow \infty} \xi_{j}^{(m)}=\xi_{j}$
$\Rightarrow \exists k_{j} \in \mathrm{~N}$ such that $m \geq k_{j} \Rightarrow\left|\xi_{j}^{(m)}-\xi_{j}\right|<\frac{\varepsilon}{\sqrt{n}} \quad \forall j=1,2, \ldots, n$
Take $k=\max \left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$

$$
\begin{aligned}
\Rightarrow \forall m \geq k & \Rightarrow\left|\xi_{j}^{(m)}-\xi_{j}\right|<\frac{\varepsilon}{\sqrt{n}} \\
& \Rightarrow \sum_{j=1}^{n}\left(\xi_{j}^{(m)}-\xi_{j}\right)^{2}<\sum_{j=1}^{n} \frac{\varepsilon^{2}}{n}=n \frac{\varepsilon^{2}}{n}=\varepsilon^{2} \\
& \Rightarrow\left(\sum_{j=1}^{n}\left(\xi_{j}^{(m)}-\xi_{j}\right)^{2}\right)^{1 / 2}<\varepsilon \\
& \Rightarrow\left\|x_{m}-x\right\|<\varepsilon \\
& \Rightarrow x_{m} \rightarrow x
\end{aligned}
$$

$\Rightarrow \mathfrak{R}^{n}$ is complete.

Example (4):

Let $l^{\infty}=\left\{x=\left(\xi_{j}\right), \quad\left(\xi_{j}\right) \quad\right.$ is bounded sequence $\}$, we define $\|\|:. l^{\infty} \rightarrow \Re$ by $\|x\|=\sup _{j \in \mathrm{~N}}\left|\xi_{j}\right|$
The norm is well defined, since $x=\left(\xi_{j}\right) \in l^{\infty}$ is bounded sequence $\Rightarrow\left|\xi_{j}\right| \leq c_{x} \forall j \in \mathrm{~N}$ for some $c_{x}>0 \Rightarrow\left\{\xi_{j} \mid: j \in \mathrm{~N}\right\}$ is bounded subset of $\Re, \Rightarrow \sup _{j \in \mathrm{~N}}\left|\xi_{j}\right|$ exists and unique.
Now, we want to show that $\left(l^{\infty},\| \|\right)$ is norm space,
Let $x=\left(\xi_{j}\right), y=\left(\eta_{j}\right)$ are any elements in l^{∞}, α is any scalar:
1- $\|x\|=\sup _{j \in \mathrm{~N}}\left|\xi_{j}\right| \geq 0$,
and $\|x\|=0 \Leftrightarrow \sup _{j \in \mathrm{~N}}\left|\xi_{j}\right|=0 \Leftrightarrow \xi_{j}=0 \quad \forall j \in \mathrm{~N} \Leftrightarrow x=0$.

2- $\|\alpha x\|=\sup _{j \in \mathrm{~N}}\left(\left|\alpha \xi_{j}\right|\right)=\sup _{j \in N}\left(\left|\alpha \| \xi_{j}\right|\right)=|\alpha| \sup _{j \in \mathrm{~N}}\left|\xi_{j}\right|=|\alpha|\|x\|$.
$3-\|x+y\|=\sup _{j \in \mathrm{~N}}\left|\xi_{j}+\eta_{j}\right| \leq \sup _{j \in \mathrm{~N}}\left(\left|\xi_{j}\right|+\left|\eta_{j}\right|\right)=\sup _{j \in \mathrm{~N}}\left|\xi_{j}\right|+\sup _{j \in \mathrm{~N}}\left|\eta_{j}\right|=\|x\|+\|y\|$.
Hence, from 1, 2 and $3\left(l^{\infty},\| \|\right)$ is norm space.
Now, we want to show that l^{∞} is complete.
Let $\left(x_{m}\right)$ be a Cauchy sequence in $l^{\infty}, x_{m}=\left(\xi_{j}^{(m)}\right)_{j=1}^{\infty}$
$\Rightarrow \forall \varepsilon>0 \quad \exists k_{\varepsilon} \in \mathrm{N}$ such that

$$
\left\|x_{m}-x_{n}\right\|<\varepsilon \quad \forall m, n>k_{\varepsilon}
$$

from (1)
$\Rightarrow \sup _{j \in \mathrm{~N}}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\varepsilon \quad \forall m, n>k_{\varepsilon}$
$\Rightarrow \forall j \in \mathrm{~N}, \quad m, n>k_{\varepsilon}, \quad\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\sup _{j \in \mathrm{~N}}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right|<\mathcal{E}$
$\Rightarrow \forall j \in \mathrm{~N}, \quad\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is Cauchy sequence of numbers, since C is complete, $\Rightarrow\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is convergent for each $j \in \mathrm{~N}$, say $\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ converges to ξ_{j}, put $x=\left(\xi_{1}, \xi_{2}, \ldots \ldots\right)=\left(\xi_{j}\right)_{j=1}^{\infty}$

Claim:

1- $x \in l^{\infty}$ i.e. $x=\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is bounded sequence.
2- $\left(x_{m}\right) \rightarrow x$.
Now, $\forall j \in \mathrm{~N}, \quad m \geq k_{\varepsilon}$
$\Rightarrow\left|\xi_{j}^{(m)}-\xi_{j}\right|=\left|\xi_{j}^{(m)}-\lim _{n \rightarrow \infty} \xi_{j}^{(n)}\right|=\lim _{n \rightarrow \infty}\left|\xi_{j}^{(m)}-\xi_{j}^{(n)}\right| \quad$ from(2)

$$
\begin{equation*}
<\varepsilon \tag{3}
\end{equation*}
$$

$\Rightarrow x_{m}-x$ is bounded sequence $\Rightarrow x_{m}-x$ belong to l^{∞}
since $x_{m} \in l^{\infty}$, and l^{∞} is vector space
$\Rightarrow x=x_{m}-\left(x_{m}-x\right) \in l^{\infty}$
and from (3) it clear that $\forall m \geq k_{\varepsilon}$,

$$
\begin{align*}
\left\|x_{m}-x\right\|<\varepsilon \\
\Rightarrow\left(x_{m}\right) \rightarrow x \tag{5}
\end{align*}
$$

from (4) and(5) $\Rightarrow l^{\infty}$ is complete.

Example of non-complete norm space:

Define $\|\|:. \mathfrak{R}^{+} \rightarrow \mathfrak{R}^{+}$by $\|x\|=|x|$
Clearly, the norm is well defined
Now, let $x, y \in \mathfrak{R}^{+}$and α is any scalar:
1- $\|x\|=|x| \geq 0$ and $\|x\|=0 \Leftrightarrow|x|=0 \Leftrightarrow x=0$.
$2-\|\alpha x\|=|\alpha x|=|\alpha\|x|=|\alpha|\|x\|$.
$3-\|x+y\|=|x+y| \leq|x|+|y|=\|x\|+\|y\|$.
Hence, from 1,2 , and $3\left(\Re^{+},\| \|\right)$is norm space
Now, let x_{n} be a sequence in $\mathfrak{R}^{+}, x_{n}=\left(\frac{1}{n}\right)_{n=1}^{\infty} \quad n \in N$
$\forall \varepsilon>0 \quad \exists k_{\varepsilon} \in N$ such that $k_{\varepsilon}>\frac{2}{\varepsilon}$
$m, n>k_{\varepsilon} \quad\left\|x_{n}-x_{m}\right\|=\left|x_{n}-x_{m}\right|=\left|\frac{1}{n}-\frac{1}{m}\right|=\left|\frac{1}{n}+\left(-\frac{1}{m}\right)\right| \leq\left|\frac{1}{n}\right|+\left|\frac{1}{m}\right|$
$=\frac{1}{n}+\frac{1}{m}<\frac{1}{k_{\varepsilon}}+\frac{1}{k_{\varepsilon}}=\frac{2}{k_{\varepsilon}}<\varepsilon$
$\Rightarrow x_{n}$ is Cauchy sequence
but $x_{n}=\left(\frac{1}{n}\right) \rightarrow 0 \quad, 0 \notin \mathfrak{R}^{+}$
$\Rightarrow\left(\Re^{+},\| \|\right)$is not complete.

1.2 Linear operators

Definition (1.2.1)

A linear operator T is an operator such that:
(a) The domain $D(T)$ of T is a vector space and the range $R(T)$ lies in a vector space over the same field.
(b) for all $x, y \in D(T)$ and scalars α,

$$
\begin{aligned}
& T(x+y)=T(x)+T(y) \\
& T(\alpha x)=\alpha T(x)
\end{aligned}
$$

Definition (1.2.2)

The Null space of T is the set of all $x \in D(T)$ such that $T(x)=0$.

Examples of linear operators:

Example (1)

The Identity operator $I_{X}: X \rightarrow X$ is defined by

$$
I_{X}(x)=x \quad \forall x \in X
$$

this operator is linear, since

$$
\begin{aligned}
& I(x+y)=x+y=I(x)+I(y) \quad \forall x, y \in X . \\
& I(\alpha x)=\alpha x=\alpha I(x), \text { where } \alpha \text { any scalar, } x \in X
\end{aligned}
$$

Example (2)

Let be X a vector space of all polynomials on the closed bounded interval $[a, b]$, we define the operator $T: X \rightarrow Y$ by:

$$
T(x(t))=x^{\prime}(t) \quad \forall x \in X
$$

this operator is linear, since $\forall x, y \in X \quad t \in[a, b]$

$$
\begin{aligned}
& (T(x+y))(t)=T((x+y)(t))=(x+y)^{\prime}(t)=x^{\prime}(t)+y^{\prime}(t) \\
& =T(x(t))+T(y(t))=(T(x)+T(y))(t)
\end{aligned}
$$

there for $T(x+y)=T(x)+T(y)$.
and
$(T(\alpha x))(t)=T((\alpha x)(t))=(\alpha x)^{\prime}(t)=\alpha x^{\prime}(t)=\alpha T(x(t))=(\alpha T(x))(t)$. there for $T(\alpha x)=\alpha T(x)$. Hence $T: X \rightarrow Y$ is linear operator.

Example (3)

The operator T from $C[a, b]$ into itself $T: C[a, b] \rightarrow C[a, b]$ can be defined by

$$
T(x(t))=\int_{a}^{t} x(\tau) d \tau \quad t \in[a, b]
$$

this operator is linear, since $\forall x, y \in X \quad t \in[a, b]$

$$
\begin{aligned}
& (T(x+y))(t)=\int_{a}^{t}(x+y)(\tau) d \tau=\int_{a}^{t}(x(\tau)+y(\tau)) d \tau \\
& =\int_{a}^{t} x(\tau) d \tau+\int_{a}^{t} y(\tau) d \tau=(T x(t))+(T y(t))
\end{aligned}
$$

then $T(x+y)=T(x)+T(y)$.
and $(T(\alpha x)(t))=\int_{a}^{t}(\alpha x)(\tau) d \tau=\alpha \int_{a}^{t} x(\tau) d \tau=(\alpha T(x))(t)$
then $T(\alpha x)=\alpha T(x)$. Hence $T: C[a, b] \rightarrow C[a, b]$ is linear operator.

Example (4)

The cross product with one factor kept fixed defines a linear operator $T: \Re^{3} \rightarrow \Re^{3}$ by $T x=x \times a=\left(x_{2} \alpha_{3}-x_{3} \alpha_{2}, x_{3} \alpha_{1}-x_{1} \alpha_{3}, x_{1} \alpha_{2}-x_{2} \alpha_{1}\right)$
where $a=\left(\alpha_{i}\right) \in \mathfrak{R}^{3}$ is fixed, $a \neq 0$ say $\alpha_{1} \neq 0$
this operator is linear, since $\forall x, y \in \Re^{3}, \alpha$ is any scalar:
1- $T(x+y)=(x+y) \times a=(x \times a)+(y \times a)=T x+T y$.
2- $T(\alpha x)=(\alpha x) \times a=\alpha(x \times a)=\alpha T x$. Hence, T is linear.
The null space of this operator is $N(T)=\left\{x \in \mathfrak{R}^{3}: T x=(0,0,0)\right\}$,

$$
\begin{aligned}
& T x=(0,0,0) \Leftrightarrow\left(x_{2} \alpha_{3}-x_{3} \alpha_{2}, x_{3} \alpha_{1}-x_{1} \alpha_{3}, x_{1} \alpha_{2}-x_{2} \alpha_{1}\right)=(0,0,0) \\
& \begin{array}{lll}
\Leftrightarrow(1) x_{2} \alpha_{3}-x_{3} \alpha_{2}=0 & \text { (2) } x_{3} \alpha_{1}-x_{1} \alpha_{3}=0 & \text { (3) } x_{1} \alpha_{2}-x_{2} \alpha_{1}=0
\end{array}
\end{aligned}
$$

since $\alpha_{1} \neq 0$,then from(2) we get $x_{3}=\frac{\alpha_{3}}{\alpha_{1}} x_{1}$,and from (3)we get $x_{2}=\frac{\alpha_{2}}{\alpha_{1}} x_{1}$
$\Rightarrow x=\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, \frac{\alpha_{2}}{\alpha_{1}} x_{1}, \frac{\alpha_{3}}{\alpha_{1}} x_{1}\right)=x_{1}\left(1, \frac{\alpha_{2}}{\alpha_{1}}, \frac{\alpha_{3}}{\alpha_{1}}\right)$
Now, multiplying both said by α_{1} we get $\alpha_{1} x=x_{1}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$
$\Rightarrow x=\frac{x_{1}}{\alpha_{1}} \cdot a \Rightarrow x=\beta \cdot a$, where $\beta=\frac{x_{1}}{\alpha_{1}}$
Hence the Null space is $N(T)=\operatorname{span}\{a\}$.

Theorem (Range and null space) (1.2.3)

Let T be a linear operator, then:
(a) The range $R(T)$ is a vector space.
(b) If $\operatorname{dim} D(T)=n<\infty$, then $\operatorname{dim} R(T) \leq n$.
(c) The null space $N(T)$ is a vector space.

Proof:

(a) Let $y_{1}, y_{2} \in R(T)$ we want to show that $\alpha y_{1}+\beta y_{2} \in R(T)$ for any scalars α, β
Now, we have $y_{1}=T\left(x_{1}\right), y_{2}=T\left(x_{2}\right)$ for some $x_{1}, x_{2} \in D(T)$
and $\alpha x_{1}+\beta x_{2} \in D(T)$ because $D(T)$ is a vector space and since T is linear, we have
$T\left(\alpha x_{1}+\beta x_{2}\right)=\alpha T\left(x_{1}\right)+\beta T\left(x_{2}\right)=\alpha y_{1}+\beta y_{2}$
hence $\alpha y_{1}+\beta y_{2} \in R(T)$,since $y_{1}, y_{2} \in R(T)$ were arbitrary and so were the scalars this prove that $R(T)$ is a vector space.
(b) We choos $n+1$ element $y_{1}, y_{2}, \ldots, y_{n+1}$ of $R(T)$ in an arbitrary fashion.

Then we have $y_{1}=T\left(x_{1}\right), \ldots, y_{n+1}=T\left(x_{n+1}\right)$ for some $x_{1}, x_{2}, \ldots, x_{n+1}$ in $D(T)$
Since $\operatorname{dim} D(T)=n$, this set $\left\{x_{1}, x_{2}, \ldots, x_{n+1}\right\}$ must be linearly dependent. Hence $\alpha_{1} x_{1}+\ldots+\alpha_{n+1} x_{n+1}=0_{X}$ for some scalars $\alpha_{1}, \ldots, \alpha_{n+1}$ not all zero. Since T is linear and $T 0_{X}=0_{Y}$, application of T on both sides gives

$$
T\left(\alpha_{1} x_{1}+\ldots+\alpha_{n+1} x_{n+1}\right)=\alpha_{1} y_{1}+\ldots+\alpha_{n+1} y_{n+1}=0_{Y}
$$

This shows that $\left\{y_{1}, \ldots, y_{n+1}\right\}$ is linearly dependent set because the $\alpha_{j}{ }^{\prime} s$ are not all zero. Remembering that this subset of $R(T)$ was chosen in an arbitrary fashion, we conclude that $R(T)$ has no linearly independent subsets of $n+1$ or more element. By definition this means that $\operatorname{dim} R(T) \leq n$.
(c) Let $x_{1}, x_{2} \in N(T)$, then $T\left(x_{1}\right)=T\left(x_{2}\right)=0, \alpha$ any scalar,

Since T is linear
$T\left(x_{1}+x_{2}\right)=T\left(x_{1}\right)+T\left(x_{2}\right)=0+0=0$, hence $x_{1}+x_{2} \in N(T)$
$T\left(\alpha x_{1}\right)=\alpha T\left(x_{1}\right)=\alpha 0=0$, hence $\alpha x_{1} \in N(T)$
Then, from (1), (2) N(T) is a vector space.

Definition (1.2.4)

Let X, Y be a vector spaces, $T: D(T) \rightarrow Y$ is said to be injective or one to one, if for any $x_{1}, x_{2} \in D(T)$

$$
x_{1} \neq x_{2} \Rightarrow T\left(x_{1}\right) \neq T\left(x_{2}\right)
$$

equivalently,

$$
T\left(x_{1}\right)=T\left(x_{2}\right) \Rightarrow x_{1}=x_{2} .
$$

Definition (1.2.5)

Let $T: D(T) \rightarrow R(T)$ is one to one,
The mapping $T^{-1}: R(T) \rightarrow D(T)$ defined by

$$
T^{-1}(y)=x
$$

which maps every $y \in R(T)$ onto that $x \in D(T)$ for which $T(x)=y$, the mapping T^{-1} is called the inverse of T. we clearly have

$$
\begin{array}{ll}
T^{-1} T(x)=x & \forall x \in D(T) \\
T T^{-1}(y)=y & \forall y \in R(T) .
\end{array}
$$

Theorem (Inverse theorem) (1.2.6)

Let X, Y be a vector spaces, let $T: D(T) \rightarrow Y$ be a linear operator with domain $D(T) \subset X$ and range $R(T) \subset Y$, then:
(a) The inverse $T^{-1}: R(T) \rightarrow D(T)$ exist if and only if

$$
T(x)=0 \Rightarrow x=0
$$

(b) If T^{-1} exists, it is a linear operator.
(c) If $\operatorname{dim} D(T)=n<\infty$ and T^{-1} exists, then $\operatorname{dim} R(T)=\operatorname{dim} D(T)$.

Proof:

(a) Suppose that $T^{-1}: R(T) \rightarrow D(T)$ exists, then $T: D(T) \rightarrow R(T)$ is one to one, $\operatorname{suppose} T(x)=0$, then

$$
T(x)=T(0)=0 \Rightarrow x=0
$$

Conversely
Suppose that $T(x)=0 \Rightarrow x=0$, let $T\left(x_{1}\right)=T\left(x_{2}\right)$, since T is linear,
$T\left(x_{1}-x_{2}\right)=T\left(x_{1}\right)-T\left(x_{2}\right)=0$
so that $x_{1}-x_{2}=0$
Hence $x_{1}=x_{2}$
Hence T is one to one and so T^{-1} exists.
(b) If $T^{-1}: R(T) \rightarrow D(T)$ exists, it is a linear operator. Indeed,

Let $y_{1}, y_{2} \in D\left(T^{-1}\right)=R(T)$, then $\exists x_{1}, x_{2} \in X$ such that $y_{1}=T\left(x_{1}\right), y_{2}=T\left(x_{2}\right)$, then $x_{1}=T^{-1}\left(y_{1}\right), x_{2}=T^{-1}\left(y_{2}\right)$
Now,

$$
\begin{aligned}
& T^{-1}\left(\alpha y_{1}+\beta y_{2}\right)=T^{-1}\left(\alpha T\left(x_{1}\right)+\beta T\left(x_{2}\right)\right) \\
& =T^{-1}\left(T\left(\alpha x_{1}+\beta x_{2}\right)\right) \\
& =\alpha x_{1}+\beta x_{2} \\
& =\alpha T^{-1}\left(y_{1}\right)+\beta T^{-1}\left(y_{2}\right) .
\end{aligned}
$$

Hence, T^{-1} is a linear operator.
(c) Suppose $\operatorname{dim} D(T)=n<\infty$, and $T^{-1}: R(T) \rightarrow X$ exists, By theorem (1.2.3(b)) we have $\operatorname{dim} R(T) \leq \operatorname{dim} D(T)=n$
Now, $n=\operatorname{dim} D(T)=\operatorname{dim} R\left(T^{-1}\right) \leq \operatorname{dim} D\left(T^{-1}\right)=\operatorname{dim} R(T) \leq n$ Hence, $\operatorname{dim} D(T)=\operatorname{dim} R(T)$.

Applications:

\boldsymbol{A} - $\operatorname{Let} T_{1}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ be defined by

$$
T_{1}\left(\xi_{1}, \xi_{2}\right)=\left(\xi_{1}, 0\right)
$$

Then T_{1} is linear operator.

Proof:

Let $x=\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}, y=\left(\eta_{1}, \eta_{2}\right) \in \mathfrak{R}^{2}$, and α is any scalar

$$
\begin{gathered}
T_{1}(x+y)=T_{1}\left(\left(\xi_{1}, \xi_{2}\right)+\left(\eta_{1}, \eta_{2}\right)\right)=T_{1}\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\right) \\
=\left(\xi_{1}+\eta_{1}, 0\right)=\left(\xi_{1}, 0\right)+\left(\eta_{1}, 0\right)=T_{1}(x)+T_{1}(y) . \\
T_{1}(\alpha x)=T_{1}\left(\alpha \xi_{1}, \alpha \xi_{2}\right)=\left(\alpha \xi_{1}, 0\right)=\alpha\left(\xi_{1}, 0\right)=\alpha T_{1}(x) .
\end{gathered}
$$

and $R\left(T_{1}\right)=\left\{\left(\xi_{1}, 0\right): \xi_{1} \in \mathfrak{R}\right\}=\mathfrak{R} \times\{0\}$.

$$
\begin{aligned}
N\left(T_{1}\right) & =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}: T_{1}\left(\xi_{1}, \xi_{2}\right)=(0,0)\right\} \\
& =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}:\left(\xi_{1}, 0\right)=(0,0)\right\} \\
& =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}: \xi_{1}=0\right\} .
\end{aligned}
$$

Chapter 1

\boldsymbol{B} - Let $T_{2}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ defined by

$$
T_{2}\left(\xi_{1}, \xi_{2}\right)=\left(0, \xi_{2}\right)
$$

Then T_{2} is linear operator.

Proof:

Let $x=\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}, y=\left(\eta_{1}, \eta_{2}\right) \in \mathfrak{R}^{2}$, and α is any scalar

$$
\begin{gathered}
T_{2}(x+y)=T_{2}\left(\left(\xi_{1}, \xi_{2}\right)+\left(\eta_{1}, \eta_{2}\right)\right)=T_{2}\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\right) \\
\quad=\left(0, \xi_{2}+\eta_{2}\right)=\left(0, \xi_{2}\right)+\left(0, \eta_{2}\right)=T_{2}(x)+T_{2}(y) \\
T_{2}(\alpha x)=T_{2}\left(\alpha \xi_{1}, \alpha \xi_{2}\right)=\left(0, \alpha \xi_{2}\right)=\alpha\left(0, \xi_{2}\right)=\alpha T_{2}(x)
\end{gathered}
$$

and $R\left(T_{2}\right)=\left\{\left(0, \xi_{2}\right): \xi_{2} \in \mathfrak{R}\right\}=\{0\} \times \mathfrak{R}$.

$$
\begin{aligned}
N\left(T_{2}\right) & =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}: T_{2}\left(\xi_{1}, \xi_{2}\right)=(0,0)\right\} \\
& =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}:\left(0, \xi_{2}\right)=(0,0)\right\} \\
& =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}: \xi_{2}=0\right\} .
\end{aligned}
$$

\boldsymbol{C} - Let $T_{3}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ defined by

$$
T_{3}\left(\xi_{1}, \xi_{2}\right)=\left(\xi_{2}, \xi_{1}\right)
$$

Then T_{3} is linear operator.

Proof:

Let $x=\left(\xi_{1}, \xi_{2}\right) \in \Re^{2}, y=\left(\eta_{1}, \eta_{2}\right) \in \Re^{2}$, and α is any scalar

$$
\begin{aligned}
& T_{3}(x+y)=T_{3}\left(\left(\xi_{1}, \xi_{2}\right)+\left(\eta_{1}, \eta_{2}\right)\right)=T_{3}\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\right) \\
& \quad=\left(\xi_{2}+\eta_{2}, \xi_{1}+\eta_{1}\right)=\left(\xi_{2}, \xi_{1}\right)+\left(\eta_{2}, \eta_{1}\right)=T_{3}(x)+T_{3}(y) \\
& T_{3}(\alpha x)=T_{3}\left(\alpha \xi_{1}, \alpha \xi_{2}\right)=\left(\alpha \xi_{2}, \alpha \xi_{1}\right)=\alpha\left(\xi_{2}, \xi_{1}\right)=\alpha T_{3}(x)
\end{aligned}
$$

and $R\left(T_{3}\right)=\left\{\left(\xi_{2}, \xi_{1}\right): \xi_{1}, \xi_{2} \in \mathfrak{R}\right\}=\mathfrak{R}^{2}$.
\boldsymbol{D} - Let $T_{4}: \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}$ defined by

$$
T_{4}\left(\xi_{1}, \xi_{2}\right)=\left(\gamma \xi_{1}, \gamma \xi_{2}\right)
$$

Then T_{4} is linear operator.

Proof:

Let $x=\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}, y=\left(\eta_{1}, \eta_{2}\right) \in \mathfrak{R}^{2}$, and α is any scalar

$$
\begin{aligned}
& T_{4}(x+y)=T_{4}\left(\left(\xi_{1}, \xi_{2}\right)+\left(\eta_{1}, \eta_{2}\right)\right)=T_{4}\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}\right) \\
& \quad=\left(\gamma \xi_{1}+\gamma \eta_{1}, \gamma \xi_{2}+\gamma \eta_{2}\right)=\left(\gamma \xi_{1}, \gamma \xi_{2}\right)+\left(\gamma \eta_{1}, \gamma \eta_{2}\right) \\
& \quad=T_{4}(x)+T_{4}(y) \\
& T_{4}(\alpha x)=T_{4}\left(\alpha \xi_{1}, \alpha \xi_{2}\right)=\left(\gamma \alpha \xi_{1}, \gamma \alpha \xi_{2}\right)=\alpha\left(\gamma \xi_{1}, \gamma \xi_{2}\right)=\alpha T_{4}(x)
\end{aligned}
$$

and $R\left(T_{4}\right)=\left\{\left(\gamma \xi_{1}, \gamma \xi_{2}\right): \xi_{1}, \xi_{2} \in \mathfrak{R}\right\}=\mathfrak{R}^{2}$.

$$
\begin{aligned}
N\left(T_{4}\right) & =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}: T_{4}\left(\xi_{1}, \xi_{2}\right)=(0,0)\right\} \\
& =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}:\left(\gamma \xi_{1}, \gamma \xi_{2}\right)=(0,0)\right\} \\
& =\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathfrak{R}^{2}: \xi_{1}=0, \xi_{2}=0\right\}
\end{aligned}
$$

\boldsymbol{E} - Let $T: D(T) \rightarrow Y$ be a linear operator whose inverse exists. If $\left\{x_{1}, \ldots, x_{n}\right\}$ is a linearly independent set in $D(T)$, then the set $\left\{T x_{1}, \ldots, T x_{n}\right\}_{\text {is linearly independent. }}$

Proof:

We want to show $\left\{T x_{1}, \ldots, T x_{n}\right\}$ is linearly independent.
So, let $\alpha_{1}, \ldots, \alpha_{n}$ be scalars such that

$$
\alpha_{1} T x_{1}+\ldots+\alpha_{n} T x_{n}=0_{Y}
$$

we want to prove $\alpha_{i}=0, \forall i=1, \ldots, n$
since T is linear, then $T\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right)=0_{Y}$ and since T^{-1} exists, then

$$
\begin{aligned}
& \quad T^{-1}\left(T\left(\alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}\right)\right)=T^{-1}\left(0_{Y}\right) \\
& \Rightarrow \alpha_{1} x_{1}+\ldots+\alpha_{n} x_{n}=0_{X}
\end{aligned}
$$

since $\left\{x_{1}, \ldots, x_{n}\right\}$ linearly independent, then $\alpha_{i}=0, \forall i=1, \ldots, n$
Hence $\left\{T x_{1}, \ldots, T x_{n}\right\}$ is linearly independent.
\boldsymbol{F} - Let $T: X \rightarrow Y$ be a linear operator and $\operatorname{dim} X=\operatorname{dim} Y=n<\infty$, then $R(T)=Y$ if and only if T^{-1} exists.

Proof:

Let $T: X \rightarrow Y$ be a linear operator and $\operatorname{dim} X=\operatorname{dim} Y=n<\infty$, and $R(T)=Y$, we want to show that T^{-1} exists, i.e. T is one to one, i.e. $T x=0 \Rightarrow x=0$, let $B=\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis for X, and let $y \in Y=R(T)$, then
$y=T x$ for some $x \in X, x=\sum_{i=1}^{n} \alpha_{i} e_{i}$
$y=T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(e_{i}\right)$, then $\left\{T e_{1}, \ldots, T e_{n}\right\}$ generates $Y=R(T)$
since $\operatorname{dim} Y=n<\infty$, then $\left\{T e_{1}, \ldots, T e_{n}\right\}$ is a basis for Y
Now, let $T x=0$

$$
\begin{aligned}
& \Rightarrow T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right)=0 \\
& \Rightarrow \sum_{i=1}^{n} \alpha_{i} T\left(e_{i}\right)=0
\end{aligned}
$$

since $\left\{T e_{1}, \ldots, T e_{n}\right\}$ is linearly independent (from $\left.\boldsymbol{E}\right)$

$$
\begin{aligned}
& \Rightarrow \alpha_{i}=0, \forall i \\
& \Rightarrow x=0
\end{aligned}
$$

That means T is one to one, so T^{-1} exists.
Conversely
Let $T: X \rightarrow Y$ be a linear operator and $\operatorname{dim} X=\operatorname{dim} Y=n<\infty$, and T^{-1} exists, we want to show that $R(T)=Y$,
Since T is linear operator, $T: X \rightarrow R(Y)$

$$
\begin{equation*}
\Rightarrow \operatorname{dim} R(T) \leq \operatorname{dim} X=n \tag{1}
\end{equation*}
$$

since T^{-1} exists, $T^{-1}: R(T) \rightarrow X$

$$
\begin{equation*}
\Rightarrow n=\operatorname{dim} X \leq \operatorname{dim} R(T) \tag{2}
\end{equation*}
$$

from (1)and (2) we get $\operatorname{dim} R(T)=n$
since $R(T)$ subspace of Y, and $\operatorname{dim} Y=n$
Hence $R(T)=Y$.

1.3 Bounded and continuous linear operators

Definition (1.3.1)

Let X and Y be normed space and $T: D(T) \rightarrow Y$ a linear operator, where $D(T) \subset X$.The operator T is said to be bounded if there is a real number c such that for all $x \in D(T)$

$$
\begin{equation*}
\|T x\| \leq c\|x\| \tag{1}
\end{equation*}
$$

the smallest possible c in (1)

$$
\frac{\|T x\|}{\|x\|} \leq c \quad x \neq 0
$$

is that supremum. This quantity is denoted by $\|T\|$; thus

$$
\|T\|=\sup _{\substack{x \in D(T) \\ x \neq 0}} \frac{\|T x\|}{\|x\|}
$$

$\|T\|$ is called the norm of the operator T, if $D(T)=\{0\}$, we define $\|T\|=0$.

Lemma (1.3.2)

Let T be a bounded linear operator, then:
(a) An alternative formula for the norm of T is: $\|T\|=\sup _{\substack{x \in D(T) \\\|x\|=1}}\|T x\|$
(b) The norm defined by (2) satisfies the properties of norm.

Proof:

(a) we write $\|x\|=a>0$, and set $y=\frac{1}{a} x$, where $x \neq 0$, then

$$
\begin{aligned}
& \|y\|=\left\|\frac{1}{a} x\right\|=\frac{\|x\|}{a}=\frac{a}{a}=1 \text {, and since } T \text { is linear (2) gives } \\
& \|T\|=\sup _{\substack{x \in D(T) \\
x \neq 0}} \frac{\|T x\|}{\|x\|}=\sup _{\substack{x \in D(T) \\
x \neq 0}} \frac{1}{a}\|T x\|=\sup _{\substack{x \in D(T) \\
x \neq 0}}\left\|T\left(\frac{1}{a} x\right)\right\|=\sup _{\substack{\begin{subarray}{c}{\in D(T) \\
\|y\|=1} }}\end{subarray}}\|T y\|
\end{aligned}
$$

writing x for y on right, we have $\|T\|=\sup _{\substack{x \in D(T) \\\|x\|=1}}\|T x\|$.
(b) $\|T\|=\sup _{\substack{x \in D(T) \\ x \neq 0}} \frac{\|T x\|}{\|x\|}$

1- $\|T\|=\sup _{\substack{x \in D(T) \\ x \neq 0}} \frac{\|T x\|}{\|x\|} \geq 0$
and $\|T\|=0 \Leftrightarrow T x=0 \quad \forall x \in D(T)$, so that $T=0$.
2- $\|\alpha T\|=\sup _{\|x\|=1}\|\alpha T x\|=\sup _{\|x\|=1}\left|\alpha\|T x\|=|\alpha| \sup _{\|x\|=1}\|T x\|=|\alpha|\|T\|\right.$.
$3-\left\|T_{1}+T_{2}\right\|=\sup _{\|x\|=1}\left\|\left(T_{1}+T_{2}\right) x\right\|=\sup _{\|x\|=1}\left\|T_{1} x+T_{2} x\right\| \leq \sup _{\|x\|=1}\left\|T_{1} x\right\|+\sup _{\|x\|=1}\left\|T_{2} x\right\|$ $=\left\|T_{1}\right\|+\left\|T_{2}\right\| . \quad, x \in D(T)$.

Examples:

Example (1):
The identity operator $I: X \rightarrow X$ on a normed space $X \neq\{0\}$ defined by $I x=x \quad \forall x \in X$, is bounded and has norm $\|I\|=1$, since

$$
\begin{aligned}
& \|I x\| \leq c\|x\| \quad c>0 \\
& \Rightarrow \frac{\|I x\|}{\|x\|} \leq c \\
& \Rightarrow \frac{\|x\|}{\|x\|} \leq c \quad \Rightarrow 1 \leq c \quad \Rightarrow\|I\|=1 .
\end{aligned}
$$

Example (2):
The zero operator $0: X \rightarrow Y$ on a normed space X defined by $0 x=0 \quad \forall x \in X$, is bounded and has norm $\|0\|=0$, since

$$
\begin{aligned}
& \|0 x\| \leq c\|x\| \quad c>0 \\
& \Rightarrow \frac{\|0 x\|}{\|x\|} \leq c \\
& \Rightarrow \frac{0}{\|x\|} \leq c \quad \Rightarrow 0 \leq c \quad \Rightarrow\|0\|=0
\end{aligned}
$$

Example (3):

Let X be the normed space of all polynomials on $J=[0,1]$ with norm given $\|x\|=\max |x(t)|, t \in J$.A differentiation operator T is defined on X by

$$
T x(t)=x^{\prime}(t)
$$

this operator is linear but not bounded, to proof this let $x_{n}(t)=t^{n}$, where $n \in N$

$$
\left\|x_{n}\right\|=\max _{t \in[0,1]}\left|x_{n}(t)\right|=\max _{t \in[0,1]}\left|t^{n}\right|=1
$$

and

$$
\begin{aligned}
& T x_{n}(t)=x_{n}^{\prime}=n t^{n-1} \\
& \Rightarrow\left|\left|T x_{n} \| \max _{t \in[0,1]}\right| T x_{n}(t)\right|=\max _{t \in[0,1]}\left|n t^{n-1}\right|=n \\
& \Rightarrow \frac{\left\|T x_{n}\right\|}{\left\|x_{n}\right\|}=\frac{n}{1}=n \quad n \in N
\end{aligned}
$$

Now, $\frac{\left\|T x_{n}\right\|}{\left\|x_{n}\right\|}=n \leq c \quad n \in N$
But no fixed number c such that $\frac{\left\|T x_{n}\right\|}{\left\|x_{n}\right\|}=n \leq c$
$\Rightarrow T$ is not bounded.

Example (4):

We defined an integral operator $T: C[0,1] \rightarrow C[0,1]$ by

$$
y=T x, \text { where } y(t)=\int_{0}^{1} k(t, \tau) x(\tau) d \tau
$$

k is given function, which is called the kernel of T, and is continuous on the closed square $G=J \times J \quad, J=[0,1]$, this operator is linear,
$T(x+y)=\int_{0}^{1} k(t, \tau)(x+y)(\tau) d \tau=\int_{0}^{1} k(t, \tau)(x(\tau)+y(\tau)) d \tau$
$=\int_{0}^{1} k(t, \tau) x(\tau) d \tau+\int_{0}^{1} k(t, \tau) y(\tau) d \tau=T x+T y$.
$T(\alpha x)=\int_{0}^{1} k(t, \tau) \alpha x(\tau) d \tau=\alpha \int_{0}^{1} k(t, \tau) x(\tau) d \tau=\alpha T x$.
T is bounded, to proof this, we first note that since k is continuous on the closed square $\Rightarrow k$ is bounded
$\Rightarrow \exists \mathrm{M}>0$ such that $|k(t, \tau)| \leq \mathrm{M} \quad \forall(t, \tau) \in G$
and since $\|x\|=\max _{t \in J}|x(t)|$

$$
\begin{equation*}
\Rightarrow|x(t)| \leq \max _{t \in J}|x(t)|=\|x\| \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \|y\|=\|T x\|=\max _{t \in J}|T x(t)|=\max _{t \in J}\left|\int_{0}^{1} k(t, \tau) x(\tau) d \tau\right| \\
& \begin{aligned}
& \leq \max _{t \in J} \int_{0}^{1}|k(t, \tau) \| x(\tau)| d \tau \leq \max _{t \in J} \int_{0}^{1} \mathrm{M}\|x\| \\
& \quad \leq \mathrm{M}\|x\|
\end{aligned} \\
& \left.\begin{array}{l}
\Rightarrow\|T x\| \leq \mathrm{M}\|x\| \quad \mathrm{M}
\end{array}\right) \\
& \Rightarrow\|T x\| \leq c\|x\|
\end{aligned} \begin{aligned}
& \Rightarrow T \text { is bounded. }
\end{aligned}
$$

Lemma (1.3.3)

Let $\left\{x_{1}, \ldots . ., x_{n}\right\}$ be a linearly independent set of vector in a normed space X (of any dimension), then there is number $c>0$ such that for every choice of scalars $\alpha_{1}, \ldots \ldots, \alpha_{n}$ we have

$$
\left\|\alpha_{1} x_{1}+\ldots . .+\alpha_{n} x_{n}\right\| \geq c\left(\left|\alpha_{1}\right|+\ldots . .+\left|\alpha_{n}\right|\right)
$$

Theorem (Finite dimension) (1.3.4)

If a normed space X is finite dimensional, then every linear operator on X is bounded.

Proof:

Let $\operatorname{dim} X=n$ and $\left\{e_{1}, \ldots ., e_{n}\right\}$ a basis for X, we take any $x=\sum_{i=1}^{n} \xi_{i} e_{i}$ and consider any linear operator T on X.
Since T is linear

$$
\begin{equation*}
\Rightarrow\|T x\|=\left\|T\left(\sum_{i=1}^{n} \xi_{i} e_{i}\right)\right\|=\left\|\sum_{i=1}^{n} \xi_{i} T\left(e_{i}\right)\right\| \leq \max _{k}\left\|T\left(e_{k}\right)\right\| \sum_{i=1}^{n}\left|\xi_{i}\right| \tag{1}
\end{equation*}
$$

we apply lemma (1.3.4) with $\alpha_{i}=\xi_{i}, x_{i}=e_{i}$,we get
$c \sum_{i=1}^{n}\left|\xi_{i}\right| \leq\left\|\sum_{i=1}^{n} \xi_{i} e_{i}\right\|$
$\Rightarrow \sum_{i=1}^{n}\left|\xi_{i}\right| \leq \frac{1}{c}\left\|\sum_{i=1}^{n} \xi_{i} e_{i}\right\|=\frac{1}{c}\|x\|$
from (1) and(2)
$\Rightarrow\|T x\| \leq \max _{k}\left\|T\left(e_{k}\right)\right\| \sum_{i=1}^{n}\left|\xi_{i}\right| \leq \frac{1}{c}\|x\| \max _{k}\left\|T\left(e_{k}\right)\right\|$
$\Rightarrow\|T x\| \leq \gamma\|x\| \quad$ where $\quad \gamma=\frac{1}{c} \max _{k}\left\|T\left(e_{k}\right)\right\|$
From this we see that is T bounded.

Definition (1.3.5)

Let $T: D(T) \rightarrow Y$ be a linear operator, where $D(T) \subset X$, and X, Y are normed spaces, we say T is continuous at x_{o} if for any $\varepsilon>0 \quad \exists \delta>0$ such that if $\left\|x-x_{o}\right\|<\delta$

$$
\Rightarrow\left\|T x-T x_{o}\right\|<\varepsilon \quad \forall x \in D(T)
$$

Theorem (Continuity and boundedness) (1.3.6)
Let $T: D(T) \rightarrow Y$ be a linear operator, where $D(T) \subset X$, and X, Y are normed spaces, then:
(a) T is continuous if and only if T is bounded.
(b) If T is continuous at a single point, it is continuous.

Proof:

(a) Suppose that T is bounded,

$$
\begin{equation*}
\Rightarrow \exists c>0 \text { such that }\|T x\| \leq c\|x\| \quad \forall x \in D(T) \tag{1}
\end{equation*}
$$

We want to prove T is continuous, so let $\varepsilon>0$ be given and let $x_{o} \in D(T)$ be any point

Let $\delta=\frac{\varepsilon}{c}$, where c given in (1), then if $\left\|x-x_{o}\right\|<\delta$

$$
\begin{aligned}
\Rightarrow\left\|T x-T x_{o}\right\| & =\left\|T\left(x-x_{o}\right)\right\| & & \text { Since } T \text { is linear } \\
& \leq c\left\|x-x_{o}\right\| & & \text { Since } T \text { is bounded } \\
& <c \delta & & \\
& =c \frac{\varepsilon}{c}=\varepsilon & &
\end{aligned}
$$

$\Rightarrow T$ is continuous at x_{o}, since x_{o} is an arbitrary point in $D(T)$, hence T is continuous on X.

Conversely, assume that T is continuous at an arbitrary $x_{o} \in D(T)$, then given $\varepsilon>0 \quad \exists \delta>0$ such that if $\left\|x-x_{o}\right\|<\delta$

$$
\begin{equation*}
\Rightarrow\left\|T x-T x_{o}\right\|<\varepsilon \quad \forall x \in D(T) \tag{2}
\end{equation*}
$$

take any $y \in D(T), y \neq 0$ and set $x=x_{o}+\frac{\delta}{\|y\|} y \Rightarrow x-x_{o}=\frac{\delta}{\|y\|} y$ $\Rightarrow\left\|x-x_{o}\right\|=\left\|\frac{\delta}{\|y\|} y\right\|=\frac{\|\delta\|}{\|y\|}\|y\|=\delta$
$\Rightarrow\left\|T x-T x_{o}\right\|=\left\|T\left(x-x_{o}\right)\right\| \quad$ Since T is linear
$=\left\|T\left(\frac{\delta}{\|y\|} y\right)\right\|$
$=\frac{\delta}{\|y\|}\|T y\|$
Since T is linear
$\Rightarrow\left\|T x-T x_{o}\right\|=\frac{\delta}{\|y\|}\|T y\|<\varepsilon \quad$ from (2)
$\Rightarrow\|T y\| \leq \frac{\varepsilon}{\delta}\|y\|$
$\Rightarrow\|T y\| \leq c\|y\|$
where
$c=\frac{\varepsilon}{\delta}$
$\Rightarrow T$ is bounded.
(b) Continuity of T at a point implies bounded of T by the second part of the proof of (a), which in turn implies continuity of T by (a).

Corollary (Continuity, null space) (1.3.7)

Let T be a bounded linear operator, then:
(a) $x_{n} \rightarrow x\left(\right.$ where $\left.x_{n}, x \in D(T)\right)$ implies $T x_{n} \rightarrow T x$.
(b) The null space $N(T)$ is closed.

Proof:

(a) $\left\|T x_{n}-T x\right\|=\left\|T\left(x_{n}-x\right)\right\|$ $\leq\|T\| x_{n}-x \|$
$\|T\|\left\|x_{n}-x\right\| \rightarrow 0$
$\Rightarrow\left\|T x_{n}-T x\right\| \rightarrow 0$
$\Rightarrow T x_{n} \rightarrow T x$.

Since T is linear
Since T is bounded
Since $x_{n} \rightarrow x \Rightarrow\left\|x_{n}-x\right\| \rightarrow 0$
(b) let $x \in \overline{N(T)}$, then there is a sequence $\left(x_{n}\right)$ in $N(T)$ such that

$$
x_{n} \rightarrow x \quad \Rightarrow T x_{n} \rightarrow T x \quad \text { from }(a)
$$

Since $\left(x_{n}\right)$ in $N(T)$

$$
\begin{aligned}
& \Rightarrow T x_{n}=0 \\
& \Rightarrow T x=0 \\
& \Rightarrow x \in N(T)
\end{aligned}
$$

$\Rightarrow N(T)$ is closed.

Applications:

\boldsymbol{A} - Let X and Y be normed spaces, then a linear operator $T: X \rightarrow Y$ is bounded if and only if T maps bounded sets in X into bounded sets in Y.

Proof:

Let $T: X \rightarrow Y$ be a bounded linear operator i.e. $\exists c \in \Re$ such that

$$
\begin{equation*}
\|T x\| \leq c\|x\| \quad \forall x \in X \tag{1}
\end{equation*}
$$

and let $A \subset X, A$ is bounded set $\Rightarrow \exists M>0$ such that

$$
\begin{equation*}
\|x\| \leq M \quad \forall x \in A \tag{2}
\end{equation*}
$$

and $T(A)=\{T x: x \in A\}$

Now, for all $x \in A$

$$
\begin{aligned}
\Rightarrow\|T x\| & \leq c\|x\| & \text { from (1) } \\
& \leq c M & \text { from (2) }
\end{aligned}
$$

$\Rightarrow T(A)$ is bounded.
Conversely, suppose that T is a linear operator such that T maps bounded sets in X into bounded sets in Y, we want to show that T is bounded i.e. $\exists c \in \mathfrak{R}$ such that $\|T x\| \leq c\|x\| \quad \forall x \in X$,
So let $x \in X, x \neq 0 \Rightarrow \frac{x}{\|x\|} \in X, \quad$ and \quad let $A=\left\{\frac{x}{\|x\|}: x \in X \backslash\{0\}\right\}$, then $\|y\|=1 \quad \forall y \in A, A$ is bounded $\Rightarrow T(A)$ is bounded
i.e. $\Rightarrow \exists M>0$ such that $\|T y\| \leq M \quad \forall y \in A$

Then $\forall x \in X$

$$
\begin{aligned}
& \Rightarrow\left\|T\left(\frac{x}{\|x\|}\right)\right\| \leq M \\
& \Rightarrow \frac{1}{\|x\|}\|T x\| \leq M \\
& \Rightarrow\|T x\| \leq M\|x\| \\
& \Rightarrow\|T x\| \leq c\|x\| \quad \text { where } \quad c=M
\end{aligned}
$$

$\Rightarrow T$ is bounded.

B- Let $T: l^{\infty} \rightarrow l^{\infty}$ be an operator defined by

$$
y=\left(\eta_{i}\right)=T x, \eta_{i}=\frac{\xi_{i}}{i}, x=\left(\xi_{i}\right)
$$

Then T is linear and bounded, but the range $R(T)$ of T need not be closed.

Proof:

First we want to show that T is linear,
Let $x_{1}, x_{2} \in l^{\infty}, x_{1}=\left(\xi_{i}^{(1)}\right), x_{2}=\left(\xi_{i}^{(2)}\right)$, and α is nay scalar:
1- $T\left(x_{1}+x_{2}\right)=\left(\frac{\xi_{i}^{(1)}+\xi_{i}^{(2)}}{i}\right)=\left(\frac{\xi_{i}^{(1)}}{i}\right)+\left(\frac{\xi_{i}^{(2)}}{i}\right)=T x_{1}+T x_{2}$.

2- $T\left(\alpha x_{1}\right)=\left(\alpha \frac{\xi_{i}^{(1)}}{i}\right)=\alpha\left(\frac{\xi_{i}^{(1)}}{i}\right)=\alpha T x_{1} \cdot$ Hence T is linear.
Now, we want to show that T is bounded,

$$
\left\|T x_{1}\right\|=\sup _{i \in N}\left|\frac{\xi_{i}^{(1)}}{i}\right| \leq \sup _{i \in N}\left|\xi_{i}^{(1)}\right|=\left\|x_{1}\right\|, \text { hence } T \text { is bounded. }
$$

Finally, we want to show that the range $R(T)$ of T need not be closed, $R(T)=\left\{\left(\frac{\xi_{i}}{i}\right): x=\left(\xi_{i}\right) \in l^{\infty}\right\}$ is not closed i.e. $\exists\left(y_{n}\right)$ any sequence in $R(T)$ such that $y_{n} \rightarrow y$ but $y \notin R(T)$,
Now, let $x_{n}=(1, \sqrt{2}, \ldots, \sqrt{n}, 0,0, \ldots),. x_{n} \in l^{\infty}$ for all $n \in N$, then $y_{n}=T\left(x_{n}\right)=\left(1, \frac{1}{\sqrt{2}}, \ldots, \frac{1}{\sqrt{n}}, 0,0, \ldots.\right) \Rightarrow y_{n} \in l^{\infty}$ for all $n \in N$,
Clearly $y_{n} \rightarrow y=\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, \ldots.\right)=\left(\frac{1}{\sqrt{i}}\right)$,
Now, suppose that $y=T x$ for some $x \in l^{\infty}$
$\Rightarrow\left(\frac{1}{\sqrt{i}}\right)=\left(\frac{\xi_{i}}{i}\right) \Rightarrow \frac{1}{\sqrt{i}}=\frac{\xi_{i}}{i} \quad \forall i \in N \Rightarrow \xi_{i}=\sqrt{i} \quad \forall i \in N$
$\Rightarrow x=\left(\xi_{i}\right)=(1, \sqrt{2}, \sqrt{3}, \ldots ..) \notin l^{\infty}$
Therefore $y \notin R(T)$, so $R(T)$ not closed.
C - Let T be a bounded linear operator from a normed space X onto normed space Y. If there is a positive b such that

$$
\|T x\| \geq b\|x\| \quad \forall x \in X
$$

Then $T^{-1}: Y \rightarrow X$ exists and bounded.

Proof:

Let $T x=0 \Rightarrow 0=\|T x\| \geq b\|x\| \Rightarrow\|x\|=0 \Rightarrow x=0$, then T^{-1} exists.
Now, let $y \in Y \Rightarrow T^{-1}(y)=x$ for some $x \in X$, then
$\left\|T^{-1}(y)\right\|=\|x\| \leq \frac{1}{b}\|T x\|=\frac{1}{b}\|y\|$
$\Rightarrow\left\|T^{-1}(y)\right\| \leq \frac{1}{b}\|y\|$
$\Rightarrow T^{-1}$ is bounded.

1.4 Linear functionals

Definition (1.4.1)

A linear functional f is a linear operator with domain in a vector space X and range in the scalar field K of X; thus:
$f: D(T) \rightarrow K$
where $K=\Re$ if X is real, and $K=C$ if X is complex.

Definition (1.4.2)

A bounded linear functional f is a bounded linear operator with range in the scalar field of the normed space X in which the domain $D(f)$ lies.
Thus there exist a real number c such that, for all $x \in D(f)$

$$
|f(x)| \leq c\|x\|
$$

Furthermore, the norm of f is

$$
\begin{aligned}
& \|f\|=\sup _{\substack{x \in D(f) \\
x \neq 0}} \frac{|f(x)|}{\|x\|} \text { or }\|f\|=\sup _{\substack{x \in D(f) \\
\|x\|=1}}|f(x)| \\
& \Rightarrow|f(x)| \leq\|f\|\|x\| .
\end{aligned}
$$

Examples:

Example (1):

The familiar dot product with one factor kept fixed defines a functional $f: \Re^{3} \rightarrow \Re$ by means of:
$f(x)=x . a=\xi_{1} \alpha_{1}+\xi_{2} \alpha_{2}+\xi_{3} \alpha_{3}$
where $a=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathfrak{R}^{3}$ is a fixed, $x=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$
f is linear and bounded,
first we want to prove f is linear,
1- $f(x+y)=(x+y) \cdot a=\left(\xi_{1}+\eta_{1}, \xi_{2}+\eta_{2}, \xi_{3}+\eta_{3}\right) \cdot a$
$=\left(\xi_{1}+\eta_{1}\right) \alpha_{1}+\left(\xi_{2}+\eta_{2}\right) \alpha_{2}+\left(\xi_{3}+\eta_{3}\right) \alpha_{3}$
$=\left(\xi_{1} \alpha_{1}+\xi_{2} \alpha_{2}+\xi_{3} \alpha_{3}\right)+\left(\eta_{1} \alpha_{1}+\eta_{2} \alpha_{2}+\eta_{3} \alpha_{3}\right)$
$=\left(\xi_{1}+\xi_{2}+\xi_{3}\right) \cdot a+\left(\eta_{1}+\eta_{2}+\eta_{3}\right) \cdot a=x \cdot a+y \cdot a=f(x)+f(y)$.

2- $f(\alpha x)=(\alpha x) \cdot a=\alpha \xi_{1} \alpha_{1}+\alpha \xi_{2} \alpha_{2}+\alpha \xi_{3} \alpha_{3}$
$=\alpha\left(\xi_{1} \alpha_{1}+\xi_{2} \alpha_{2}+\xi_{3} \alpha_{3}\right)=\alpha(x . a)=\alpha f(x)$.
Now, we want to prove f is bounded

$$
|f(x)|=\left|\sum_{i=1}^{3} \xi_{i} \alpha_{i}\right| \leq \sum_{i=1}^{3}\left|\xi_{i} \alpha_{i}\right| \leq\left(\sum_{i=1}^{3}\left|\xi_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{3}\left|\alpha_{i}\right|^{2}\right)^{1 / 2}=\|x\|\|a\| .
$$

By holder inequality,
There for f is bounded
So, $\forall x \in \mathfrak{R}^{3}, x \neq 0$

$$
\begin{align*}
& \frac{|f(x)|}{\|x\|} \leq\|a\| \Rightarrow \sup \frac{|f(x)|}{\|x\|} \leq\|a\| \Rightarrow\|f\| \leq\|a\| \tag{1}\\
& \|f\|=\sup \frac{|f(x)|}{\|x\|} \geq \frac{|f(a)|}{\|a\|}=\frac{\left|\alpha_{1} \alpha_{1}+\alpha_{2} \alpha_{2}+\alpha_{3} \alpha_{3}\right|}{\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)^{1 / 2}} \\
& =\left(\alpha_{1}^{2}+\alpha_{2}^{2}+\alpha_{3}^{2}\right)^{1 / 2}=\|a\| \Rightarrow\|f\| \geq\|a\|
\end{align*}
$$

from (1) and (2)we get $\|f\|=\|a\|$.

Example (2):

We can obtain a linear functional f on the Hilbert space l^{2} by choosing
a fixed $a=\left(\alpha_{i}\right) \in l^{2}, \quad$ and \quad define $f_{a}: l^{2} \rightarrow C$ by $f_{a}(x)=\sum_{i=1}^{\infty} \xi_{i} \alpha_{i}$, where $x=\left(\xi_{i}\right) \in l^{2}$
Now, by holder inequality
$\sum_{i=1}^{\infty}\left|\alpha_{i} \xi_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{1 / 2}<\infty$
$\Rightarrow \sum_{i=1}^{\infty} \xi_{i} \alpha_{i}$ is absolutely convergent, then is convergent
\Rightarrow for each $x \in l^{2}$ there corresponds number $\sum_{i=1}^{\infty} \alpha_{i} \xi_{i}$
$\Rightarrow f_{a}$ is well defined.
$|f(x)|=\left|\sum_{i=1}^{\infty} \alpha_{i} \xi_{i}\right| \leq \sum_{i=1}^{\infty}\left|\alpha_{i} \xi_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|\alpha_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{1 / 2}=\|a\|\|x\|$.

Theorem (1.4.3)

If $f \neq 0$ be any linear functional on vector space X and x_{o} any fixed element of $X-N(f)$, where $N(f)$ is the null space of f, then any $x \in X$ has a unique representation $x=a x_{o}+y$, where $y \in N(f)$.

Proof:

Let $x \in X, x_{o}$ any fixed element of $X-N(f)$, let $\alpha=\frac{f(x)}{f\left(x_{o}\right)}$

$$
\begin{aligned}
& \begin{array}{l}
f\left(x-\frac{f(x)}{f\left(x_{o}\right)} \cdot x_{o}\right)=f(x)-\frac{f(x)}{f\left(x_{o}\right)} \cdot f\left(x_{o}\right)=0 \\
\text { Hence } x-\frac{f(x)}{f\left(x_{o}\right)} \cdot x_{o} \text { belong to } N(f) \\
\qquad \quad \Rightarrow x-\frac{f(x)}{f\left(x_{o}\right)} \cdot x_{o}=y \text { for some } y \in N(f) \\
\quad \Rightarrow x=\frac{f(x)}{f\left(x_{o}\right)} \cdot x_{o}+y
\end{array}
\end{aligned}
$$

Hence, every $x \in X$ can be written of the form $x=\alpha x_{o}+y \quad y \in N(f)$.
To prove this form is unique
Let $\begin{aligned} x & =\alpha x_{o}+y=\alpha^{\prime} x_{o}+y^{\prime} \quad y, y^{\prime} \in N(f) ; \alpha, \alpha^{\prime} \in K ; \alpha \neq \alpha^{\prime} \\ & \Rightarrow \alpha x_{o}-\alpha^{\prime} x_{o}=y^{\prime}-y \\ & \Rightarrow x_{o}\left(\alpha-\alpha^{\prime}\right)=y^{\prime}-y \\ & \Rightarrow\left(\alpha-\alpha^{\prime}\right) x_{o} \in N(f) \\ & \Rightarrow x_{o} \in N(f),\end{aligned}$
a contradiction, hence the representation is unique.

Application:

A- Let $f: X \rightarrow K$ be a linear functional, then two elements $x_{1}, x_{2} \in X$ belong to the same element of the quotient space $X / N(f)$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Proof:

Suppose that $x_{1}, x_{2} \in x_{o}+N(f)$ for some $x_{o} \in X$, we want to prove that $f\left(x_{1}\right)=f\left(x_{2}\right)$,
Since $x_{1}, x_{2} \in x_{o}+N(f)$
$\Rightarrow x_{1}=x_{o}+y_{1}, x_{2}=x_{o}+y_{2} \quad y_{1}, y_{2} \in N(f)$
Now, $f\left(x_{1}\right)=f\left(x_{o}+y_{1}\right)=f\left(x_{o}\right)+f\left(y_{1}\right)=f\left(x_{o}\right)$
and $f\left(x_{2}\right)=f\left(x_{o}+y_{2}\right)=f\left(x_{o}\right)+f\left(y_{2}\right)=f\left(x_{o}\right)$
Therefore $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Conversely:
Suppose that for $x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2}\right)$

$$
\begin{aligned}
& \Rightarrow f\left(x_{1}\right)-f\left(x_{2}\right)=0 \\
& \Rightarrow f\left(x_{1}-x_{2}\right)=0 \\
& \Rightarrow x_{1}-x_{2} \in N(f) \\
& \Rightarrow\left(x_{1}-x_{2}\right)+N(f)=N(f) \\
& \Rightarrow x_{1}+N(f)=x_{2}+N(f) \\
& \Rightarrow x_{1}=x_{1}+0 \in x_{1}+N(f)=x_{2}+N(f), x_{2} \in x_{2}+N(f)
\end{aligned}
$$

Hence, $x_{1}, x_{2} \in X$ belong to the same element of the quotient space $X / N(f)$.
B - Let $f: X \rightarrow K$ be a non zero linear functional on X, then $\operatorname{dim}(X / N(f))=1$ 。

Proof:

We want to prove that $X / N(f)=\operatorname{span}\left\{x_{o}+N(f)\right\}$ for some $x_{o} \notin N(f)$
Clearly, $\operatorname{span}\left\{x_{o}+N(f)\right\} \subseteq X / N(f)$
Now, let $y \in X / N(f)$

$$
\begin{align*}
& y=x+N(f) \text { for some } x \in X, \text { from(1.4.3) } x=\alpha x_{o}+y_{1}, y_{1} \in N(f) \\
& \Rightarrow y=x+N(f)=\alpha x_{o}+y_{1}+N(f)=\alpha x_{o}+N(f)=\alpha\left(x_{o}+N(f)\right) \\
& y \in \operatorname{span}\left\{x_{o}+N(f)\right\} \Rightarrow X / N(f) \subseteq \operatorname{span}\left\{x_{o}+N(f)\right\} \tag{2}
\end{align*}
$$

Hence, from (1) and (2) we get $X / N(f)=\operatorname{span}\left\{x_{o}+N(f)\right\}$, sodim $(X / N(f))=1$.
\boldsymbol{C} - Let f_{1}, f_{2} be two non-zero linear functional on the same vector space such that $N\left(f_{1}\right)=N\left(f_{2}\right)$, then f_{1} and f_{2} are proportional.

Proof:

Since $f_{1}, f_{2} \neq 0$, then $\exists x_{o} \in X$ such that $f_{1}\left(x_{o}\right) \neq 0$
Since $N\left(f_{1}\right)=N\left(f_{2}\right), f_{2}\left(x_{o}\right) \neq 0$
from theorem (1.4.3) any $x \in X, x=\alpha x_{o}+y$ for some scalar α, $y \in N\left(f_{1}\right)$
$x=\frac{f_{1}(x)}{f_{1}\left(x_{o}\right)} x_{o}+y$
$y \in N\left(f_{1}\right)=N\left(f_{2}\right) \Rightarrow f_{2}(y)=0$
Now,

$$
\begin{aligned}
& f_{2}(x)=\frac{f_{1}(x)}{f_{1}\left(x_{o}\right)} f_{2}\left(x_{o}\right)+f_{2}(y) \\
& \Rightarrow f_{2}(x)=\frac{f_{2}\left(x_{o}\right)}{f_{1}\left(x_{o}\right)} f_{1}(x)
\end{aligned}
$$

Remark (1.4.4)
Note that if Y is a subspace of vector space X and f is a linear functional on X such that $f(Y) \neq K$, then $f(y)=0$ for all $y \in Y$.
Indeed suppose that $\exists y_{o} \in Y \subseteq X$ such that $f\left(y_{o}\right)=\alpha_{o} \neq 0$, then for
any $\beta \in K \Rightarrow \beta=\frac{\beta}{\alpha_{o}} \alpha_{o}=\frac{\beta}{\alpha_{o}} f(y)=f\left(\frac{\beta}{\alpha_{o}} y\right) \in f(Y)$
$\Rightarrow K=f(Y)$, a contradiction

$$
\Rightarrow f(y)=0 \quad \forall y \in Y
$$

Fundamental theorem for normed and Banach spaces

2.1 Zorn's lemma

Definition (Partially ordered set, Chain) (2.1.1)

A partially ordered set is a set M on which there is defined a partial ordering, that is a binary relation which is written (\leq) and satisfies the conditions:

$$
\begin{array}{ll}
a \leq a \text { for every } a \in M & \text { (Reflexivity) } \\
\text { If } a \leq b \text { and } b \leq a, \text { then } a=b & \text { (Antisymmetry) } \\
\text { If } a \leq b \text { and } b \leq c, \text { then } a \leq c & \text { (Transitivity) }
\end{array}
$$

*If neither $a \leq b$ nor $b \leq a$ holds, then a and b called incomparable elements, in contrast, two elements a and b are called comparable elements if they satisfy $a \leq b$ or $b \leq a$ (or both).
*A totally ordered set or Chain is partially ordered set such that every elements of the set are comparable.
*An upper bound of a subset W of a partially ordered set M is an element $u \in M$ such that

$$
x \leq u \quad \text { for every } x \in W
$$

*A maximal element of M is an $m \in M$ such that

$$
m \leq x \quad \text { implies } \quad m=x
$$

Examples:

(a) Let M be the set of all real numbers and let $x \leq y$ have a usual meaning, M is totally ordered, M has no maximal element.
(b) Let $P(X)$ be the power set (set of all subset) of a given set X and let $A \leq B$ mean $A \subset B$, that is A is subset of B, then $P(X)$ is partially ordered, and the only maximal element of $P(X)$ is X. (c) Let M be the set of all ordered n-tuples $\left\{x=\left(\xi_{1}, \ldots, \xi_{n} \mid \xi_{i} \in \mathfrak{R}\right\}\right.$, and $x \leq y$ mean $\xi_{i} \leq \eta_{i}$ for every $i=1, \ldots, n$, where $\xi_{i} \leq \eta_{i}$ has its usual meaning, M is partially ordered, M has no maximal element.
(d) Let $M=N$, the set of all positive integers, let $m \leq n$ mean that m divides n, N is partially ordered.

Zorn's lemma (2.1.2)

Let M be a partially ordered set, suppose that every chain $C \subset M$ has upper bound, than M has at lest one maximal element.

Definition (2.1.3)

A sublinear functional is a real-valued functional p on a vector space X which is
*Subaddative, that is

$$
p(x+y) \leq p(x)+p(y) \quad \forall x, y \in X .
$$

*Positive-homogenous, that is

$$
p(\alpha x)=\alpha p(x) \quad \forall \alpha \in \Re, \alpha \geq 0, x \in X .
$$

2.2 Hahn-Banach theorem

Hahn-Banach theorem (Extension of linear functional) (2.2.1)

Let X be a real vector space and p a sublinear functional on X, furthermore, let f be a linear functional which is defined on subspace Z of X and satisfies:

$$
f(x) \leq p(x) \quad \forall x \in Z
$$

Then f has a linear extension \tilde{f} from Z to X satisfying:

$$
\tilde{f}(x) \leq p(x) \quad \forall x \in X
$$

That is, \tilde{f} is a linear functional on X, satisfying

$$
\tilde{f}(x) \leq p(x) \text { on } X, \text { and } \tilde{f}(x)=f(x) \quad \forall x \in Z .
$$

Proof:

We shall prove:
(a) The set E of all linear extensions g of f satisfying $g(x) \leq p(x)$ on their domain $D(g)$ can be partially ordered and Zorn's lemma yields a maximal element \tilde{f} of E.
(b) \tilde{f} is defined on the entire space X.
(c) An auxiliary relation which was used in (b).

We start with part (a)
Let E be the set of all linear extensions g of f which satisfy the condition:

$$
g(x) \leq p(x) \quad \forall x \in D(g)
$$

Clearly, $E \neq \phi$ since $f \in E$,
On E we can define a partial ordering by $g \leq h$ meaning h is an extension of g,
\Rightarrow By definition, $D(g) \subset D(h)$ and $h(x)=g(x) \quad \forall x \in D(g)$
Let $C \subset E$ is chain, we define \hat{g} by

$$
\hat{g}(x)=g(x) \text { if } x \in D(g) \quad(g \in C)
$$

\hat{g} is linear functional, the domain being

$$
D(\hat{g})=\bigcup_{g \in C} D(g)
$$

which is vector space, since C is a chain,

The definition of \hat{g} is unambiguous, Indeed, for an $x \in D\left(g_{1}\right) \cap D\left(g_{2}\right)$ with $g_{1}, g_{2} \in C$, we have $g_{1}(x)=g_{2}(x)$, and $g_{1} \leq g_{2}$ or $g_{2} \leq g_{1}$ since C is chain
Clearly, $g \leq \hat{g}$ for all $g \in C$ since $D(g) \subset D(\hat{g})$ for all $g \in C$
$\Rightarrow \hat{g}$ is an upper bound of C
Since $C \subset E$ was arbitrary, then by Zone's lemma E has a maximal element \tilde{f}, and by the definition of E
$\Rightarrow \tilde{f}$ is linear extension of f which satisfies:

$$
\tilde{f}(x) \leq p(x) \quad \forall x \in D(\tilde{f})
$$

(b) We want to show that $D(\tilde{f})$ is all of X,

Suppose that this false
$\Rightarrow \exists y_{1}$ such that $y_{1} \in X-D(\tilde{f})$
Consider the subspace Y_{1} of X spanned by $D(\tilde{f})$ and y_{1}
Note that $y_{1} \neq 0$, since $0 \in D(\tilde{f})$
Now, any $x \in Y_{1}$ can be written

$$
x=y+\alpha y_{1} \quad y \in D(\tilde{f})
$$

This representation is unique, since
Let $x=y+\alpha y_{1}$ and $x=y^{\prime}+\beta y_{1} \quad y, y^{\prime} \in D(\tilde{f})$
$\Rightarrow y+\alpha y_{1}=y^{\prime}+\beta y_{1} \Rightarrow y-y^{\prime}=(\beta-\alpha) y_{1}$
Since $y_{1} \notin D(\tilde{f}), y-y^{\prime} \in D(\tilde{f})$, then the only solution is $y-y^{\prime}=0$ and $\beta-\alpha=0 \Rightarrow y=y^{\prime}$ and $\beta=\alpha$,
Hence the representation is unique.
Now, a functional g_{1} on Y_{1} is defined by

$$
g_{1}\left(y+\alpha y_{1}\right)=\tilde{f}(y)+\alpha c \quad \text { (1) } \quad \text { where } c \text { any real constant }
$$

g_{1} is linear, since for $x_{1}, x_{2} \in Y_{1} \Rightarrow x_{1}=y+\alpha y_{1}, x_{2}=y^{\prime}+\beta y_{1}$,
1- $g_{1}\left(x_{1}+x_{2}\right)=g_{1}\left(\left(y+\alpha y_{1}\right)+\left(y^{\prime}+\beta y_{1}\right)\right)=g_{1}\left(\left(y+y^{\prime}\right)+(\alpha+\beta) y_{1}\right)$

$$
\begin{aligned}
=\tilde{f}\left(y+y^{\prime}\right)+(\alpha+\beta) c & =\tilde{f}(y)+\tilde{f}\left(y^{\prime}\right)+\alpha c+\beta c \quad \text { since } \tilde{f} \text { is linear } \\
& =g_{1}\left(x_{1}\right)+g_{1}\left(x_{2}\right) .
\end{aligned}
$$

2- $g_{1}\left(r x_{1}\right)=g_{1}\left(r\left(y+\alpha y_{1}\right)\right)=g_{1}\left(r y+r \alpha y_{1}\right)=\tilde{f}(r y)+r \alpha c$
$=r \tilde{f}(y)+r \alpha c \quad$ since \tilde{f} is linear
$=r(\tilde{f}(y)+\alpha c)=r g_{1}\left(x_{1}\right)$, where r is any scalar.

Now, for $\alpha=0 \Rightarrow x=y \Rightarrow g_{1}(y)=\tilde{f}(y)$, then g_{1} is proper extension of \tilde{f}, since $D(\tilde{f}) \subset D\left(g_{1}\right)$
Now, if we can prove that $g_{1} \in E$ by showing that

$$
g_{1}(x) \leq p(x) \quad \forall x \in D\left(g_{1}\right)
$$

this will contradict the maximality of \tilde{f}, so that $D(\tilde{f}) \neq X$ is false and $D(\tilde{f})=X$ is true.
(c) We must finally show that g_{1} with a suitable c in (1) satisfies:

$$
g_{1}(x) \leq p(x) \quad \forall x \in D\left(g_{1}\right)
$$

consider any $y, z \in D(\tilde{f})$

$$
\begin{gathered}
\Rightarrow \tilde{f}(y)-\tilde{f}(z)=\tilde{f}(y-z) \leq p(y-z)=p\left(y+y_{1}-y_{1}-z\right) \\
\quad \leq p\left(y+y_{1}\right)+p\left(-y_{1}-z\right) \quad \text { since } p \text { is sublinear } \\
\quad \Rightarrow-p\left(-y_{1}-z\right)-\tilde{f}(z) \leq p\left(y+y_{1}\right)-\tilde{f}(y)
\end{gathered}
$$

where y_{1} is fixed, since y does not appear on the left and z not on the right, if we take the supremum over $z \in D(\tilde{f})$ on the left (call it m_{o}) and the infimum over $y \in D(\tilde{f})$ on the right (call it m_{1})
then $m_{o} \leq m_{1}$, and for a c with $m_{o} \leq c \leq m_{1}$

$$
\begin{align*}
\Rightarrow-p\left(-y_{1}-z\right)-\tilde{f}(z) \leq c & \forall z \in D(\tilde{f}) \tag{2}\\
c \leq p\left(y+y_{1}\right)-\tilde{f}(y) & \forall y \in D(\tilde{f}) \tag{3}
\end{align*}
$$

Now, for $\alpha<0$ and z replaced by $\alpha^{-1} y$ in(2)

$$
\begin{aligned}
& \Rightarrow-p\left(-y_{1}-\frac{1}{\alpha} y\right)-\tilde{f}\left(\frac{1}{\alpha} y\right) \leq c, \text { multiplication by }-\alpha>0 \\
& \Rightarrow \alpha p\left(-y_{1}-\frac{1}{\alpha} y\right)+\alpha \tilde{f}\left(\frac{1}{\alpha} y\right) \leq-\alpha c \\
& \Rightarrow \alpha p\left(-y_{1}-\frac{1}{\alpha} y\right)+\tilde{f}(y) \leq-\alpha c \\
& \Rightarrow \tilde{f}(y)+\alpha c \leq-\alpha p\left(-y_{1}-\frac{1}{\alpha} y\right) \\
& \Rightarrow g_{1}(x) \leq p\left(\alpha y_{1}+y\right) \\
& \Rightarrow g_{1}(x) \leq p(x)
\end{aligned}
$$

for $\alpha>0$ and y replaced by $\alpha^{-1} y$ in (3)

$$
\begin{aligned}
& \Rightarrow c \leq p\left(\frac{1}{\alpha} y+y_{1}\right)-\tilde{f}\left(\frac{1}{\alpha} y\right), \text { multiplication by } \alpha>0 \\
& \Rightarrow \alpha c \leq \alpha p\left(\frac{1}{\alpha} y+y_{1}\right)-\alpha \tilde{f}\left(\frac{1}{\alpha} y\right) \\
& \Rightarrow \alpha c \leq p\left(y+\alpha y_{1}\right)-\tilde{f}(y) \\
& \Rightarrow \tilde{f}(y)+\alpha c \leq p\left(y+\alpha y_{1}\right) \\
& \Rightarrow g_{1}(x) \leq p(x)
\end{aligned}
$$

for $\alpha=0$ we have $x \in D(\tilde{f})$ and nothing to prove.

Applications:

A- A sublinear functional p satisfies $p(0)=0$ and $p(-x) \geq-p(x)$.

Proof:

Since p is sublinear functional $p: X \rightarrow \Re$

$$
\begin{aligned}
& \Rightarrow p(x+y) \leq p(x)+p(y) \quad \forall x, y \in X \\
& p(\alpha x)=\alpha p(x) \quad \forall \alpha \in \mathfrak{R}, \alpha \geq 0, x \in X
\end{aligned}
$$

and
let $\alpha=0$

$$
p(0)=p(0 x)=0 p(x)=0
$$

and

$$
\begin{aligned}
& 0=p(0)=p(x-x) \leq p(x)+p(-x) \\
& \Rightarrow p(-x) \geq-p(x)
\end{aligned}
$$

\boldsymbol{B} - If a subadditive functional p on a normed space X is continuous at 0 and $p(0)=0$, then p is continuous for all $x \in X$.

Proof:

Let x_{o} be an arbitrary (but fixed) point in X, we want to show that p is continuous at x_{o},
so let $\varepsilon>0$ be given, since p continuous at 0

$$
\Rightarrow \exists \delta>0 \text { such that if }\|y-0\|<\delta, y \in X \text {, then }|p(y)|<\varepsilon
$$

thus, of $y=x-x_{o}$

$$
\begin{equation*}
\left\|x-x_{o}\right\|<\delta \Rightarrow\left|p\left(x-x_{o}\right)\right|<\varepsilon \tag{1}
\end{equation*}
$$

Now,

$$
\begin{align*}
& p(x)=p\left(x-x_{o}+x_{o}\right) \leq p\left(x-x_{o}\right)+p\left(x_{o}\right) \\
& \Rightarrow p(x)-p\left(x_{o}\right) \leq p\left(x-x_{o}\right) \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& p\left(x_{o}\right)=p\left(x_{o}-x+x\right) \leq p\left(x_{o}-x\right)+p(x) \\
& \Rightarrow p(x)-p\left(x_{o}\right) \geq-p\left(x-x_{o}\right) \tag{3}
\end{align*}
$$

then, from(2) and (3)we get

$$
\begin{aligned}
& -p\left(x-x_{o}\right) \leq p(x)-p\left(x_{o}\right) \leq p\left(x-x_{o}\right) \\
& \Rightarrow\left|p(x)-p\left(x_{o}\right)\right|<\left|p\left(x-x_{o}\right)\right|<\varepsilon \quad \text { from (1) }
\end{aligned}
$$

hence p is continuous at x_{o}, and since x_{o} an arbitrary, then p is continuous for all $x \in X$.
\boldsymbol{C} - If a subadditive functional defined on a normed space X is nonnegative outside a sphere $\{x\|x\|=r\}$, then it is nonnegative for all $x \in X$.

Proof:

Let $p: X \rightarrow \Re$, be a subadditive functional defined on a normed space X, and let $p(x) \geq 0$ for x such that $\|x\|>r$
we want to prove that $p(x) \geq 0$ for $x \in X$
(a) Let $x \in X$ such that $\|x\|=r$

$$
\begin{aligned}
& \Rightarrow\|2 x\|=2\|x\|=2 r>r \Rightarrow p(2 x) \geq 0 \\
& \Rightarrow 2 p(x) \geq 0 \Rightarrow p(x) \geq 0
\end{aligned}
$$

(b) Let $y \in X, y \neq 0$ then, $\left\|\frac{r y}{\|y\| \|}\right\|=r \frac{\|y\|}{\|y\|}=r \Rightarrow p\left(r \frac{y}{\|y\|}\right) \geq 0$ from(a)

$$
\Rightarrow \frac{r}{\|y\|} p(y) \geq 0 \Rightarrow p(y) \geq 0 \quad \text { for } y \in X, y \neq 0
$$

if $y=0 \Rightarrow p(0)=0$
Then, from (1), (a) and (b) $p(x) \geq 0 \quad \forall x \in X$.

D- If p is sublinear functional on a real vector space X, then there exists a linear functional \tilde{f} on X such that $-p(-x) \leq \tilde{f}(x) \leq p(x)$.

Proof:

From theorem (2.2.1) we have $\quad \tilde{f}(x) \leq p(x)$
and $-\tilde{f}(x)=\tilde{f}(-x) \leq p(-x)$ since \tilde{f} is linear

$$
\Rightarrow \tilde{f}(x) \geq-p(-x)
$$

from (1) and(2) we get $\quad-p(-x) \leq \tilde{f}(x) \leq p(x)$.
\boldsymbol{E} - Let p be a sublinear functional on a real vector space X, and let f be defined on $Z=\left\{x \in X \mid x=\alpha x_{o}, \alpha \in \mathfrak{R}\right\}$ by $f(x)=\alpha p\left(x_{o}\right)$ with fixed x_{o}, then f is a functional on Z satisfying $f(x) \leq p(x)$.

Proof:

First we want to prove that f is linear functional on $Z, f: Z \rightarrow \Re$
Let $x, y \in Z \Rightarrow x=\alpha x_{o}, y=\beta x_{o}, \alpha, \beta \in \mathfrak{R} \Rightarrow x+y=(\alpha+\beta) p\left(x_{o}\right)$, and let r is any scalar
1- $f(x+y)=(\alpha+\beta) p\left(x_{o}\right)=\alpha p\left(x_{o}\right)+\beta p\left(x_{o}\right)=f(x)+f(y)$.
2- $f(r x)=r \alpha p\left(x_{o}\right)=r f(x)$, hence f is linear functional on Z.
Now we want to prove that $f(x) \leq p(x)$,
Since $f(x)=\alpha p\left(x_{o}\right), x=\alpha x_{o}$
if $\alpha \geq 0 \Rightarrow f(x)=\alpha p\left(x_{o}\right)=p\left(\alpha x_{o}\right)=p(x) \Rightarrow f(x)=p(x)$
if $\alpha<0 \Rightarrow-\alpha>0$
$\Rightarrow f(x)=\alpha p\left(x_{o}\right)=-(-\alpha) p\left(x_{o}\right)=-p\left(-\alpha x_{o}\right)=-p(-x)<p(x)$
$\Rightarrow f(x)<p(x)$
from (1) and (2) we get $f(x) \leq p(x)$.

2.3 Hahn Banach theorem for complex vector spaces and

 normed spaces
Hahn Banach theorem(Generalized) (2.3.1)

Let X be a real or complex vector space and p a real-valued functional on X which is subadditive, that is

$$
\begin{equation*}
p(x+y) \leq p(x)+p(y) \quad \forall x, y \in X \tag{1}
\end{equation*}
$$

and for every scalar α satisfies

$$
\begin{equation*}
p(\alpha x)=|\alpha| p(x) \tag{2}
\end{equation*}
$$

Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies

$$
\begin{equation*}
|f(x)| \leq p(x) \quad \forall x \in Z \tag{3}
\end{equation*}
$$

Then, f has a linear extension \tilde{f} from Z to X satisfying

$$
\begin{equation*}
|\tilde{f}(x)| \leq p(x) \quad \forall x \in X \tag{4}
\end{equation*}
$$

Proof:

(a) Real vector space:

If X is real, the situation is simple

$$
\begin{array}{lr}
f(x) \leq|f(x)| \leq p(x) & \quad \text { from (3) } \\
\Rightarrow f(x) \leq p(x) & \forall x \in Z
\end{array}
$$

then, by theorem (2.2.1) there is a linear extension \tilde{f} from Z to X such that

$$
\begin{equation*}
\tilde{f}(x) \leq p(x) \quad \forall x \in X \tag{5}
\end{equation*}
$$

Now, $-\tilde{f}(x)=\tilde{f}(-x) \leq p(-x)=|-1| p(x)=p(x) \quad$ from (2)

$$
\begin{align*}
& \Rightarrow-\tilde{f}(x) \leq p(x) \\
& \Rightarrow \tilde{f}(x) \geq-p(x) \tag{6}
\end{align*}
$$

Then from (5) and (6)

$$
\begin{aligned}
& \Rightarrow-p(x) \leq \tilde{f}(x) \leq p(x) \\
& \Rightarrow|\tilde{f}(x)| \leq p(x)
\end{aligned}
$$

(b) Complex vector space:

Let X be complex, then Z is a complex vector space, too
$\Rightarrow f$ is complex-valued
\Rightarrow we can write $\quad f(x)=f_{1}(x)+i f_{2}(x) \quad x \in Z$
where f_{1} and f_{2} are real-valued
for a moment we regard X and Z as real vector space and denote them by X_{r} and Z_{r} respectively, this simply means that we restrict multiplication by scalars to real numbers (instead of complex numbers), since f is linear on Z, and f_{1}, f_{2} are real-valued $\Rightarrow f_{1}, f_{2}$ are linear functional on Z, also $f_{1}(x) \leq|f(x)|$

$$
\Rightarrow f_{1}(x) \leq p(x) \quad \forall x \in Z_{r}
$$

from (3)
\Rightarrow by theorem (2.2.1), there is a linear extension \tilde{f}_{1} of f_{1} from Z_{r} to X_{r}, such that

$$
\begin{equation*}
\tilde{f}_{1}(x) \leq p(x) \quad \forall x \in X_{r} \tag{7}
\end{equation*}
$$

this take care of f_{1} and we now turn of f_{2}
Now, returning to Z and using $f=f_{1}+i f_{2}$, we have for every $x \in Z$

$$
\begin{aligned}
& i\left[f_{1}(x)+i f_{2}(x)\right]=i f(x)=f(i x)=f_{1}(i x)+i f_{2}(i x) \\
& \Rightarrow i f_{1}(x)-f_{2}(x)=f_{1}(i x)+i f_{2}(i x)
\end{aligned}
$$

the real parts on both sides must be equal

$$
\begin{align*}
& \Rightarrow-f_{2}(x)=f_{1}(i x) \\
& \Rightarrow f_{2}(x)=-f_{1}(i x) \quad \forall x \in Z \tag{8}\\
& \Rightarrow f(x)=f_{1}(x)-i f_{1}(i x)
\end{align*}
$$

\Rightarrow if for all $x \in X$ we set

$$
\begin{equation*}
\tilde{f}(x)=\tilde{f}_{1}(x)-i \tilde{f}_{1}(i x) \tag{9}
\end{equation*}
$$

then from (8)
$\tilde{f}(x)=f(x)$ on Z
this shows that \tilde{f} is an extension of f from Z to X, now we want to prove that:
(a) \tilde{f} is linear functional on the complex vector space X.
(b) \tilde{f} satisfies (4) on X.

To prove (a) let $x, y \in X$ and $\alpha \in C, \alpha=a+i b \quad a, b \in \Re$

$$
\begin{aligned}
\tilde{f}(x+y) & =\tilde{f}_{1}(x+y)-i \tilde{f}_{1}(i(x+y)) \quad \text { from (9) } \\
& =\tilde{f}_{1}(x)+\tilde{f}_{1}(y)-i\left(\tilde{f}_{1}(i x)+\tilde{f}_{1}(i y)\right) \\
& =\tilde{f}_{1}(x)-i \tilde{f}_{1}(i x)+\tilde{f}_{1}(y)-i \tilde{f}_{1}(i y) \\
& =\tilde{f}(x)+\tilde{f}(y) .
\end{aligned}
$$

and,

$$
\begin{aligned}
\tilde{f}(\alpha x) & =\tilde{f}((a+i b) x) \\
& =\tilde{f}(a x+i b x) \\
& =\tilde{f}_{1}(a x+i b x)-i \tilde{f}_{1}(i a x-b x) \\
& =a \tilde{f}_{1}(x)+b \tilde{f}_{1}(i x)-i\left[a \tilde{f}_{1}(i x)-b \tilde{f}_{1}(x)\right] \\
& =a \tilde{f}_{1}(x)+b \tilde{f}_{1}(i x)-i a \tilde{f}_{1}(i x)+i b \tilde{f}_{1}(x) \\
& =a\left[\tilde{f}_{1}(x)-i \tilde{f}_{1}(i x)\right]+b\left[\tilde{f}_{1}(i x)+i \tilde{f}_{1}(x)\right] \\
& =a\left[\tilde{f}_{1}(x)-i \tilde{f}_{1}(i x)\right]+i b\left[\tilde{f}_{1}(x)-i \tilde{f}_{1}(i x)\right] \\
& =a+i b\left[\tilde{f}_{1}(x)-i \tilde{f}_{1}(i x)\right]=\alpha \tilde{f}(x) .
\end{aligned}
$$

Hence, \tilde{f} is linear.
To prove (b)
1 - for any x such that $\tilde{f}(x)=0$ this holds, since $p(x) \geq 0$.
2- Let $x \in X$ such that $\tilde{f}(x) \neq 0$, then we can write \tilde{f} by using polar form of complex quantities

$$
\begin{gathered}
\tilde{f}(x)=|\tilde{f}(x)| e^{i \theta} \\
\Rightarrow|\tilde{f}(x)|=\tilde{f}(x) e^{-i \theta}=\tilde{f}\left(e^{-i \theta} x\right)
\end{gathered}
$$

since $|\tilde{f}(x)|$ is real, then $\tilde{f}\left(e^{-i \theta} x\right)$ is real

$$
\Rightarrow \tilde{f}\left(e^{-i \theta} x\right)=\tilde{f}_{1}\left(e^{-i \theta} x\right)
$$

Now,

$$
\begin{array}{rlr}
|\tilde{f}(x)|=\tilde{f}\left(e^{-i \theta} x\right)=\tilde{f}_{1}\left(e^{-i \theta} x\right) & \leq p\left(e^{-i \theta} x\right) & \\
& =\left|e^{-i \theta}\right| p(x) & \\
& =p(x) & \text { from (7) } \\
& =p) \\
\end{array}
$$

Hence $|\tilde{f}(x)| \leq p(x) \quad \forall x \in X$.

Hahn-Banach theorem (Normed space) (2.3.2)

Let f be a bounded linear functional on a subspace Z of a normed space X, then there exists a bounded linear functional \tilde{f} on X which is an extension of f to X and has the same norm

$$
\|\tilde{f}\|_{X}=\|f\|_{Z}
$$

where

$$
\|\tilde{f}\|_{X}=\sup _{\substack{x \in X \\\|x\|=1}}|\tilde{f}(x)| \quad,\|f\|_{Z}=\sup _{\substack{x \in Z \\\|x\|=1}}|f(x)| .
$$

(and $\|f\|_{Z}=0$ in the trivial case $Z=\{0\}$).

Proof:

If $Z=\{0\}$, then $f=0$ and the extension is $\tilde{f}=0$.
Now, let $Z \neq\{0\}$, we want to use theorem (2.3.1), for all $x \in Z$ we have

$$
|f(x)| \leq\|f\|_{z}\|x\|
$$

This is of the from (3) in theorem (2.3.1)

$$
p(x)=\|f\|_{z}\|x\|
$$

p Is defined on all of X, and p satisfies (1), since by the triangle inequality

$$
\begin{aligned}
p(x+y)=\|f\|_{Z}\|x+y\| & \leq\|f\|_{Z}(\|x\|+\|y\|) \\
& =\|f\|_{Z}\|x\|+\|f\|_{Z}\|y\|=p(x)+p(y)
\end{aligned}
$$

p also satisfies(2) because

$$
p(\alpha x)=\|f\|_{Z}\|\alpha x\|=\left|\alpha\|f\|_{Z}\|x\|=|\alpha| p(x) .\right.
$$

Hence, we can apply theorem (2.3.1), that mean there exists a linear functional \tilde{f} on X which is an extension of f and satisfies

$$
|\tilde{f}(x)| \leq p(x)=\|f\|_{z}\|x\| \quad x \in X
$$

Taking the supremum over all $x \in X$ of norm 1 , we obtain the inequality

$$
\begin{equation*}
\|\tilde{f}\|_{X}=\sup _{\substack{x \in X \\\|x\|=1}}|\tilde{f}(x)| \leq\|f\|_{Z} \tag{a}
\end{equation*}
$$

and since under an extension the norm cannot decrease, we also have

$$
\begin{equation*}
\|\tilde{f}\|_{X} \geq\|f\|_{Z} \tag{b}
\end{equation*}
$$

hence, from(a) and (b) we get

$$
\|\tilde{f}\|_{X}=\|f\|_{Z}
$$

Definition (2.3.3)

The dual space X^{*} of a normed space X consists of the bounded linear functionals on X.

Theorem (Bounded linear functionals) (2.3.4)
Let X be a normed space and $x_{o} \neq 0$ be any element of X, then there exists a bounded linear functional \tilde{f} on X such that

$$
\|\tilde{f}\|=1 \quad, \tilde{f}\left(x_{o}\right)=\left\|x_{o}\right\| .
$$

Proof:

Let $Z=\left\{x \mid x=\alpha x_{o}\right\}_{\text {where }} \alpha$ is a scalar, Z subspace of X, we define a linear functional $f: Z \rightarrow \Re$, by

$$
\begin{equation*}
f(x)=f\left(\alpha x_{o}\right)=\alpha\left\|x_{o}\right\| \tag{1}
\end{equation*}
$$

f is bounded and has norm $\|f\|=1$, because

$$
\begin{gathered}
|f(x)|=\left|f\left(\alpha x_{o}\right)\right|=\mid \alpha\left\|x_{o}\right\|=\left\|\alpha x_{o}\right\|=\|x\| \\
\|f\|=\sup _{\substack{x \in Z \\
\|x\|=1}}|f(x)|=\sup _{\substack{x \in Z \\
\|x\|=1}}\|x\|=1
\end{gathered}
$$

and from theorem (2.3.2), f has linear extension \tilde{f} from Z to X, of norm $\|\tilde{f}\|=\|f\|=1$
and from (1) we see that

$$
\tilde{f}\left(x_{o}\right)=f\left(x_{o}\right)=\left\|x_{o}\right\| .
$$

Corollary (Norm, zero vector) (2.3.5)

For every x in a normed space X, we have

$$
\|x\|=\sup _{\substack{f \in X^{*} \\ f \neq 0}} \frac{|f(x)|}{\|f\|}
$$

Hence if x_{o} is such that $f\left(x_{o}\right)=0$ for all $f \in X^{*}$, then $x_{o}=0$.

Proof:

From theorem (2.3.4), we have, writing x for x_{o}

$$
\begin{equation*}
\sup _{\substack{f \in X^{*} \\ f \neq 0}} \frac{|f(x)|}{\|f\|} \geq \frac{|\tilde{f}(x)|}{\|\tilde{f}\|}=\frac{\|x\|}{1}=\|x\| \tag{1}
\end{equation*}
$$

and from $|f(x)| \leq\|f \mid\| x \|$ we obtain

$$
\begin{equation*}
\sup _{\substack{f \in X^{*} \\ f \neq 0}} \frac{|f(x)|}{\|f\|} \leq\|x\| \tag{2}
\end{equation*}
$$

so, from (1) and (2) we get

$$
\|x\|=\sup _{\substack{f \in X^{*} \\ f \neq 0}} \frac{|f(x)|}{\|f\|}
$$

Applications:

\boldsymbol{A} - Let p be defined on a vector space X and satisfy

$$
p(x+y) \leq p(x)+p(y) \quad \forall x, y \in X
$$

and

$$
p(\alpha x)=|\alpha| p(x) \quad \text { for every scalar } \alpha
$$

Then for any given $x_{o} \in X$ there is a linear functional \tilde{f} on X such that $\tilde{f}\left(x_{o}\right)=p\left(x_{o}\right)$ and $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

Proof:

Let $x_{o} \in X$ fixed and $Z=\left\{x \mid x=\alpha x_{o}, \alpha \in C\right\}$,
and define $f: Z \rightarrow C$ by

$$
f\left(\alpha x_{o}\right)=\alpha p\left(x_{o}\right)
$$

clearly f is linear functional on Z, also

$$
\begin{aligned}
|f(x)|=\left|f\left(\alpha x_{o}\right)\right| & =\left|\alpha p\left(x_{o}\right)\right|=\left|\alpha \| p\left(x_{o}\right)\right| \leq|\alpha| p\left(x_{o}\right)=p\left(\alpha x_{o}\right)=p(x) \\
& \Rightarrow|f(x)| \leq p(x)
\end{aligned}
$$

By theorem (2.3.1), f has linear extension \tilde{f} on X such that

$$
|\tilde{f}(x)| \leq p(x) \quad \forall x \in X
$$

and if $\alpha=1$, we get $\tilde{f}\left(x_{o}\right)=f\left(x_{o}\right)=1\left(p\left(x_{o}\right)\right)=p\left(x_{o}\right)$.

B- Let X be a normed space and X^{*} its dual space. If $X \neq 0$, then X^{*} cannot be $\{0\}$.

Proof:

Let $x_{o} \in X, x_{o} \neq 0$, then by theorem (2.3.4) there exists a bounded linear functional f on X such that

$$
\|f\|=1 \text { and } f\left(x_{o}\right)=\left\|x_{o}\right\|
$$

since $x_{o} \neq 0 \Rightarrow\left\|x_{o}\right\| \neq 0 \Rightarrow f\left(x_{o}\right) \neq 0 \quad \forall x_{o} \in X$ (since $X \neq\{0\}$)
Hence $f \neq 0 \Rightarrow X^{*} \neq\{0\}$.
\boldsymbol{C} - If $f(x)=f(y)$ for every bounded linear functional f on a normed space X, then $x=y$.

Proof:

Let $f(x)=f(y) \quad \forall f \in X^{*}$

$$
\begin{aligned}
& \Rightarrow f(x)-f(y)=0 \\
& \Rightarrow f(x-y)=0 \\
& \Rightarrow x-y=0 \\
& \Rightarrow x=y .
\end{aligned}
$$

\boldsymbol{D} - Under the assumptions of theorem (2.3.4) there is a bounded linear functional \hat{f} on X such that

$$
\|\hat{f}\|=\left\|x_{o}\right\|^{-1} \text { and } \hat{f}\left(x_{o}\right)=1
$$

Proof:

Let $x_{o} \in X, x_{o} \neq 0$, then by theorem (2.3.4) there exists a bounded linear functional g on X such that

$$
\|g\|=1 \text { and } g\left(x_{o}\right)=\left\|x_{o}\right\|
$$

Now, let $\hat{f}=g\left\|x_{o}\right\|^{-1}$, then

$$
\begin{gathered}
\quad\|\hat{f}\|=\|g\|\left\|x_{o}\right\|^{-1}=1\left(\left\|x_{o}\right\|^{-1}\right)=\left\|x_{o}\right\|^{-1} \\
\text { and } \quad \hat{f}\left(x_{o}\right)=g\left(x_{o}\right)\left\|x_{o}\right\|^{-1}=\left\|x_{o}\right\|\left\|x_{o}\right\|^{-1}=1 .
\end{gathered}
$$

2.4 Open mapping theorem

Definition (2.4.1)

Let X and Y be metric spaces, then $T: D(T) \rightarrow Y$ with domain $D(T) \subset X$ is called an open mapping if for every open set in $D(T)$ the image is an open set in Y.

Remark (Baire's category theorem) (2.4.2)
If a metric space $X \neq \phi$ is complete, it is nonmeager in itself, hence if $X=\bigcup_{k=1}^{\infty} A_{k}$, where A_{k} closed, Then at least one A_{k} contains a nonempty open subset.

Lemma (Open unit ball) (2.4.3)

A bounded linear operator T from a Banach space X onto a Banach space Y has the property that the image $T\left(B_{0}\right)$ of the open unit ball $B_{0}=B(0 ; 1) \subset X$ contains an open ball about $0 \in Y$.
Proof:
Proceeding stepwise, we prove:
(a) $\overline{T\left(B_{1}\right)}$ contains an open ball, where $B_{1}=B\left(0 ; \frac{1}{2}\right)$.
(b) $\overline{T\left(B_{n}\right)}$ contains an open ball $\forall n \in N$, where $B_{n}=B\left(0 ; 2^{-n}\right)$.
(c) $T\left(B_{0}\right)$ contains an open ball about $0 \in Y$.
(a) We consider the open ball $B_{1}=B\left(0 ; \frac{1}{2}\right) \subset X$, any fixed $x \in X$ is in $k B_{1}$ with real k, clearly $\bigcup_{k=1}^{\infty} k B_{1} \subset X \quad$ (1) since $k B_{1} \subset X, \forall k \in N$ and let $x \in X, 2\|x\|>0$, then $\exists k_{x}>2\|x\| \Rightarrow\|x\|<\frac{k_{x}}{2}$, then

$$
\begin{equation*}
x \in k_{x} B_{1} \subset \bigcup_{k=1}^{\infty} k B_{1} \quad \forall x \in X \tag{2}
\end{equation*}
$$

Hence, from (1) and (2) we get $\quad X=\bigcup_{k=1}^{\infty} k B_{1}$
since T is surjective and linear,

$$
\begin{aligned}
& \Rightarrow \bigcup_{k=1}^{\infty} \overline{k T\left(B_{1}\right)}=\bigcup_{k=1}^{\infty} k \overline{T\left(B_{1}\right)} \subset Y=T(X) \\
& =T\left(\bigcup_{k=1}^{\infty} k B_{1}\right)=\bigcup_{k=1}^{\infty} k T\left(B_{1}\right) \subset \bigcup_{k=1}^{\infty} k \overline{T\left(B_{1}\right)}=\bigcup_{k=1}^{\infty} \overline{k T\left(B_{1}\right)}
\end{aligned}
$$

since Y is complete, it is nonmeager in itself, then by (2.4.2) $\exists k_{o} \in N$ such that $k_{o} \overline{T\left(B_{1}\right)}$ contain an open ball, say

$$
\begin{gathered}
B\left(y_{o} ; \alpha\right) \subset k_{o} \overline{T\left(B_{1}\right)} \\
\Rightarrow B\left(y_{o} ; \varepsilon\right)=\frac{1}{k_{o}} B\left(y_{o} ; \alpha\right) \subset \overline{T\left(B_{1}\right)}, \varepsilon=\frac{\alpha}{k_{o}} .
\end{gathered}
$$

(b) From (a) we shown that $\overline{T\left(B_{1}\right)}$ contain an open ball, say $B\left(y_{o} ; \varepsilon\right) \subset \overline{T\left(B_{1}\right)}$ for some $y_{o} \in \overline{T\left(B_{1}\right)}, \varepsilon>0$.
Hence, $B(0 ; \varepsilon)=B\left(y_{o} ; \varepsilon\right)-y_{o} \subset \overline{T\left(B_{1}\right)}-y_{o}$
Now, let $y \in \overline{T\left(B_{1}\right)}-y_{o}$, then $y+y_{o} \in \overline{T\left(B_{1}\right)}$, then there are

$$
u_{n} \in B_{1} \text { such that } T u_{n} \rightarrow y+y_{o}
$$

and

$$
v_{n} \in B_{1} \text { such that } T v_{n} \rightarrow y_{o}
$$

$$
\Rightarrow\left\|u_{n}-v_{n}\right\| \leq\left\|u_{n}\right\|+\left\|v_{n}\right\|<\frac{1}{2}+\frac{1}{2}=1
$$

$$
\Rightarrow u_{n}-v_{n} \in B_{0}
$$

since $T\left(u_{n}-v_{n}\right)=T u_{n}-T v_{n} \rightarrow y$

$$
\begin{equation*}
\Rightarrow y \in \overline{T\left(B_{0}\right)} \tag{3}
\end{equation*}
$$

Hence, $B(0 ; \varepsilon)=B\left(y_{o} ; \varepsilon\right)-y_{o} \subset \overline{T\left(B_{1}\right)}-y_{o} \subset \overline{T\left(B_{0}\right)}$
Now, let $B_{n}=B\left(0 ; 2^{-n}\right) \subset X, B_{n}=B\left(0 ; 2^{-n}\right)=2^{-n} B(0 ; 1)=2^{-n} B_{0}$ since T is linear

$$
\begin{equation*}
\Rightarrow \overline{T\left(B_{n}\right)}=2^{-n} \overline{T\left(B_{0}\right)} \tag{4}
\end{equation*}
$$

from (3) we thus obtain $V_{n}=B\left(0 ; \frac{\varepsilon}{2^{-n}}\right) \subset \overline{T\left(B_{n}\right)}$
(c) We finally prove that $V_{1}=B\left(0 ; \frac{\varepsilon}{2}\right) \subset T\left(B_{0}\right)$

Let $y \in V_{1} \subset \overline{T\left(B_{1}\right)} \quad$ from (4), $n=1$
$y \in \overline{T\left(B_{1}\right)} \Rightarrow y$ is a limit point of $\overline{T\left(B_{1}\right)}$
\Rightarrow every neighborhood of y contains a point of $\overline{T\left(B_{1}\right)}$
$\Rightarrow \exists x_{1} \in B_{1}$ such that $\left\|y-T x_{1}\right\|<\frac{\varepsilon}{2^{2}}$
this implies that $y-T x_{1}$ belong to $V_{2}=B\left(0 ; \frac{\varepsilon}{2^{2}}\right) \subset \overline{T\left(B_{2}\right)}$
$\Rightarrow y-T x_{1}$ is a limit point of $\overline{T\left(B_{2}\right)}$
\Rightarrow every neighborhood of $y-T x_{1}$ contains a point of $\overline{T\left(B_{2}\right)}$
$\Rightarrow \exists x_{2} \in B_{2}$ such that $\left\|y-T x_{1}-T x_{2}\right\|<\frac{\varepsilon}{2^{3}}$
this implies that $y-T x_{1}-T x_{2}$ belong to $V_{3}=B\left(0 ; \frac{\varepsilon}{2^{3}}\right) \subset \overline{T\left(B_{3}\right)}$
and so on , in the nth step we can choose an $x_{n} \in B_{n}$ such that

$$
\begin{equation*}
\left\|y-\sum_{i=1}^{n} T x_{i}\right\|<\frac{\varepsilon}{2^{n+1}} \tag{5}
\end{equation*}
$$

let $z_{n}=x_{1}+\ldots+x_{n}$, since $x_{k} \in B_{k}$ we have $\left\|x_{k}\right\|<\frac{1}{2^{k}}$. This yield for $n>m$

$$
\left\|z_{n}-z_{m}\right\| \leq \sum_{k=m+1}^{n}\left\|x_{k}\right\|<\sum_{k=m+1}^{\infty} \frac{1}{2^{k}} \rightarrow 0
$$

as $\quad m \rightarrow \infty$. Hence $\left(z_{n}\right)$ is Cauchy. $\left(z_{n}\right)$ converse, say $z_{n} \rightarrow x$ because X is complete. Also $x \in B_{0}$ since B_{0} has radius 1 and

$$
\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\sum_{k=1}^{\infty} \frac{1}{2^{k}}=1
$$

since T is continuous, $T z_{n} \rightarrow T x$ and (5) shows that $T x=y$. Hence $y \in T\left(B_{0}\right)$.

Open mapping theorem, Bounded inverse theorem (2.4.4)
A bounded linear operator T from a Banach space X onto a Banach space Y is an open mapping. Hence if T is bijective, T^{-1} is continuous and thus bounded.

Proof:

We want to prove that for every open set $A \subset X$ the image $T(A)$ is open in Y, this we do by showing that for every $y=T x \in T(A)$ the set $T(A)$ contains an open ball about $y=T x$
Now, let $y=T x, x \in A$, since A is open, then A contains an open ball about x, say

$$
\begin{aligned}
& B(x ; \varepsilon) \subset A \\
\Rightarrow & B\left(0_{x} ; \varepsilon\right)=B(x ; \varepsilon)-x \subset A-x \\
\Rightarrow & T\left(B\left(0_{X} ; \varepsilon\right)\right) \subset T(A)-T x \\
\Rightarrow & T\left(\frac{1}{\varepsilon} B\left(0_{x} ; 1\right)\right) \subset T(A)-T x \\
\Rightarrow & \frac{1}{\varepsilon} T\left(B_{0}\right) \subset T(A)-T x \\
\Rightarrow & T\left(B_{0}\right) \subset \varepsilon(T(A)-T x)
\end{aligned}
$$

But from (2.4.3)
$T\left(B_{0}\right)$ contains a ball about 0_{Y}, say $B\left(0_{Y} ; \delta\right)$

$$
\begin{aligned}
& \Rightarrow B\left(0_{Y} ; \delta\right) \subset T\left(B_{0}\right) \subset \varepsilon(T(A)-T x) \\
& \Rightarrow \frac{1}{\varepsilon} B\left(0_{Y} ; \delta\right) \subset T(A)-T x \\
& \Rightarrow B\left(0_{Y} ; \frac{\delta}{\varepsilon}\right) \subset T(A)-T x \\
& \Rightarrow B\left(0_{Y} ; \frac{\delta}{\varepsilon}\right)+T x \subset T(A) \\
& \Rightarrow B\left(T x ; \frac{\delta}{\varepsilon}\right) \subset T(A)
\end{aligned}
$$

Hence, $T(A)$ contains an open ball about $y=T x$, so $T(A)$ is open in Y.

Finally, if $T^{-1}: Y \rightarrow X$ exists, it is continuous because T is open. Since T^{-1} is linear, then it is bounded.

Applications

\boldsymbol{A} - Let X be the normed space whose points are sequences of complex numbers $x=\left(\xi_{i}\right)$ with only finitely many nonzero terms and norm defined by $\|x\|=\sup _{i}\left|\xi_{i}\right|$,
Let $T: X \rightarrow Y$ be defined by $y=T x=\left(\xi_{1}, \frac{1}{2} \xi_{2}, \ldots \ldots ..\right)=\left(\frac{\xi_{i}}{i}\right)_{i=1}^{\infty}$
Then T is linear and bounded but T^{-1} is unbounded.

Proof:

Let $x, y \in X, x=\left(\xi_{i}\right), y=\left(\eta_{i}\right), \alpha$ is any scalar
1- $T(x+y)=\left(\frac{\xi_{i}+\eta_{i}}{i}\right)_{i=1}^{\infty}=\left(\frac{\xi_{i}}{i}+\frac{\eta_{i}}{i}\right)_{i=1}^{\infty}=\left(\frac{\xi_{i}}{i}\right)_{i=1}^{\infty}+\left(\frac{\eta_{i}}{i}\right)_{i=1}^{\infty}=T x+T y$.
2-T($\alpha x)=\left(\frac{\alpha \xi_{i}}{i}\right)_{i=1}^{\infty}=\alpha\left(\frac{\xi_{i}}{i}\right)_{i=1}^{\infty}=\alpha T x$.
Hence, T is linear.
Also, $\|T x\|=\sup _{i}\left|\frac{\xi_{i}}{i}\right| \leq \sup _{i}\left|\xi_{i}\right|=\|x\|$, then T is bounded.
Let $x=\left(\xi_{i}\right) \in X \Rightarrow \xi_{i}=0$ for all but finite number of ξ_{i} 's
Let $0=T x=\left(\frac{\xi_{i}}{i}\right) \Rightarrow \xi_{i}=0, \forall i \Rightarrow x=0$, hence T is one to one, then $T^{-1}: R(T) \rightarrow X$ exists.
Let $y=\left(\eta_{i}\right) \in X \Rightarrow \eta_{i}=0$ for all but finite number of η_{i} 's
$\Rightarrow\left(i \eta_{i}\right) \in X$ and $T\left(i \eta_{i}\right)=\left(\eta_{i}\right)$, so T is surgective.
Now, let $T^{-1}: R(T) \rightarrow X$ is defined by $x=T^{-1}(y)=\left(i \eta_{i}\right)_{i=1}^{\infty}$
Let $y_{n} \in X, y_{n}=\left(\eta_{1}^{(n)}, \eta_{2}^{(n)}, \ldots, \eta_{k}^{(n)}, \ldots.\right)$, where $\eta_{k}^{(n)}= \begin{cases}\frac{1}{n} & k=n \\ 0 & k \neq n\end{cases}$
$\Rightarrow\left\|y_{n}\right\|=\frac{1}{n}$
and $T^{-1}\left(y_{n}\right)=(0,0, \ldots . ., 0,1,0, \ldots .$.$) where 1$ is the nth term
$\Rightarrow T(0, \ldots 0,1,0, \ldots)=y_{n}$

$$
\left\|T^{-1}\right\|=\sup _{\substack{y \in X \\ y \neq 0}} \frac{\left\|T^{-1}\left(y_{n}\right)\right\|}{\|y\|} \geq \frac{\left\|T^{-1}\left(y_{n}\right)\right\|}{\left\|y_{n}\right\|}=\frac{1}{1 / n}=n \quad \forall n \in N
$$

$\Rightarrow T^{-1}$ is unbounded.
This example does not contradict the open mapping theorem, as X is not Banach space.
\boldsymbol{B} - Let $T: X \rightarrow Y$ be a bounded linear operator, where X and Y are Banach spaces. If T is bijective, then there are positive real number a and b such that

$$
a\|x\| \leq\|T(x)\| \leq b\|x\| \quad \text { for all } x \in X
$$

Proof:

Since T is bounded, then $\exists b$ such that $\|T(x)\| \leq b\|x\| \quad \forall x \in X$
And since T is bounded linear operator from a Banach space X onto a Banach space Y, then T^{-1} is bounded, so $\exists \alpha$ such that

$$
\left\|T^{-1}(y)\right\| \leq \alpha\|y\| \quad \forall y \in Y, y=T x
$$

for all $x \in X \Rightarrow\|x\|=\left\|T^{-1} T(x)\right\| \leq \alpha\|T(x)\|$,
put $\alpha=\frac{1}{a} \Rightarrow a\|x\| \leq\|T(x)\| \quad \forall x \in X$
Hence, from (1) and (2) we get

$$
a\|x\| \leq\|T(x)\| \leq b\|x\| \quad \text { for all } x \in X
$$

C - Let X and Y be Banach spaces and $T: X \rightarrow Y$ an injective bounded linear operator, then $T^{-1}: R(T) \rightarrow X$ is bounded if and only if $R(T)$ is closed in Y.

Proof:

Suppose that $T^{-1}: R(T) \rightarrow X$ is bounded, and let $y \in \overline{R(T)}$, then there is the sequence $\left(y_{n}\right)$ in $R(T)$ such that $y_{n} \rightarrow y$.since $y_{n} \in R(T)$, $y_{n}=T x_{n}, x_{n} \in X \Rightarrow x_{n}=T^{-1} y_{n}$
Now, since $\left(y_{n}\right)$ is convergent, it is a Cauchy sequence. Hence
$\left\|x_{n}-x_{m}\right\|=\left\|T^{-1} y_{n}-T^{-1} y_{m}\right\|=\left\|T^{-1}\left(y_{n}-y_{m}\right)\right\| \leq\left\|T^{-1}\right\|\left\|y_{n}-y_{m}\right\| \quad$ since T^{-1} is bounded
therefore, if $\varepsilon>0$ is given $\exists k_{\varepsilon} \in N$ such that $\forall n, m \geq k_{\varepsilon}$

$$
\left\|y_{n}-y_{m}\right\|<\frac{\varepsilon}{\left\|T^{-1}\right\|}
$$

which implies that $\left\|x_{n}-x_{m}\right\|<\varepsilon$, so $\left(x_{n}\right)$ is Cauchy sequence in X, and hence is convergent since X is Banach space, say $x_{n} \rightarrow x$
$\Rightarrow y_{n}=T x_{n}$ converges to $T x$
By the uniqueness of the limit $T x=y \Rightarrow y \in R(T) \Rightarrow R(T)$ is closed.
Conversely
Let $R(T)$ is closed in Y, then $R(T)$ is Banach space so that $T: X \rightarrow R(T)$ is a bijective bounded linear operator defined from a Banach space X onto a Banach space $R(T)$, hence by open mapping theorem T^{-1} is bounded.

2.5 Closed Linear Operators, Closed Graph Theorem

Definition (Closed linear operator) (2.5.1)

Let X and Y be normed space and $T: D(T) \rightarrow Y$ a linear operator with domain $D(T) \subset X$, Then T is called a closed linear operator if its graph

$$
\vartheta(T)=\{(x, y): x \in D(T), y=T x\}
$$

is closed in the normed space $X \times Y$, where the two algebraic operations of a vector space in $X \times Y$ are defined as usual, that is

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
\alpha(x, y)=(\alpha x, \alpha y)
\end{gathered}
$$

(α a scalar) and the norm on $X \times Y$ is defined by

$$
\|(x, y)\|=\|x\|+\|y\| .
$$

Remark (2.5.2)

A subspace M of a complete X is itself complete if and only if M closed in X.

Closed Graph Theorem (2.5.3)

Let X and Y be Banach spaces and $T: D(T) \rightarrow Y$ a closed linear operator, where $D(T) \subset X$, then if $D(T)$ is closed in X, the operator T is bounded.

Proof:

We first show that $X \times Y$ with norm defined by $\|(x, y)\|=\|x\|+\|y\|$ is complete,
Let $\left(z_{n}\right)$ be Cauchy in $X \times Y$, where $z_{n}=\left(x_{n}, y_{n}\right)$, then for every $\varepsilon>0$, there is $k_{\varepsilon} \in N$ such that

$$
\begin{equation*}
\left\|z_{n}-z_{m}\right\|=\left\|x_{n}-x_{m}\right\|+\left\|y_{n}-y_{m}\right\|<\varepsilon \quad m, n>k_{\varepsilon} \tag{1}
\end{equation*}
$$

Hence $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy in X and Y respectively, and converge. Say $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, because X and Y are complete.

This implies that $z_{n} \rightarrow z=(x, y)$ since from (1) with $m \rightarrow \infty$ we have $\left\|z_{n}-z\right\| \leq \varepsilon$, for $n>k_{\varepsilon}$, Since the Cauchy sequence $\left(z_{n}\right)$ was arbitrary, hence $X \times Y$ is complete.

By assumption, $\vartheta(T)$ is closed in $X \times Y$ and $D(T)$ is closed in X Hence $\vartheta(T)$ and $D(T)$ are complete by (2.5.2),
We consider the mapping

$$
\begin{gathered}
p: \vartheta(T) \rightarrow D(T) \\
p(x, T x)=x
\end{gathered}
$$

p is linear, p is bounded because

$$
\|p(x, T x)\|=\|x\| \leq\|x\|+\|T x\|=\|(x, T x)\| .
$$

p is bijective; in fact the inverse mapping is

$$
\begin{aligned}
& p^{-1}: D(T) \rightarrow \vartheta(T) \\
& p^{-1}(x)=(x, T x)
\end{aligned}
$$

Since $\vartheta(T)$ and $D(T)$ are complete, we can apply the bounded inverse theorem (2.4.4) and see that p^{-1} is bounded, say

$$
\|(x, T x)\| \leq b\|x\| \quad \text { for some } b \text { and all } x \in D(T)
$$

Hence T is bounded because

$$
\|T x\| \leq\|T x\|+\|x\|=\|(x, T x)\| \leq b\|x\| \quad \forall x \in D(T)
$$

Theorem (Closed linear operator) (2.5.4)

Let $T: D(T) \rightarrow Y$ be a linear operator, where $D(T) \subset X$ and X and Y are normed spaces, then T is closed if and only if it has the following property:
If $x_{n} \rightarrow x$ where $x_{n} \in D(T)$, and $T x_{n} \rightarrow y$, then $x \in D(T)$ and $T x=y$.
Lemma (Closed operator) (2.5.5)
Let $\quad T: D(T) \rightarrow Y$ be abounded linear operator with domain $D(T) \subset X$, where X and Y are normed spaces, then:
(a) If $D(T)$ is closed subset of X, Then T is closed.
(b) If T is closed and Y is complete, then $D(T)$ is a closed subset of X.

Proof:

(a) If $\left(x_{n}\right)$ is in $D(T)$ and converges, say $x_{n} \rightarrow x$ and is such that $\left(T x_{n}\right)$ also converges, then $x \in \overline{D(T)}=D(T)$ since $D(T)$ is closed, and $T x_{n} \rightarrow T x$ since T is continuous, Hence T is closed by theorem (2.5.4)
(b) For $x \in \overline{D(T)}$ there is a sequence $\left(x_{n}\right)$ in $D(T)$ such that $x_{n} \rightarrow x$, since T is bounded

$$
\left\|T x_{n}-T x_{m}\right\|=\left\|T\left(x_{n}-x_{m}\right)\right\| \leq\|T\|\left\|x_{n}-x_{m}\right\|
$$

This show that $\left(T x_{n}\right)$ is Cauchy, $\left(T x_{n}\right)$ converges, Say $T x_{n} \rightarrow y \in Y$ because Y is complete. Since T is closed, $x \in D(T)$ by theorem (2.5.4) and $T x=y$, Hence $D(T)$ is closed because $x \in \overline{D(T)}$ was arbitrary.

Remark (2.5.6)

Closedness does not imply boundedness of a linear operator.

Example:

Let $X=C[0,1]$ and $T: D(T) \rightarrow X$ is defined by

$$
T(x)=x^{\prime}
$$

where $x \in D(T) \subseteq X, \quad D(T)$ is subspace of functions $x \in X$ which have continuous derivative, Then T is not bounded, but is closed.

Proof:

We see from (1.3) that T is not bounded.
To prove that T is closed by appling theorem (2.5.4)
Let $\left(x_{n}\right)$ in $D(T)$ be such that both $\left(x_{n}\right)$ and $\left(T x_{n}\right)$ converge, say

$$
x_{n} \rightarrow x \quad \text { and } \quad T x_{n}=x_{n}^{\prime} \rightarrow y
$$

Since convergence in the norm of $C[0,1]$ is uniform convergence on $[0,1]$, from $x_{n}^{\prime} \rightarrow y$ we have
$\int_{0}^{t} y(\tau) d \tau=\int_{0}^{t} \lim _{n \rightarrow \infty} x_{n}^{\prime}(\tau) d \tau=\lim _{n \rightarrow \infty} \int_{0}^{t} x_{n}^{\prime}(\tau) d \tau=x(t)-x(0)$
That is $x(t)=x(0)+\int_{0}^{t} y(\tau) d \tau$
This show that $x \in D(T)$ and $x^{\prime}=y$, by theorem (2.5.4) T is closed.

Remark (2.5.7)

Boundedness does not imply Closedness of a linear operator.

Example:

Let $T: D(T) \rightarrow D(T) \subseteq X$ be the identity operator on $D(T)$, where $D(T)$ is a proper dense subspace of a normed space X, then T is linear and bounded but T is not closed, this follows immediately from theorem (2.5.4) if we take $x \in X-D(T)$ and a sequence $\left(x_{n}\right)$ in $D(T)$ which converges to x.

Lemma (2.5.8)

Let X and Y be normed spaces, and let $T: D(T) \rightarrow Y$ be a closed linear operator, $D(T) \subseteq X$. If $T^{-1}: R(T) \rightarrow X$ exists, it is a closed linear operator.

Proof:

We have see from theorem (1.2.5(b)) if $T^{-1}: R(T) \rightarrow X$ exists, it is linear.
To show that $T^{-1}: R(T) \rightarrow X$ is closed
Suppose that T is a closed operator, and let $\left(y_{n}\right)$ be a sequence in $R(T)$ such that $\left(y_{n}\right)$ converges to $y \in Y$, and $\left(T^{-1}\left(y_{n}\right)\right)$ converges to $x \in X$, then $y_{n}=T x_{n}$ for some $x_{n} \in D(T)$
Hence $\left(x_{n}\right)=\left(T^{-1} y_{n}\right)$ is sequence in $D(T)$ which converges to $x \in X$ since T is closed, and $\left(y_{n}\right)=\left(T x_{n}\right)$ converges to y, we must have $y=T x$. That is $y \in R(T)=D\left(T^{-1}\right)$, hence $x=T^{-1} y$
This implies that T^{-1} is closed by theorem (2.5.4).

Applications

\boldsymbol{A} - The Null space $N(T)$ of a closed linear operator $T: X \rightarrow Y$ is a closed subspace of X.

Proof:

Let $x \in \overline{N(T)}$ then there exist a sequence $\left(x_{n}\right)$ in $N(T)$ such that $x_{n} \rightarrow x$
Now, $T\left(x_{n}\right)=0, \forall n \in N$ so that $T\left(x_{n}\right) \rightarrow 0$
Since T is closed, then $x \in D(T)$, and $0=T(x) \Rightarrow x \in N(T)$, then $N(T)$ is a closed subspace of X.
\boldsymbol{B} - Let T be closed linear operator with domain $D(T)$ in a Banach space X and range $R(T)$ in a normed space Y.If T^{-1} exists and is bounded, then $R(T)$ is closed.

Proof:

Suppose that $T^{-1}: R(T) \rightarrow D(T)$ exists, Since $T: D(T) \rightarrow Y$ is closed, then T^{-1} is closed linear operator by lemma (2.5.8), Since $T^{-1}: R(T) \rightarrow D(T)$ is bounded and closed linear operator, so $D\left(T^{-1}\right)=R(T)$ is closed by lemma (2.5.5(b)).
C - If $T: X \rightarrow Y$ is a closed linear operator, where X and Y are normed space, and Y is compact, then T is bounded.

Proof:

Since Y is compact, then Y is complete, so $T^{-1}(Y)=X=D(T)$ is closed by lemma (2.5.5),
Hence T is bounded by theorem (2.5.3).

References:

1- Introductory Functional Analysis with Applications (by Erwm Kreyszig).

2- Internet.

