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Normed Spaces, Banach Spaces 

 

1.1 Normed and Banach Space 

 

Definition (1.1.1) 

 

A normed space X is a vector space with a norm defined on it A norm 

on a vector X is a real valued function ℜ→Χ:.  value at an Xx ∈ is 

denoted by x and which has the properties: 

1- .00,0 =⇔=≥ xxx  

2- .xx αα =  

3- .yxyx +≤+  

where x, y are arbitrary vector in X and α is any scalar. A normed space 

is a pair ).,( X simply by X. 

Remark (1.1.2) 

Let ℜ→Χ:. be a norm on X , then the norm is continuous on X . 

 

Proof: 

Let xo be an arbitrary point of X , and let 0>ε be given 

Take εδ =  

Xx ∈   such that εδ =<− oxx  

)1(oooooo xxxxxxxxxxx −≤−→+−≤−+=

ooooo xxxxxxxxxxx −≤−→+−≤−+=  

                                                      )2(oo xxxx −−≥−→  
 

from (1) and (2) we have: 

εδ =<−≤−→

−≤−≤−−

oo

ooo

xxxx

xxxxxx

 

then ℜ→X:.  is continuous at xo, since xo is arbitrary point of 

X ,then . is continuous on X . 
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Remark (Minkowski inequality) (1.1.3) 

Given two sequences
∞
=

∞
= 11 )(,)( iiii ηξ  s.t. ∑∑

∞

=

∞

=

>∞<∞<
11

1,,
i

p

i

i

p

i pηξ  

Then ∑ ∑ ∑
∞

=

∞

=

∞

=

+≤+
1 1 1

111

)()()(
i i i

p

i

p

i

p

ii
ppp ηξηξ . 

 

Examples of normed spaces:  

 

Example (1):  

Define ℜ→ℜ n:.  by ),....,,(,)( 21

1

2 2
1

n

n

i

i xx ξξξξ == ∑
=

 

Clearly . is well defined. 

Now, Let 
n

yx ℜ∈,  and α is any scalar: 

1- ,0)( 2
1

1

2 ≥= ∑
=

n

i

ix ξ  

  and .0000)(0 2

0

2 2
1

=⇔∀=⇔∀=⇔=⇔= ∑
=

xiix ii

n

i

i ξξξ  

2-
2

1
2

1
2

1

)()())((
1

22

1 1

222 ∑∑ ∑
== =

===
n

i

i

n

i

n

i

iix ξαξααξα   

        .)()( 2
1

2
1

1

22 x
n

i

i αξα == ∑
=

 

3- ∑
=

+=+
n

i

iiyx
1

2 2
1

))(( ηξ  

∑∑
==

+≤
n

i

i

n

i

i

1

2

1

2 2
1

2
1

)()( ηξ .yx += (by Minkowski inequality) 

Hence, from 1, 2, and 3 ).,( nℜ is norm space. 

Example (2): 

Let { }ℜ∈==ℜ 2121

2 ,:),( ξξξξx , Let ),(),,( 2121 ηηξξ == yx are 

any elements in
2ℜ , α is any scalar, then the following equations are 

norms on
2ℜ : 

(a) 211
ξξ +=x  

1- ,0211
≥+= ξξx  
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and .00,000 21211
=⇔==⇔=+⇔= xx ξξξξ  

2- .)(),(
121211211

xx αξξααξαξαξαξα =+=+==  

3- 2211122111
),( ηξηξηξηξ +++=++=+ yx  

       .)()(
1121212211 yx +=+++=+++≤ ηηξξηξηξ  

Hence, from 1, 2, and 3 ).,(
1

2ℜ is norm space. 

(b) 2
1

)( 2

2

2

12
ξξ +=x  

1- ,0)( 2
12

2

2

12
≥+= ξξx  

and 0,000)( 2

2

2

1

2

2

2

1

2

2

2

12

2
1

==⇔=+⇔=+= ξξξξξξx  

.00,0 21 =⇔==⇔ xξξ  

2- 2
1

2
1

)),(())()(( 2

2

2

1

22

2

2

12
ξξααξαξα =+=x  

   .)(
2

2

2

2

1
2

1

xαξξα =+=  

3- 2
1

))()((),( 2

22

2

11222112
ηξηξηξηξ +++=++=+ yx  

22

2

2

2

1

2

2

2

1
2

1
2

1

)()(

yx +=

+++≤ ηηξξ
(by Minkowski inequality) 

Hence, from 1, 2, and 3 ).,(
2

2ℜ is norm space. 

(c) { }21 ,max ξξ=
∞

x  

1- { } ,0,max 21 ≥=
∞

ξξx  

and { } .00,00,max0 2121 =⇔==⇔=⇔=
∞

xx ξξξξ  

2- { } { } .,max,max 2121 ∞∞
=== xx αξξααξαξα  

3- { } { }22112211 ,max,max ηξηξηξηξ ++≤++=+
∞

yx  

{ } { } .,max,max 2121 ∞∞
+=+= yxηηξξ  

Hence, from 1, 2, and 3 ).,( 2

∞
ℜ is norm space. 

Example (3): 

There are several norms of practical importance on the vector space of 

ordered n-tuples of numbers, notably those defined by  

{ }.,....,,max)(

1)....()(

....)(

21

21

211

1

n

p

n

pp

p

n

xc

pxb

xa

p

ξξξ

ξξξ

ξξξ

=

+∞<<+++=

+++=

∞
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Now, ),....,,(),,....,,( 2121 nn yx ηηηξξξ == and α is any scalar: 

(a) nx ξξξ +++= ....211
 

 

1- ,0....211
≥+++= nx ξξξ  

and .0100....0 11
=⇔≤≤∀=⇔=++⇔= xnix in ξξξ  

2- .)....(....
1111

xx nn αξξααξαξα =++=++=  

3- nnyx ηξηξ ++++=+ ....111
 

 
.

).....()....(....

11

1111

yx

nnnn

+=

+++++=++++≤ ηηξξηξηξ
 

(b) +∞<<++= px p
p

n

p

p
1)....(

1

1 ξξ  

 

1- ,0)....(
1

1 ≥++= p
p

n

p

p
x ξξ  

and

.0100)....(0
1

1 =⇔≤≤∀=⇔=++⇔= xnix i

p

n

p

p

p ξξξ

2-
pp

p

n

ppp

n

p

p
x

11

).....(()....( 11 ξξααξαξα ++=++=  

.)....(
1

1 p

p

n

p
xp αξξα =++=  

3- ∑
=

+=+
n

i

p

iip

pyx
1

1

)( ηξ  

pp

n

i

p

i

n

i

p

i

11

)()(
11

∑∑
==

+≤ ηξ  (by Minkowski inequality) 

.
pp

yx +=  

(c) { }nx ξξ ,....,max 1=
∞  

 

1- { } ,0,...,max 1 ≥=
∞ nx ξξ since ,10 nii ≤≤∀≥ξ  

{ } .0100,...,max0 1 =⇔≤≤∀=⇔=⇔=
∞

xnix in ξξξ  

2- { } { } .,...,max,...,max 11 ∞∞
=== xx nn αξξααξαξα  

3- { } { }nnnnyx ηξηξηξηξ ++≤++=+
∞

,...,max,...,max 1111  

{ } { } .,...max,...,max 11 ∞∞
+=+= yxnn ηηξξ  
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Example (4): 

(Unit sphere), the sphere { }1:)1;0( =∈= xXxS  in a normed 

space X is called the unit sphere; we want to show that for the 

following norms: 
 

(a) 211
ξξ +=x  

{ }1:)1;0(
1

2 =ℜ∈= xxS  

12211
11 ξξξξ −=⇒=+=x  

In 1
st
 quarter ,0,0 21 ≥≥ ξξ  

hence we get ,1: 121 ξξ −=L  

which is straight line of slope -1,  

and cutting the y-axis at (0,1), 

and the x-axis at (1,0), 

In 2
sd 

quarter ,0,0 21 ≥≤ ξξ  

hence we get ,1: 122 ξξ +=L  

which is straight line of slope 1, 

and cutting the y-axis at (0,1),  

and the x-axis at (-1,0), 

In 3
rd 

quarter ,0,0 21 ≤≤ ξξ hence we get ,1: 123 ξξ −−=L  

which is straight line of slope -1, and cutting the y-axis at (0,-1), 

and the x-axis at (-1,0), 

In 4
th 

quarter ,0,0 21 ≤≥ ξξ hence we get ,1: 124 ξξ +−=L  

which is straight line of slope 1, and cutting the y-axis at (0,-1), 

and the x-axis at (1,0), 

Then we have figure (1) 

 

 (b) 2
1

)( 2

2

2

12
ξξ +=x  

{ }1:)1;0(
2

2 =ℜ∈= xxS  

,11)( 2

2

2

1

2

2

2

12

2
1

=+⇒=+= ξξξξx  

which is equation of circle 

with center (0,0) and radius1,  

then we have figure (2) 

1ξ  

2ξ  

(1,0) (-1,0) 

(0,1)  

(0,-1) 

Figure (1) 

L4  
L3  

L1  L2  

1ξ  

2ξ  

(1,0)  (-1,0) 

(0,1)  

(0,-1) 

Figure (2) 
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c) { }21 ,max ξξ=
∞

x  { }1:)1;0( 2 =ℜ∈=
∞

xxS  

{ } ,111,max 2121 ==⇒==
∞

ξξξξ orx  

if ,0111 2111 =−==⇒= ξξξξ andor  

hence we get ,1:1: 1211 −== ξξ LandL  

if ,0111 1222 =−==⇒= ξξξξ andor  

hence we get ,1:1: 2423 −== ξξ LandL  

then we have figure (3) 

 

hence the sphere 

{ }1:)1;0( 2 =ℜ∈=
∞

xxS  

is the square as given in figure(3) 

 

 

 

 

 

 

 

 

 

 

(d) 4
1

)( 4

2

4

14
ξξ +=x  

{ }1:)1;0(
4

2 =ℜ∈= xxS  

11)( 4

2

4

1

4

2

4

14

4
1

=+⇒=+= ξξξξx  

Then we have the figure (4) 

1ξ  

2ξ  

(1,0)  (-1,0) 

(0,1)  

(0,-1) 

Figure (4) 

L4 

1ξ  

2ξ  

(1,0)  (-1,0) 

(0,1)  

(0,-1) 

Figure (3)  

L1 L2 

L3 
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Definition (1.1.4) 

 

A norm on a vector space X a metric d on XX × which is given by 
 

                  Xyxyxyxd ∈−= ,),(   
 

d is well defined, since the norm is a well defined function 

1- .0),( ≥−= yxyxd  

2- ,0),( yxyxd =⇔=  

      .000),( yxyxyxyxd =⇔=−⇔=−⇔=  

3- ),,(),( xydyxd =  

       ).,(),( xydxyyxyxd =−=−=  

4- ),,(),(),( yzdzxdyxd +≤  

   yzzxzzyxyxyxd −+−≤−+−=−=),(  

     ).,(),( yzdzxd +=  

Thus true, every normed space is a metric space. 

The converse is not true, 

Counterexample: 

Let 
+ℜ→× SSd :  ,where S is set of all sequences,  d defined by 

                      ∑
∞

= −+

−
=

1 12

1
),(

i ii

ii

i
yxd

ηξ

ηξ
 

Let Szyxzyx iii ∈=== ,,),(),(),( αηξ  

1- .0
12

1
),(

1

≥
−+

−
= ∑

∞

=i ii

ii

i
yxd

ηξ

ηξ
 

2- 00
12

1
0),(

1

=−⇔=
−+

−
⇔= ∑

∞

=i
ii

ii

ii

i
yxd ηξ

ηξ

ηξ
    

                                                                .yxiii =⇔∀=⇔ ηξ    

3- ∑∑
=

∞

=

=
−+

−
=

−+

−
=

n

i ii

ii

i
i ii

ii

i
xydyxd

11

).,(
12

1

12

1
),(

ξη

ξη

ηξ

ηξ
 

4- ∑
∞

= −+

−
=

1 12

1
),(

i ii

ii

i
yxd

ηξ

ηξ
∑

∞

= −+−+

−+−
=

1 12

1

i iiii

iiii

i ααηξ

ααηξ
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∑
∞

= −+−+

−+−
≤

1 12

1

i iiii

iiii

i ηααξ

ηααξ
  

 )
11

(
2

1

1

∑
∞

= −+−+

−
+

−+−+

−
=

i iiii

ii

iiii

ii

i ηααξ

ηα

ηααξ

αξ
 

 ).,(),(
12

1

12

1

1 1

yzdzxd
i

n

i ii

ii

i

ii

ii

i
+=

−+

−
+

−+

−
≤ ∑ ∑

∞

= = ηα

ηα

αξ

αξ
 

    then ),( dS is metric space. 

On the other hand, 

Let 3,.....),0,0,0,1(,.....),0,0,1,1( === αyx  

,.....)0,0,0,3(,.....),0,0,3,3( ==→ yx αα  

Now,
ii

ii

i
i

i ii

ii

i
yxd

ηξ

ηξ

ηξ

ηξ
αα

−+

−
=

−+

−
= ∑∑

∞

=

∞

= 12

1
3

12

1
),(

11
  

 .
8

3

2

1

4

3
...0

011

01

2

1

111

11

2

1
3

21
=⋅=








++

−+

−
+

−+

−
=  

and  ∑
∞

= −+

−
=

1 12

1
),(

i ii

ii

i
yxd

αηαξ

αηαξ
αα  

               .
16

3

4

3

4

1
...0

031

03

2

1

331

33

2

1
21

=⋅=







++

−+

−
+

−+

−
=  

that means ),(),( yxdyxd ααα ≠ , 

hence d is not obtained from a norm, this may immediately be seen 

from the following lemma which states two basic properties of a metric 

d obtained from a norm. 
 

Lemma (1.1.5) 

 

A metric d induced by a norm on a norm space X satisfies: 

(a) ).,(),( yxdayaxd =++  

(b) ).,(),( yxdyxd ααα =   

for all Xayx ∈,, and every scalar α. 

Proof: 

),,()(),( yxdyxayaxayaxd =−=+−+=++  

and ).,(),( yxdyxyxyxd αααααα =−=−=
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Definition (1.1.6) 

 

Let 
∞

=1)( nnx be a sequence in a normed vector space ).,( X , we say 

)( nx converges to xo, and denoted by on xx → if for any 

Ν∈∃> εε k0  such that .εε <−⇒>∀ on xxkn  

 

Definition (1.1.7) 

 

Let 
∞

=1)( nnx be a sequence in a normed vector space ).,( X , we say 

)( nx is a Cauchy sequence if Ν∈∃>∀ εε k0  

such that           ., εε kmnxx mn >∀<−  

 

Definition (1.1.8) 

 

Let ).,( X be a normed vector space, we say X is complete or Banach 

if every Cauchy sequence in ).,( X is convergent. 

 

Examples of complete normed spaces: 
 

Example (1): 

Let [ ] [ ]{ ℜ→= baxxbaC ,::, is continuous } we define a norm 

[ ] ℜ→baC ,:. by
[ ]

),1()(max
,

txx
bat∈

=  

The norm is well defined, since x is continuous on a closed and 

bounded interval, that means x attains the maximum value on the 

interval, then 
[ ]

)(max
,

tx
bat∈

 exists and unique. 

Now, we want to show that [ ] ).,,( baC is norm space 

Let x, y are any elements in [ ]baC ,  , α is any scalar: 

1- 
[ ]

0)(max
,

≥=
∈

txx
bat

, since [ ]battx ,0)( ∈∀≥  

  and
[ ]

[ ] .0,0)(0)(max
,

=⇔∈∀=⇔==
∈

xbattxtxx
bat

 

2- [ ] [ ] [ ]
.)(max))(max()(max

,,,
xtxtxtxx

batbatbat
ααααα ====

∈∈∈
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3- 
[ ] [ ]

)()(max))((max
,,

tytxtyxyx
batbat

+=+=+
∈∈

 

[ ] [ ] [ ]
.)(max)(max))()((max

,,,
yxtytxtytx

batbatbat
+=+=+≤

∈∈∈
 

Hence, from 1, 2, and 3 [ ] ).,,( baC  is norm space. 

Now, we want to show that [ ]baC ,  is complete, 

Let 
∞

=1)( mmx  is any Cauchy sequence in [ ]baC , , [ ] ℜ→baxm ,: is 

continuous Ν∈∃>∀⇒ εε k0  such that 

                 εε kmnxx nm >∀<− ,  

from (1) 

[ ]

[ ]

[ ]
)2()()(max)()(

,,

)()(max

,

,

ε

ε

ε

<−≤−⇒

≥∈∀⇒

<−⇒

∈

∈

txtxtxtx

kmnbat

txtx

nm
bat

nm

nm
bat

 

[ ] ∞
=∈∀⇒ 1))((, mm txbat is a Cauchy sequence of numbers, since 

ℜ is complete, 
∞

=⇒ 1))(( mm tx  is convergent, i.e. )(lim txm
m ∞→

exists [ ]bat ,∈∀  

So, we can define a function [ ] ℜ→bax ,: by 

),3()(lim)( txtx m
m ∞→

=  

clearly x is well defined, since the limit exists 

Now, we using (2), for [ ] εknbat ≥∈ ,  

)3()(lim)()()( fromtxtxtxtx
m

mnn
→∞

−=−  

                )()(lim txtx mn
m

−=
∞→

 (since the limit is a continuous function). 

                  ε<                                               

Since the limit depends ε 

)( nx⇒  Converges uniformly to x 

⇒ x is continuous 

that means [ ]baCx ,∈  and xxn →  

[ ]baC ,⇒  is complete. 
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Example (2): 

Let 








∞<∈== ∑
∞

=1

,:)(
i

p

iii

p
Cxl ξξξ , we define a norm 

ℜ→p
l:.  by )1()(

1

1

∑
∞

=

=
i

p

i
px ξ , 

The norm is well defined by definition.  

Now, we want to show that ).,( p
l is norm space, 

Let )(),( ii yx ηξ ==  are any elements in 
p

l , α is any scalar: 

1- 0)(
1

1

≥= ∑
∞

=i

p

i
px ξ   

and .00)(00)(0
1

1

=⇔=⇔∀=⇔=⇔= ∑
∞

=

xix ii

i

p

i
p ξξξ  

2- ∑∑∑
∞

=

∞

=

∞

=

∞
= ====

111

1

111

)()()()(
i

p

i

p

i

p

i

p

i

p

iii

pppx ξαξααξξαα  

.)()()(
11

111

x
i

p

i

i

p

i

p
ppp αξαξα === ∑∑

∞

=

∞

=
 

3- ∑
∞

=

+=+=+
1

1

)()()(
i

p

iiii
pyx ηξηξ  

.

)()(
1 1

11

yx

i i

p

i

p

i

pp

+=

+≤ ∑ ∑
∞

=

∞

=

ηξ
(from Minkowski inequality) 

Hence, from 1, 2 and 3   ).,( p
l  is norm space. 

Now, we want to show that 
p

l  is complete, 

Let )( mx be a Cauchy sequence in 
p

l , where ,)( 1

)( ∞
== j

m

jmx ξ  

and let ε>0 be given, then Ν∈∃ εk such that 

εε knmxx nm ≥∀<− ,  

from(1) 

εξξξξ

εξξ

εξξ

ε

ε

ε

<−≤−≥∀Ν∈∀⇒

≥∀<−⇒

≥∀<−⇒

∑

∑

∑

∞

=

∞

=

∞

=

1

)()()()(

1

)()(

1

)()(

,,,

)2(,

,)(
1

j

n

j

m

j

n

j

m

j

j

p
p

n

j

m

j

j

p
n

j

m

j

knmj

knm

knmp
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so, εξξε <−⇒Ν∈≥∀ )()(
,

n

j

m

jjknm  
∞

=Ν∈∀⇒ 1

)( )(, m

m

jj ξ is a Cauchy sequence of numbers, since C is 

complete,
∞

=⇒ 1

)( )( m

m

jξ is convergent for each Ν∈j  say,
∞

=1

)( )( m

m

jξ  

converges to jξ , put 
∞

=== 1321 )(,....),,( jjx ξξξξ  

Claim: 

1- 
plx ∈  i.e. .

1

∞<∑
∞

=j

p

jξ  

2- .)( xxm →  

 

Now, from (2) εkmk ≥Ν∈∀ ,  

∑ ∑∑
= =

∞→∞→
=

−=−=−
k

j

k

j

p
n

j

m

j
n

p
n

j
n

m

j

k

j

j

m

j

1 1

)()()()(

1

)( limlim ξξξξξξ  

∑
∞

=
∞→

<−≤
1

)()(lim
j

p
p

n

j

m

j
n

εξξ  

∑
∞

=

<−=−⇒
1

)( )3(
j

p

j

m

j

p

m xx εξξ  

xxm −⇒ belong to 
pl   

since 
p

m lx ∈ ,and 
p

l is a vector space  

)4(,)(
p

mm lxxxx ∈−−=⇒  

and from (3) it clear that ,εkm ≥∀  

ε<− xxm  

)5()( xxm →⇒  

from (4)and(5)
p

l⇒ is complete. 

 

Example (3): 

We proved that ).,( nℜ is norm space with norm given by 

∑
=

=
n

j

jx
1

2 2
1

)( ξ n
x ℜ∈, . 

Now, we want to show that 
nℜ is complete, 

Let )( mx be a Cauchy sequence in
nℜ , ),...,,(

)()(

2

)(

1

m

n

mm

mx ξξξ=  

Ν∈∃>∀⇒ εε k0 such that  

εε krmxx rm >∀<− ,  
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εξξ

εξξ

ε

ε

<−>∀Ν∈∀⇒

>∀<−⇒ ∑
=

)()(

1

2)()(

,,,

,))(( 2
1

n

j

m

j

n

j

r

j

m

j

krmj

krm

 

since ℜ is complete 
∞

=Ν∈∀⇒ 1

)( )(, m

m

jj ξ is convergent Ν∈∀ j ,say 
∞

=1

)( )( m

m

jξ converges to jξ , put 
n

jjnx 121 )(),...,,( === ξξξξ ,
nx ℜ∈  we 

want to prove that xxm → ,since j

m

j
m

j

m

j ξξξξ =→
→∞

)()( lim,)(  

Ν∈∃⇒ jk such that nj
n

km j

m

jj ,...,2,1)( =∀<−⇒≥
ε

ξξ  

Take { }nkkkk ,...,,max 21=  

xx

xx

n
n

n

n
km

m

m

n

j

j

m

j

n

j

n

j

j

m

j

j

m

j

→⇒

<−⇒

<−⇒

==<−⇒

<−⇒≥∀⇒

∑

∑ ∑

=

= =

ε

εξξ

ε
εε

ξξ

ε
ξξ

2
1

))((

)(

1

2)(

1

2

1

22
2)(

)(

 

nℜ⇒ is complete. 

 

Example (4): 

Let { )(,)( jjxl ξξ==∞
 is bounded sequence }, we define 

ℜ→∞
l:. by ),1(sup j

j

x ξ
Ν∈

=  

The norm is well defined, since 
∞∈= lx j )(ξ is bounded sequence 

Ν∈∀≤⇒ jc xjξ for some { }Ν∈⇒> jc jx :0 ξ is bounded subset 

of ℜ , j
j

ξ
Ν∈

⇒ sup  exists and unique. 

Now, we want to show that ).,( ∞
l is norm space, 

Let )(),( jj yx ηξ == are any elements in 
∞l , α is any scalar: 

1- ,0sup ≥=
Ν∈

j
j

x ξ  

and .000sup0 =⇔Ν∈∀=⇔=⇔=
Ν∈

xjx jj
j

ξξ  
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2- .sup)(sup)(sup xx j
j

j
Nj

j
j

αξαξααξα ====
Ν∈∈Ν∈

 

3- .supsup)(supsup yxyx j
j

j
j

jj
j

jj
j

+=+=+≤+=+
Ν∈Ν∈Ν∈Ν∈

ηξηξηξ  

Hence, from 1, 2 and 3 ).,( ∞
l is norm space. 

Now, we want to show that 
∞l is complete. 

Let )( mx  be a Cauchy sequence in 
∞l , 

∞
== 1

)( )( j

m

jmx ξ  

Ν∈∃>∀⇒ εε k0 such that 

εε knmxx nm >∀<− ,  

from (1) 

)2(sup,,,

,sup

)()()()(

)()(

εξξξξ

εξξ

ε

ε

<−<−>Ν∈∀⇒

>∀<−⇒

Ν∈

Ν∈

n

j

m

j
j

n

j

m

j

n

j

m

j
j

knmj

knm

 
∞

=Ν∈∀⇒ 1

)( )(, m

m

jj ξ is Cauchy sequence of numbers, since C is 

complete, 
∞

=⇒ 1

)( )( m

m

jξ is convergent for each Ν∈j , say 
∞

=1

)( )( m

m

jξ  

converges to jξ , put 
∞

=== 121 )(,.....),( jjx ξξξ  

Claim: 

1- 
∞∈ lx i.e. 

∞
== 1

)( )( m

m

jx ξ is bounded sequence. 

2- .)( xxm →  

Now, εkmj ≥Ν∈∀ ,  

)()()()()( limlim n

j

m

j
n

n

j
n

m

jj

m

j ξξξξξξ −=−=−⇒
∞→∞→

     from(2) 

       )3(ε<  

xxm −⇒ is bounded sequence xxm −⇒  belong to 
∞l  

since 
∞∈ lxm ,and 

∞l is vector space 

)4()(
∞∈−−=⇒ lxxxx mm  

and from (3) it clear that ,εkm ≥∀  

ε<− xxm  

)5()( xxm →⇒  

from (4)and(5)
∞⇒ l is complete. 
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Example of non-complete norm space: 
 

 Define 
++ ℜ→ℜ:. by  xx =  

Clearly, the norm is well defined 

 Now, let 
+ℜ∈yx, and α is any scalar: 

1- 0≥= xx and .000 =⇔=⇔= xxx  

2- .xxxx αααα ===  

3- .yxyxyxyx +=+≤+=+  

Hence, from 1, 2, and 3 ).,( +ℜ is norm space 

Now, let nx be a sequence in
+ℜ , 

∞
== 1)

1
( nn

n
x  Nn ∈  

Nk ∈∃>∀ εε 0 such that 
εε

2
>k  

mnmnmn
xxxxknm mnmn

11
)

1
(

111
, +≤−+=−=−=−> ε

ε
εεε

<=+<+=
kkkmn

21111
 

nx⇒ is Cauchy sequence  

but 
+ℜ∉→= 0,0)

1
(

n
xn  

).,( +ℜ⇒ is not complete. 
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1.2 Linear operators 

 
Definition (1.2.1) 
 

A linear operator T  is an operator such that: 

(a) The domain )(TD of T  is a vector space and the range )(TR lies in 

a vector space over the same field. 

(b) for all )(, TDyx ∈ and scalars α , 

).()()( yTxTyxT +=+  

).()( xTxT αα =  

 

Definition (1.2.2) 
 

The Null space of T is the set of all )(TDx ∈ such that .0)( =xT  

 

Examples of linear operators: 
 

Example (1) 

The Identity operator XXI X →:  is defined by  

XxxxI X ∈∀=)(  

this operator is linear, since 

.,)()()( XyxyIxIyxyxI ∈∀+=+=+  

)()( xIxxI ααα == , where α any scalar, Xx ∈  

 

Example (2) 

Let be X a vector space of all polynomials on the closed bounded 

interval [ ]ba , , we define the operator YXT →:  by: 

XxtxtxT ∈∀′= )())((  

this operator is linear, since [ ]batXyx ,, ∈∈∀  

)))(()(())(())((

)()()()()))((()))(((

tyTxTtyTtxT

tytxtyxtyxTtyxT

+=+=

′+′=′+=+=+
 

there for ).()()( yTxTyxT +=+  

and 
).))((())(()()()()))((()))((( txTtxTtxtxtxTtxT αααααα ==′=′==  

there for ).()( xTxT αα =  Hence YXT →: is linear operator. 
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Example (3) 

The operator T from [ ]baC ,  into itself [ ] [ ]baCbaCT ,,: →  can be 

defined by 

[ ]batdxtxT
t

a
,)())(( ∈= ∫ ττ  

this operator is linear, since [ ]batXyx ,, ∈∈∀  

∫ ∫

∫ ∫
+=+=

+=+=+

t

a

t

a

t

a

t

a

tTytTxdydx

dyxdyxtyxT

))(())(()()(

))()(())(()))(((

ττττ

τττττ

 

 then ).()()( yTxTyxT +=+  

and ∫ ∫ ===
t

a

t

a
txTdxdxtxT )))((()())(()))((( αττατταα  

then ).()( xTxT αα =    Hence [ ] [ ]baCbaCT ,,: → is linear operator. 

 

Example (4) 

The cross product with one factor kept fixed defines a linear operator 
33: ℜ→ℜT by  ),,( 122131132332 αααααα xxxxxxaxTx −−−=×=  

where
3

)( ℜ∈= ia α is fixed, 0≠a say 01 ≠α  

this operator is linear, since
3

, ℜ∈∀ yx ,α is any scalar: 

1- .)()()()( TyTxayaxayxyxT +=×+×=×+=+  

2- .)()()( TxaxaxxT αααα =×=×=  Hence, T is linear. 

The null space of this operator is { })0,0,0(:)( 3 =ℜ∈= TxxTN , 

)0,0,0(),,()0,0,0( 122131132332 =−−−⇔= αααααα xxxxxxTx  

0)3(0)2(0)1( 122131132332 =−=−=−⇔ αααααα xxxxxx  

since 01 ≠α ,then from(2) we get 1

1

3
3 xx

α

α
= ,and from (3)we 

get 1

1

2
2 xx

α

α
=  

),,1(),,(),,(
1

3

1

2
11

1

3
1

1

2
1321

α

α

α

α

α

α

α

α
xxxxxxxx ===⇒  

Now, multiplying both said by 1α we get ),,( 32111 αααα xx =  

axa
x

x ⋅=⇒⋅=⇒ β
α 1

1
, where 

1

1

α
β

x
=  

Hence the Null space is { }aspanTN =)( . 
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Theorem (Range and null space) (1.2.3) 

 

LetT  be a linear operator, then: 

(a) The range )(TR is a vector space. 

(b) If ∞<= nTD )(dim  , then .)(dim nTR ≤  

(c) The null space )(TN is a vector space. 
 

Proof: 

(a) Let )(, 21 TRyy ∈ we want to show that )(21 TRyy ∈+ βα for any 

scalars βα ,  

Now, we have )(),( 2211 xTyxTy == for some )(, 21 TDxx ∈  

and )(21 TDxx ∈+ βα because )(TD is a vector space 

and since T is linear, we have 

212121 )()()( yyxTxTxxT βαβαβα +=+=+  

hence )(21 TRyy ∈+ βα ,since )(, 21 TRyy ∈ were arbitrary and so were  

the scalars this prove that )(TR is a vector space. 
 

(b) We choos 1+n element 121 ,...,, +nyyy of )(TR in an arbitrary fashion. 

Then we have )(),...,( 1111 ++ == nn xTyxTy for some 121 ,...,, +nxxx in 

)(TD  

Since nTD =)(dim , this set { }121 ,...,, +nxxx  must be linearly 

dependent. Hence Xnn xx 0... 1111 =++ ++αα  

for some scalars 11 ,..., +nαα not all zero. SinceT is linear and YXT 00 = , 

application of T on both sides gives 

Ynnnn yyxxT 0...)...( 11111111 =++=++ ++++ αααα  

This shows that { }11 ,..., +nyy is linearly dependent set because the sj

,α  

are not all zero. Remembering that this subset of )(TR was chosen in 

an arbitrary fashion, we conclude that )(TR has no linearly independent 

subsets of 1+n  or more element. By definition this means 

that nTR ≤)(dim . 
 

(c) Let )(, 21 TNxx ∈ , then 0)()( 21 == xTxT , α any scalar, 

Since T is linear 

000)()()( 2121 =+=+=+ xTxTxxT , hence )1()(21 TNxx ∈+  

00)()( 11 === ααα xTxT , hence )2()(1 TNx ∈α  

Then, from (1), (2) )(TN is a vector space. 
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Definition (1.2.4) 
 

Let YX , be a vector spaces, YTDT →)(: is said to be injective or one 

to one, if for any )(, 21 TDxx ∈  

)()( 2121 xTxTxx ≠⇒≠  

equivalently, 

.)()( 2121 xxxTxT =⇒=  

 

Definition (1.2.5) 

 

Let )()(: TRTDT → is one to one, 

The mapping )()(:
1

TDTRT →−
defined by 

xyT =− )(1
 

which maps every )(TRy ∈ onto that )(TDx ∈ for which yxT =)( , 

the mapping
1−

T is called the inverse of .T we clearly have 

).()(

)()(

1

1

TRyyyTT

TDxxxTT

∈∀=

∈∀=
−

−

 

 

 

Theorem (Inverse theorem) (1.2.6) 

 
Let YX , be a vector spaces, let YTDT →)(: be a linear operator with 

domain XTD ⊂)( and range YTR ⊂)( , then: 

(a) The inverse )()(:1 TDTRT →−
exist if and only if          

.00)( =⇒= xxT  

(b) If 
1−

T exists, it is a linear operator. 

(c) If ∞<= nTD )(dim and 
1−T exists, then ).(dim)(dim TDTR =  

 

Proof: 

(a) Suppose that )()(:1 TDTRT →−
exists, then )()(: TRTDT → is 

one to one, suppose 0)( =xT , then  

00)0()( =⇒== xTxT  

Conversely 

Suppose that 00)( =⇒= xxT , let )()( 21 xTxT = , since T is linear, 

0)()()( 2121 =−=− xTxTxxT  
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so that 021 =− xx  

Hence 21 xx =  

HenceT is one to one and so 1−T exists. 
 

(b)  If )()(:
1

TDTRT →−
exists, it is a linear operator. Indeed, 

Let )()(, 1

21 TRTDyy =∈ −
, then Xxx ∈∃ 21 , such that 

)(),( 2211 xTyxTy == , then )(),( 2

1

21

1

1 yTxyTx −− ==  

Now, 

 

).()(

))((

))()(()(

2

1

1

1

21

21

1

21

1

21

1

yTyT

xx

xxTT

xTxTTyyT

−−

−

−−

+=

+=

+=

+=+

βα

βα

βα

βαβα

 

Hence, 
1−T is a linear operator. 

 

(c) Suppose ∞<= nTD )(dim , and XTRT →− )(:1
exists, 

By theorem (1.2.3(b)) we have nTDTR =≤ )(dim)(dim  

Now, nTRTDTRTDn ≤=≤== −−
)(dim)(dim)(dim)(dim

11
 

Hence, ).(dim)(dim TRTD =   

 

Applications: 

 

 A- Let
22

1 : ℜ→ℜT be defined by 

)0,(),( 1211 ξξξ =T  

Then 1T is linear operator. 
 

Proof: 

Let
2

21

2

21 ),(,),( ℜ∈=ℜ∈= ηηξξ yx , and α is any scalar 

).()()0,()0,()0,(

),()),(),(()(

111111

22111212111

yTxT

TTyxT

+=+=+=

++=+=+

ηξηξ

ηξηξηηξξ
 

).()0,()0,(),()( 1112111 xTTxT αξααξαξαξα ====  

and { } { }.0:)0,()( 111 ×ℜ=ℜ∈= ξξTR  

{ }
{ }
{ }.0:),(

)0,0()0,(:),(

)0,0(),(:),()(

1

2

21

1

2

21

211

2

211

=ℜ∈=

=ℜ∈=

=ℜ∈=

ξξξ

ξξξ

ξξξξ TTN
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B- Let 
22

2 : ℜ→ℜT defined by 

),0(),( 2212 ξξξ =T  

Then 2T is linear operator. 
 

Proof: 

Let
2

21

2

21 ),(,),( ℜ∈=ℜ∈= ηηξξ yx , and α is any scalar 

).()(),0(),0(),0(

),()),(),(()(

222222

22112212122

yTxT

TTyxT

+=+=+=

++=+=+

ηξηξ

ηξηξηηξξ
 

).(),0(),0(),()( 2222122 xTTxT αξααξαξαξα ====  

and { } { } .0:),0()( 222 ℜ×=ℜ∈= ξξTR  

{ }
{ }
{ }.0:),(

)0,0(),0(:),(

)0,0(),(:),()(

2

2

21

2

2

21

212

2

212

=ℜ∈=

=ℜ∈=

=ℜ∈=

ξξξ

ξξξ

ξξξξ TTN

 

 

C- Let
22

3 : ℜ→ℜT  defined by 

),(),( 12213 ξξξξ =T  

Then 3T  is linear operator. 
 

Proof: 

Let
2

21

2

21 ),(,),( ℜ∈=ℜ∈= ηηξξ yx , and α is any scalar 

).()(),(),(),(

),()),(),(()(

3312121122

22113212133

yTxT

TTyxT

+=+=++=

++=+=+

ηηξξηξηξ

ηξηξηηξξ
 

).(),(),(),()( 312122133 xTTxT αξξααξαξαξαξα ====  

and { } .,:),()(
2

21123 ℜ=ℜ∈= ξξξξTR  

 

D- Let
22

4 : ℜ→ℜT  defined by 

),(),( 21214 γξγξξξ =T  

Then 4T  is linear operator. 
 

Proof: 

Let
2

21

2

21 ),(,),( ℜ∈=ℜ∈= ηηξξ yx , and α is any scalar 
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).()(

),(),(),(

),()),(),(()(

44

21212211

22114212144

yTxT

TTyxT

+=

+=++=

++=+=+

γηγηγξγξγηγξγηγξ

ηξηξηηξξ

 

).(),(),(),()( 421212144 xTTxT αγξγξαγαξγαξαξαξα ====  

and { } .,:),()( 2

21214 ℜ=ℜ∈= ξξγξγξTR  

{ }
{ }
{ }.0,0:),(

)0,0(),(:),(

)0,0(),(:),()(

21

2

21

21

2

21

214

2

214

==ℜ∈=

=ℜ∈=

=ℜ∈=

ξξξξ

γξγξξξ

ξξξξ TTN

 

 

E- Let YTDT →)(: be a linear operator whose inverse exists. If 

{ }nxx ,...,1  is a linearly independent set in )(TD , then the set 

{ }nTxTx ,...,1 is linearly independent. 
 

Proof: 

We want to show{ }nTxTx ,...,1 is linearly independent. 

So, let nαα ,...,1 be scalars such that 

YnnTxTx 0...11 =++ αα  

we want to prove nii ,...,1,0 =∀=α  

since T is linear, then Ynn xxT 0)...( 11 =++ αα  

and since 
1−T exists, then 

)0())...((
1

11

1

Ynn TxxTT
−− =++ αα  

Xnn xx 0...11 =++⇒ αα  

since { }nxx ,...,1  linearly independent, then nii ,...,1,0 =∀=α  

Hence { }nTxTx ,...,1 is linearly independent. 

 

F- Let YXT →:  be a linear operator and ∞<== nYX dimdim , 

then YTR =)( if and only if
1−T exists. 

 

Proof: 

Let YXT →:  be a linear operator and ∞<== nYX dimdim , and 

YTR =)( , we want to show that
1−T exists, i.e. T is one to one, i.e. 

00 =⇒= xTx , 

let { }neeB ,...,1= be a basis for X , and let )(TRYy =∈ , then 
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Txy = for some ∑
=

=∈
n

i

iiexXx
1

, α  

∑ ∑
= =

==
n

i

n

i

iiii eTeTy
1 1

)()( αα , then { }nTeTe ,...,1 generates )(TRY =  

since ∞<= nYdim , then { }nTeTe ,...,1 is a basis forY  

Now, let 0=Tx  

∑

∑

=

=

=⇒

=⇒

n

i

ii

n

i

ii

eT

eT

1

1

0)(

0)(

α

α

 

since { }nTeTe ,...,1 is linearly independent (from E) 

0

,0

=⇒

∀=⇒

x

iiα
 

That means T is one to one, so 
1−T exists. 

 

Conversely 

Let YXT →:  be a linear operator and ∞<== nYX dimdim , 

and
1−T exists, we want to show that YTR =)( , 

SinceT  is linear operator, )(: YRXT →  

)1(dim)(dim nXTR =≤⇒  

since 
1−T exists, XTRT →−

)(:
1

 

)2()(dimdim TRXn ≤=⇒  

from (1)and (2) we get 
nTR =)(dim  

since )(TR subspace ofY , and nY =dim  

Hence .)( YTR =  
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1.3 Bounded and continuous linear operators 

 

Definition (1.3.1) 

 

Let X and Y be normed space and YTDT →)(: a linear operator, 

where XTD ⊂)( .The operator T is said to be bounded if there is a real 

number c such that for all )(TDx ∈  
 

)1(xcTx ≤  

the smallest possible c in (1) 

0≠≤ xc
x

Tx
 

is that supremum. This quantity is denoted by T ; thus 

)2(sup

0
)( x

Tx
T

x
TDx

≠
∈

=  

T  is called the norm of the operator T , if { }0)( =TD ,we 

define .0=T  

 

Lemma (1.3.2) 

 

Let T be a bounded linear operator, then: 

(a) An alternative formula for the norm of T is:  TxT

x
TDx

1
)(

sup

=
∈

=  

(b) The norm defined by (2) satisfies the properties of norm. 

Proof: 

(a) we write 0>= ax , and set x
a

y
1

= , where 0≠x ,then 

,1
1

====
a

a

a

x
x

a
y and since T is linear (2) gives 

Tyx
a

TTx
ax

Tx
T

y
TDy

x
TDx

x
TDx

x
TDx

1
)(

0
)(

0
)(

0
)(

sup)
1

(sup
1

supsup

=
∈

≠
∈

≠
∈

≠
∈

====  

writing x for y on right, we have .sup

1
)(

TxT

x
TDx

=
∈

=  
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(b) x

Tx
T

x
TDx

0
)(

sup

≠
∈

=  

1- 0sup

0
)(

≥=

≠
∈ x

Tx
T

x
TDx

 

and )(00 TDxTxT ∈∀=⇔= , so that .0=T  

2- .supsupsup
111

TTxTxTxT
xxx

ααααα ====
===

 

3- xTxTxTxTxTTTT
xxxx

2
1

1
1

21
1

21
1

21 supsupsup)(sup
====

+≤+=+=+  

   ).(,.21 TDxTT ∈+=  

 

Examples: 

Example (1): 

The identity operator XXI →: on a normed space { }0≠X defined 

by XxxIx ∈∀= , is bounded and has norm 1=I , since 

.11

0

=⇒≤⇒≤⇒

≤⇒

>≤

Icc
x

x

c
x

Ix

cxcIx

 

 

 

Example (2): 

The zero operator YX →:0 on a normed space X defined 

by Xxx ∈∀= 00 , is bounded and has norm 00 = , since 

.000
0

0

00

=⇒≤⇒≤⇒

≤⇒

>≤

cc
x

c
x

x

cxcx
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Example (3): 

Let X be the normed space of all polynomials on [ ]1,0=J with norm 

given Jttxx ∈= ,)(max .A differentiation operator T is defined 

on X  by 
)()( txtTx ′=  

this operator is linear but not bounded, to proof this 

let 
n

n ttx =)( , where Nn ∈  

[ ] [ ]
1max)(max

1,01,0
===

∈∈

n

t
n

t
n ttxx  

and    

[ ] [ ]

Nnn
n

x

Tx

nnttTxTx

ntxtTx

n

n

n

t
n

t
n

n

nn

∈==⇒

==⇒

=′=

−

∈∈

−

1

max)(max

)(

1

1,01,0

1

 

Now, Nncn
x

Tx

n

n ∈≤=  

But no fixed number  c such that cn
x

Tx

n

n ≤=  

T⇒ is not bounded. 

 

Example (4): 

We defined an integral operator [ ] [ ]1,01,0: CCT →  by 

 Txy =  , where τττ dxtkty )(),()(

1

0

∫=   

k is given function, which is called the kernel of T , and is continuous 

on the closed square [ ]1,0, =×= JJJG , this operator is linear, 

∫ ∫

∫ ∫

+=+=

+=+=+

1

0

1

0

1

0

1

0

.)(),()(),(

))()()(,())()(,()(

TyTxdytkdxtk

dyxtkdyxtkyxT

ττττττ

τττττττ

 

∫ ∫ ===
1

0

1

0

.)(),()(),()( TxdxtkdxtkxT αττταττατα  



Chapter 1   -27- 

T is bounded , to proof this, we first note that since k is continuous on 

the closed square k⇒ is bounded 

0>Μ∃⇒ such that )1(),(),( Gttk ∈∀Μ≤ ττ  

and since )(max txx
Jt∈

=  

)2()(max)( xtxtx
Jt

=≤⇒
∈

 

Now, 

 

xcTx

cxTx

x

fromxdxtk

dxtktTxTxy

JtJt

JtJt

≤⇒

=ΜΜ≤⇒

Μ≤

Μ≤≤

===

∫∫

∫

∈∈

∈∈

)2(),1(max)(),(max

)(),(max)(max

1

0

1

0

1

0

τττ

τττ

 

T⇒ is bounded. 

 

 

Lemma (1.3.3) 

 

Let{ }nxx ,.....,1 be a linearly independent set of vector in a normed 

space X (of any dimension), then there is number 0>c such that for 

every choice of scalars nαα ,......,1   we have 

)......(...... 111 nnn cxx αααα ++≥++  

 

 

Theorem (Finite dimension) (1.3.4) 

 

If a normed space X is finite dimensional, then every linear operator on 
X is bounded. 

 

Proof: 

Let nX =dim and{ }nee ,....,1 a basis for X , we take any ∑
=

=
n

i

iiex
1

ξ  

and consider any linear operator T on X . 

Since T is linear 
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)1()(max)()(
111

∑∑∑
===

≤==⇒
n

i

ik
k

n

i

ii

n

i

ii eTeTeTTx ξξξ  

we apply lemma (1.3.4) with iiii ex == ,ξα ,we get 

)2(
11

11

1 1

x
c

e
c

ec

n

i

ii

n

i

i

n

i

n

i

iii

=≤⇒

≤

∑∑

∑ ∑

==

= =

ξξ

ξξ

 

from (1) and(2) 

)(max
1

)(max
1

)(max
1

k
k

k
k

n

i

ik
k

eT
c

wherexTx

eTx
c

eTTx

=≤⇒

≤≤⇒ ∑
=

γγ

ξ

 

From this we see that is T bounded. 

 

Definition (1.3.5) 

 

Let YTDT →)(: be a linear operator, where XTD ⊂)( , and YX ,  

are normed spaces, we say T  is continuous at ox  if for any 

00 >∃> δε  such that if δ<− oxx  

).(TDxTxTx o ∈∀<−⇒ ε  

 

Theorem (Continuity and boundedness) (1.3.6) 

 

Let YTDT →)(: be a linear operator, where XTD ⊂)( , and YX ,  

are normed spaces, then: 
 

(a) T is continuous if and only if  T is bounded. 

(b) If T  is continuous at a single point, it is continuous. 

 

Proof: 

(a) Suppose that T  is bounded, 

0>∃⇒ c such that )1()(TDxxcTx ∈∀≤  

We want to prove T is continuous, so let ε>0 be given and let 

)(TDxo ∈ be any point 
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Let
c

ε
δ = , where c given in (1), then if δ<− oxx  

)( oo xxTTxTx −=−⇒   Since T is linear 

     oxxc −≤    Since T is bounded 

     ε
ε

δ

==

<

c
c

c

 

T⇒ is continuous at ox , since ox is an arbitrary point in )(TD ,hence 

T is continuous on .X  
 

Conversely, assume that T is continuous at an arbitrary )(TDxo ∈ , 

then given 00 >∃> δε such that if δ<− oxx  

)2()(TDxTxTx o ∈∀<−⇒ ε  

take any 0),( ≠∈ yTDy and set y
y

xxy
y

xx oo

δδ
=−⇒+=  

δ
δδ

===−⇒ y
y

y
y

xx o  

)( oo xxTTxTx −=−⇒   Since T is linear 

     )( y
y

T
δ

=  

     Ty
y

δ
=    Since T is linear 

δ

ε
δ

ε

ε
δ

=≤⇒

≤⇒

<=−⇒

cwhereycTy

yTy

fromTy
y

TxTx o )2(

 

T⇒ is bounded. 

 

(b) Continuity of T at a point implies bounded of T by the second part 

of the proof of (a), which in turn implies continuity of T by (a). 
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Corollary (Continuity, null space) (1.3.7) 

 

Let T be a bounded linear operator, then: 
 

(a) xxn → (where )(, TDxxn ∈ ) implies .TxTx n →  

(b) The null space )(TN is closed. 

 

Proof: 

(a) )( xxTTxTx nn −=−   Since T is linear 

     xxT n −≤   Since T is bounded 

0→− xxT n     Since 0→−⇒→ xxxx nn  

.

0

TxTx

TxTx

n

n

→⇒

→−⇒
 

 

(b) let )(TNx ∈ , then there is a sequence )( nx in )(TN such that  

      )(afromTxTxxx nn →⇒→  

Since )( nx in )(TN  

)(

0

0

TNx

Tx

Tx n

∈⇒

=⇒

=⇒

 

)(TN⇒ is closed. 

 

Applications: 

 

A- Let X and Y be normed spaces, then a linear operator YXT →:  

is bounded if and only if T maps bounded sets in X into bounded sets 

inY . 
 

Proof: 

Let YXT →: be a bounded linear operator i.e. ℜ∈∃c such that 

    )1(XxxcTx ∈∀≤  

and let XA ⊂ , A is bounded set 0>∃⇒ M such that 

)2(AxMx ∈∀≤  

and { }AxTxAT ∈= :)(  
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Now, for all Ax ∈  

)2(

)1(

fromcM

fromxcTx

≤

≤⇒
 

)( AT⇒ is bounded. 

Conversely, suppose that T is a linear operator such that T maps 

bounded sets in X into bounded sets inY , we want to show that T is 

bounded i.e. ℜ∈∃c such that XxxcTx ∈∀≤ , 

So let X
x

x
xXx ∈⇒≠∈ 0, , and let { }









∈= 0\: Xx
x

x
A , 

then Ayy ∈∀= 1 , A is bounded )( AT⇒ is bounded 

i.e. 0>∃⇒ M such that  AyMTy ∈∀≤  

Then Xx ∈∀  

McwherexcTx

xMTx

MTx
x

M
x

x
T

=≤⇒

≤⇒

≤⇒

≤⇒

1

)(

 

T⇒ is bounded. 

 

B- Let 
∞∞ → llT : be an operator defined by 

)(,,)( i
i

ii x
i

Txy ξ
ξ

ηη ====  

Then T is linear and bounded, but the range )(TR of T need not be 

closed. 
 

Proof: 

First we want to show that T is linear, 

Let )(),(,, )2(

2

)1(

121 ii xxlxx ξξ ==∈ ∞
, and α is nay scalar: 

1- .)()()()( 21

)2()1()2()1(

21 TxTx
iii

xxT iiii +=+=
+

=+
ξξξξ
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2- .)()()( 1

)1()1(

1 Tx
ii

xT ii α
ξ

α
ξ

αα === Hence T is linear. 

Now, we want to show that T is bounded, 

1

)1(
)1(

1 supsup x
i

Tx i
Ni

i

Ni

=≤=
∈∈

ξ
ξ

, hence T is bounded. 

Finally, we want to show that the range )(TR of T need not be closed, 









∈== ∞
lx

i
TR i

i )(:)()( ξ
ξ

is not closed i.e. )( ny∃ any sequence in 

)(TR such that yyn → but )(TRy ∉ , 

Now, let ,....)0,0,,...,2,1( nxn = , 
∞∈ lxn for all Nn ∈ , then  

∞∈⇒== ly
n

xTy nnn ,....)0,0,
1

,...,
2

1
,1()( for all Nn ∈ , 

Clearly )
1

(,....)
3

1
,

2

1
,1(

i
yyn ==→ , 

Now, suppose that Txy = for some 
∞∈ lx  

∞∉==⇒

∈∀=⇒∈∀=⇒=⇒

lx

NiiNi
iiii

i

i
ii

,....)3,2,1()(

1
)()

1
(

ξ

ξ
ξξ

 

Therefore )(TRy ∉ ,  so )(TR not closed. 

 

C- Let T be a bounded linear operator from a normed space X onto 

normed spaceY . If there is a positive b such that  

XxxbTx ∈∀≥  

Then XYT →− :1
exists and bounded. 

 

Proof: 

Let 0000 =⇒=⇒≥=⇒= xxxbTxTx , then 
1−T exists. 

Now, let xyTYy =⇒∈ −
)(

1
for some Xx ∈ , then 

y
b

yT

y
b

Tx
b

xyT

1
)(

11
)(

1

1

≤⇒

=≤=

−

−

 

1−⇒ T is bounded. 
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1.4 Linear functionals 

 
Definition (1.4.1) 

 

A linear functional f  is a linear operator with domain in a vector 

space X and range in the scalar field K of X ; thus: 
KTDf →)(:  

where ℜ=K  if X is real, and  CK =  if X is complex. 

 

Definition (1.4.2) 

 

A bounded linear functional f  is a bounded linear operator with range 

in the scalar field of the normed space X in which the domain )( fD  

lies. 

Thus there exist a real number c such that, for all )( fDx ∈  

      xcxf ≤)( . 

Furthermore, the norm of f is 

x

xf
f

x
fDx

)(
sup

0
)(

≠
∈

= or )(sup

1
)(

xff

x
fDx

=
∈

=  

.)( xfxf ≤⇒  

 

Examples: 

 

Example (1): 

The familiar dot product with one factor kept fixed defines a functional 

ℜ→ℜ 3
:f  by means of: 

332211.)( αξαξαξ ++== axxf  

where
3

321 ),,( ℜ∈= αααa is a fixed, ),,( 321 ξξξ=x  

f is linear and bounded, 

first we want to prove f is linear, 

1- aayxyxf ).,,().()( 332211 ηξηξηξ +++=+=+  

333222111 )()()( αηξαηξαηξ +++++=  

)()( 332211332211 αηαηαηαξαξαξ +++++=  

).()(..).().( 321321 yfxfayaxaa +=+=+++++= ηηηξξξ  
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2- 332211).()( ααξααξααξαα ++== axxf  

).().()( 332211 xfax αααξαξαξα ==++=  

Now, we want to prove f is bounded 

∑ ∑ ∑∑
= = ==

=≤≤=
3

1

3

1

3

1

22
3

1

.)()()( 2
1

2
1

i i i

iiii

i

ii axxf αξαξαξ  

By holder inequality, 

There for f  is bounded 

So, 0,3 ≠ℜ∈∀ xx  

)1(
)(

sup
)(

afa
x

xf
a

x

xf
≤⇒≤⇒≤  

2
1

)(

)()(
sup

2

3

2

2

2

1

332211

ααα

αααααα

++

++
=≥=

a

af

x

xf
f  

)2()( 2
12

3

2

2

2

1 afa ≥⇒=++= ααα  

from (1) and (2)we get .af =   

 

Example (2): 

We can obtain a linear functional f on the Hilbert space
2l by choosing 

a fixed
2)( la i ∈= α , and define Clf a →2: by ∑

∞

=

=
1

)(
i

iia xf αξ , 

where 
2)( lx i ∈= ξ  

Now, by holder inequality 

∑ ∑ ∑
∞

=

∞

=

∞

=

∞<≤
1 1 1

22
2

1
2

1

)()(
i i i

iiii ξαξα  

∑
∞

=

⇒
1i

iiαξ is absolutely convergent, then is convergent 

⇒ for each
2lx ∈ there corresponds number ∑

∞

=1i

iiξα  

af⇒ is well defined. 

∑ ∑ ∑∑
∞

=

∞

=

∞

=

∞

=

=≤≤=
1 1 1

22

1

.)()()( 2
1

2
1

i i i

iiii

i

ii xaxf ξαξαξα  



Chapter 1   -35- 

Theorem (1.4.3) 

 

If 0≠f be any linear functional on vector space X and ox any fixed 

element of )( fNX − , where )( fN is the null space of f , then 

any Xx ∈ has a unique representation yaxx o += , where ).( fNy ∈  

 

Proof: 

Let Xx ∈ , ox any fixed element of )( fNX − , let 
)(

)(

oxf

xf
=α  

0)(
)(

)(
)()

)(

)(
( =⋅−=⋅− o

o

o

o

xf
xf

xf
xfx

xf

xf
xf  

Hence o

o

x
xf

xf
x ⋅−

)(

)(
belong to )( fN  

yx
xf

xf
x o

o

=⋅−⇒
)(

)(
for some )( fNy ∈  

yx
xf

xf
x o

o

+⋅=⇒
)(

)(
 

Hence, every Xx ∈ can be written of the form yxx o += α ).( fNy ∈  

To prove this form is unique 

Let αααααα ′≠∈′∈′′+′=+= ;,);(, KfNyyyxyxx oo  

),(

)()(

)(

fNx

fNx

yyx

yyxx

o

o

o

oo

∈⇒

∈′−⇒

−′=′−⇒

−′=′−⇒

αα

αα

αα

 

a contradiction, hence the representation is unique. 

 

Application: 

 
A- Let KXf →: be a linear functional, then two elements 

Xxx ∈21 , belong to the same element of the quotient space )( fNX if 

and only if )()( 21 xfxf = . 
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Proof: 

Suppose that )(, 21 fNxxx o +∈ for some Xxo ∈ , we want to prove 

that )()( 21 xfxf = , 

Since )(, 21 fNxxx o +∈  

)(,, 212211 fNyyyxxyxx oo ∈+=+=⇒  

Now, )()()()()( 111 ooo xfyfxfyxfxf =+=+=  

and )()()()()( 222 ooo xfyfxfyxfxf =+=+=  

Therefore ).()( 21 xfxf =  
 

Conversely: 

Suppose that for )()(,, 2121 xfxfXxx =∈  

)(),()(0

)()(

)()()(

)(

0)(

0)()(

222111

21

21

21

21

21

fNxxfNxfNxxx

fNxfNx

fNfNxx

fNxx

xxf

xfxf

+∈+=+∈+=⇒

+=+⇒

=+−⇒

∈−⇒

=−⇒

=−⇒

 

Hence, Xxx ∈21 , belong to the same element of the quotient 

space )( fNX . 

 

B- Let KXf →: be a non zero linear functional on X , then 

1))(dim( =fNX . 
 

Proof: 

We want to prove that { })()( fNxspanfNX o +=  for some 

)( fNxo ∉  

Clearly,  { } )1()()( fNXfNxspan o ⊆+  

Now, let )( fNXy ∈  

)( fNxy += for some Xx ∈ , from(1.4.3) )(, 11 fNyyxx o ∈+= α  

))(()()()( 1 fNxfNxfNyxfNxy ooo +=+=++=+=⇒ ααα  

{ })( fNxspany o +∈   { } )2()()( fNxspanfNX o +⊆⇒  

Hence, from (1) and (2) we get { })()( fNxspanfNX o += ,  

so 1))(dim( =fNX . 
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C- Let 21 , ff be two non-zero linear functional on the same vector space 

such that )()( 21 fNfN = , then 1f and 2f are proportional. 
 

Proof: 

Since 0, 21 ≠ff , then Xxo ∈∃ such that 0)(1 ≠oxf  

Since )()( 21 fNfN = , 0)(2 ≠oxf  

from theorem (1.4.3) any yxxXx o +=∈ α, for some scalar α, 

)( 1fNy ∈  

yx
xf

xf
x o

o

+=
)(

)(

1

1
 

 

0)()()( 221 =⇒=∈ yffNfNy  

Now, 

 
).(

)(

)(
)(

)()(
)(

)(
)(

1

1

2
2

22

1

1
2

xf
xf

xf
xf

yfxf
xf

xf
xf

o

o

o

o

=⇒

+=

 

 

 

Remark (1.4.4) 

 
Note that if Y is a subspace of vector space X and f is a linear 

functional on X such that KYf ≠)( , then 0)( =yf for all .Yy ∈  

Indeed suppose that XYyo ⊆∈∃ such that 0)( ≠= ooyf α , then for 

any )()()( YfyfyfK
oo

o

o

∈===⇒∈
α

β

α

β
α

α

β
ββ  

)(YfK =⇒ , a contradiction  

.0)( Yyyf ∈∀=⇒  
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 Fundamental theorem for normed and Banach spaces 
 

2.1 Zorn's lemma 

 
Definition (Partially ordered set, Chain) (2.1.1) 

 

A partially ordered set is a set M on which there is defined a partial 

ordering, that is a binary relation which is written )(≤ and satisfies the 

conditions: 
 

aa ≤ for every Ma ∈    (Reflexivity) 

If ba ≤ and ab ≤ , then ba =   (Antisymmetry) 

If ba ≤ and cb ≤ , then ca ≤   (Transitivity) 

 

*If neither ba ≤ nor ab ≤ holds, then a and b called incomparable 

elements, in contrast, two elements a and b are called comparable 

elements if they satisfy ba ≤  or ab ≤ (or both). 
 

*A totally ordered set or Chain is partially ordered set such that every 

elements of the set are comparable. 
 

*An upper bound of a subset W of a partially ordered set M is an 

element Mu ∈ such that  
ux ≤   for every Wx ∈  

*A maximal element of M is an Mm ∈ such that 
xm ≤  implies xm =  

 

Examples: 
 

(a) Let M be the set of all real numbers and let yx ≤ have a usual 

meaning, M is totally ordered, M has no maximal element. 

(b) Let )( XP be the power set (set of all subset) of a given set X and 

let BA ≤ mean BA ⊂ , that is A is subset of B , then )( XP  is 

partially ordered, and the only maximal element of )( XP is X . 

(c) Let M be the set of all ordered n-tuples{ }ℜ∈= inx ξξξ ,...,( 1 , and 

yx ≤ mean ii ηξ ≤ for every ni ,...,1= , where ii ηξ ≤ has its usual 

meaning, M is partially ordered, M has no maximal element. 

(d) Let NM = , the set of all positive integers, let nm ≤ mean 

that m divides n , N is partially ordered. 
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Zorn
'
s lemma (2.1.2) 

 

Let M be a partially ordered set, suppose that every chain MC ⊂ has 

upper bound, than M has at lest one maximal element. 

 

 

Definition (2.1.3) 

 

A sublinear functional is a real-valued functional p on a vector 

space X which is 

*Subaddative, that is  

.,)()()( Xyxypxpyxp ∈∀+≤+  

*Positive-homogenous, that is 

.,0,)()( Xxxpxp ∈≥ℜ∈∀= αααα  
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2.2 Hahn-Banach theorem 

 

Hahn-Banach theorem (Extension of linear functional) (2.2.1) 

 

Let X be a real vector space and p a sublinear functional on X , 

furthermore, let f be a linear functional which is defined on subspace 

Z of X and satisfies: 

Zxxpxf ∈∀≤ )()(  

Then f has a linear extension f
~

from Z to X satisfying: 

Xxxpxf ∈∀≤ )()(
~

 

That is, f
~

 is a linear functional on X , satisfying 

)()(
~

xpxf ≤ on X , and .)()(
~

Zxxfxf ∈∀=  

 

Proof: 

We shall prove: 

(a) The set E of all linear extensions g of f satisfying )()( xpxg ≤ on 

their domain )( gD can be partially ordered and Zorn's lemma yields a 

maximal element f
~

of .E  

(b) f
~

is defined on the entire space .X  

(c) An auxiliary relation which was used in (b). 

 

We start with part (a) 

Let E be the set of all linear extensions g of f which satisfy the 

condition: 

)()()( gDxxpxg ∈∀≤  

Clearly, φ≠E  since Ef ∈ , 

On E we can define a partial ordering by hg ≤ meaning h  is an 

extension of g , 

⇒ By definition, )()( hDgD ⊂  and )()()( gDxxgxh ∈∀=  
 

Let EC ⊂ is chain, we define ĝ by  

)()(ˆ xgxg =  if )( gDx ∈    )( Cg ∈  

ĝ is linear functional, the domain being 

U
Cg

gDgD
∈

= )()ˆ(  

which is vector space, since C is a chain, 
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The definition of ĝ is unambiguous, Indeed, for an )()( 21 gDgDx ∩∈  

with Cgg ∈21 , , we have )()( 21 xgxg = , 

and 21 gg ≤ or 12 gg ≤ since C is chain 

Clearly, gg ˆ≤ for all Cg ∈ since )ˆ()( gDgD ⊂ for all Cg ∈  

ĝ⇒ is an upper bound of C  

Since EC ⊂ was arbitrary, then by Zone's lemma E has a maximal 

element f
~

, and by the definition of E  

f
~

⇒ is linear extension of f which satisfies: 

).
~

()()(
~

fDxxpxf ∈∀≤  
 

(b) We want to show that )
~

( fD is all of X , 

Suppose that this false 

1y∃⇒ such that )
~

(1 fDXy −∈  

Consider the subspace 1Y  of X spanned by )
~

( fD and 1y  

Note that 01 ≠y , since )
~

(0 fD∈  

Now, any 1Yx ∈ can be written 

)
~

(1 fDyyyx ∈+= α  

This representation is unique, since  

Let 1yyx α+= and 1yyx β+′=    )
~

(, fDyy ∈′  

111 )( yyyyyyy αββα −=′−⇒+′=+⇒  

Since )
~

(),
~

(1 fDyyfDy ∈′−∉ , then the only solution is 

0=′− yy and 0=− αβ yy ′=⇒ and αβ = , 

Hence the representation is unique. 

Now, a functional 1g on 1Y is defined by  

)1()(
~

)( 11 cyfyyg αα +=+    where c any real constant 

1g is linear, since for 1211121 ,, yyxyyxYxx βα +′=+=⇒∈ , 

1- ))()(())()(()( 11111211 yyygyyyygxxg βαβα ++′+=+′++=+  

  ccyfyfcyyf βαβα ++′+=++′+= )(
~

)(
~

)()(
~

 since f
~

is linear 

     ).()( 2111 xgxg +=  

2- crryfyrrygyyrgrxg ααα +=+=+= )(
~

)())(()( 111111  

cryfr α+= )(
~

   since f
~

is linear 

).())(
~

( 11 xrgcyfr =+= α  , where r is any scalar. 
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Now, for )(
~

)(0 1 yfygyx =⇒=⇒=α , then 1g is proper extension 

of f
~

, since )()
~

( 1gDfD ⊂  

Now, if we can prove that Eg ∈1 by showing that 

)()()( 11 gDxxpxg ∈∀≤  

this will contradict the maximality of f
~

, so that XfD ≠)
~

( is false 

and XfD =)
~

( is true. 
 

(c) We must finally show that 1g with a suitable c in (1) satisfies: 

)()()( 11 gDxxpxg ∈∀≤  

consider any )
~

(, fDzy ∈  

)()()(
~

)(
~

)(
~

11 zyyypzypzyfzfyf −−+=−≤−=−⇒  

)()( 11 zypyyp −−++≤    since p is sublinear 

)(
~

)()(
~

)( 11 yfyypzfzyp −+≤−−−−⇒  

where 1y is fixed, since y does not appear on the left and z not on the 

right, if we take the supremum over )
~

( fDz ∈ on the left (call it om ) 

and the infimum over )
~

( fDy ∈ on the right (call it 1m ) 

then 1mmo ≤ , and for a c with 1mcmo ≤≤  

)3()
~

()(
~

)(

)2()
~

()(
~

)(

1

1

fDyyfyypc

fDzczfzyp

∈∀−+≤

∈∀≤−−−−⇒
 

 

Now, for 0<α and z replaced by y
1−α  in(2) 

,)
1

(
~

)
1

( 1 cyfyyp ≤−−−−⇒
αα

multiplication by 0>− α  

).()(

)()(

)
1

()(
~

)(
~

)
1

(

)
1

(
~

)
1

(

1

11

1

1

1

xpxg

yypxg

yypcyf

cyfyyp

cyfyyp

≤⇒

+≤⇒

−−−≤+⇒

−≤+−−⇒

−≤+−−⇒

α
α

αα

α
α

α

α
α

α
α

α

 

for 0>α and y replaced by y1−α  in (3) 
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),
1

(
~

)
1

( 1 yfyypc
αα

−+≤⇒  multiplication by 0>α  

).()(

)()(
~

)(
~

)(

)
1

(
~

)
1

(

1

1

1

1

xpxg

yypcyf

yfyypc

yfyypc

≤⇒

+≤+⇒

−+≤⇒

−+≤⇒

αα

αα

α
α

α
αα

 

for 0=α we have )
~

( fDx ∈ and nothing to prove. 

 

Applications: 
 

A- A sublinear functional p satisfies 0)0( =p and ).()( xpxp −≥−  
 

Proof: 

Since p is sublinear functional ℜ→Xp :  

Xyxypxpyxp ∈∀+≤+⇒ ,)()()(  

and   Xxxpxp ∈≥ℜ∈∀= ,0,)()( αααα  

let 0=α  
0)(0)0()0( === xpxpp  

and 

).()(

)()()()0(0

xpxp

xpxpxxpp

−≥−⇒

−+≤−==
 

 

B- If a subadditive functional p on a normed space X is continuous at 

0 and 0)0( =p , then p is continuous for all .Xx ∈  
 

Proof: 

Let ox be an arbitrary (but fixed) point in X , we want to show that p is 

continuous at ox ,  

so let 0>ε be given, since p continuous at 0 

0>∃⇒ δ such that if Xyy ∈<− ,0 δ , then ε<)( yp  

thus, of oxxy −=  

)1()( εδ <−⇒<− oo xxpxx  
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Now, 

  
)2()()()(

)()()()(

oo

oooo

xxpxpxp

xpxxpxxxpxp

−≤−⇒

+−≤+−=
 

and 

)3()()()(

)()()()(

oo

ooo

xxpxpxp

xpxxpxxxpxp

−−≥−⇒

+−≤+−=
 

then, from(2) and (3)we get 

)1()()()(

)()()()(

fromxxpxpxp

xxpxpxpxxp

oo

ooo

ε<−<−⇒

−≤−≤−−
 

hence p  is continuous at ox , and since ox an arbitrary, then p is 

continuous for all .Xx ∈  

 

C- If a subadditive functional defined on a normed space X is 

nonnegative outside a sphere{ }rxx = , then it is nonnegative for 

all .Xx ∈  
 

Proof: 

Let ℜ→Xp : , be a subadditive functional defined on a normed 

space X , and let 0)( ≥xp for x  such that )1(rx >  

we want to prove that 0)( ≥xp for Xx ∈  

(a) Let Xx ∈ such that rx =  

)1(0)2(222 fromxprrxx ≥⇒>==⇒  

0)(0)(2 ≥⇒≥⇒ xpxp  

(b) Let 0, ≠∈ yXy then, 0)( ≥⇒==
y

y
rpr

y

y
r

y

ry
 from(a) 

0)(0)( ≥⇒≥⇒ ypyp
y

r
  for 0, ≠∈ yXy  

if 0)0(0 =⇒= py  

Then, from (1), (a) and (b)  .0)( Xxxp ∈∀≥  
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D- If p is sublinear functional on a real vector space X , then there 

exists a linear functional f
~

on X such that  ).()(
~

)( xpxfxp ≤≤−−  
 

Proof: 

From theorem (2.2.1) we have )1()()(
~

xpxf ≤  

and )()(
~

)(
~

xpxfxf −≤−=−  since f
~

 is linear 

)2()()(
~

xpxf −−≥⇒  

from (1) and(2) we get ).()(
~

)( xpxfxp ≤≤−−  

 

E- Let p be a sublinear functional on a real vector space X , and 

let f be defined on { }ℜ∈=∈= αα ,oxxXxZ  by )()( oxpxf α= with 

fixed ox , then f is a functional on Z satisfying  ).()( xpxf ≤  
 

Proof: 

First we want to prove that f is linear functional on Z , ℜ→Zf :  

Let )()(,,,, ooo xpyxxyxxZyx βαβαβα +=+⇒ℜ∈==⇒∈ ,  

and let r is any scalar 

1- ).()()()()()()( yfxfxpxpxpyxf ooo +=+=+=+ βαβα  

2- )()()( xrfxprrxf o == α , hence f is linear functional on Z . 

Now we want to prove that )()( xpxf ≤ ,  

Since oo xxxpxf αα == ),()(  

if )1()()()()()()(0 xpxfxpxpxpxf oo =⇒===⇒≥ ααα  

if 00 >−⇒< αα  

)2()()(

)()()()()()()(

xpxf

xpxpxpxpxpxf ooo

<⇒

<−−=−−=−−==⇒ ααα
 

from (1) and (2) we get ).()( xpxf ≤  
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2.3 Hahn Banach theorem for complex vector spaces and 

normed spaces 
 

 

Hahn Banach theorem(Generalized) (2.3.1) 

 

Let X be a real or complex vector space and p a real-valued functional 

on X which is subadditive, that is 

)1(,)()()( Xyxypxpyxp ∈∀+≤+  

and for every scalar α satisfies 

)2()()( xpxp αα =  

Furthermore, let f be a linear functional which is defined on a subspace 

Z of X and satisfies 

)3()()( Zxxpxf ∈∀≤  

Then, f has a linear extension f
~

 from Z to X satisfying 

)4()()(
~

Xxxpxf ∈∀≤  

 

Proof: 

(a) Real vector space: 

If X is real, the situation is simple 

)3()()()( fromxpxfxf ≤≤  

Zxxpxf ∈∀≤⇒ )()(  

then, by theorem (2.2.1) there is a linear extension f
~

 from Z to X such 

that  

)5()()(
~

Xxxpxf ∈∀≤  

Now, )2()()(1)()(
~

)(
~

fromxpxpxpxfxf =−=−≤−=−  

)6()()(
~

)()(
~

xpxf

xpxf

−≥⇒

≤−⇒
 

Then from (5) and (6) 

).()(
~

)()(
~

)(

xpxf

xpxfxp

≤⇒

≤≤−⇒
 

(b) Complex vector space: 

Let X be complex, then Z is a complex vector space, too 
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f⇒ is complex-valued 

⇒ we can write   Zxxifxfxf ∈+= )()()( 21  

where 1f and 2f are real-valued 

for a moment we regard X and Z as real vector space and denote them 

by rX and rZ respectively, this simply means that we restrict 

multiplication by scalars to real numbers (instead of complex numbers), 

since f is linear on Z , and 21 , ff  are real-valued 21 , ff⇒ are linear 

functional on Z , also )()(1 xfxf ≤  

)3()()(1 fromZxxpxf r∈∀≤⇒  

⇒ by theorem (2.2.1) , there is a linear extension 1

~
f of 1f from rZ to rX , 

such that 

)7()()(
~

1 rXxxpxf ∈∀≤  

this take care of 1f and we now turn of 2f  

Now, returning to Z and using 21 ifff += , we have for every Zx ∈  

[ ]
)()()()(

)()()()()()(

2121

2121

ixifixfxfxif

ixifixfixfxifxifxfi

+=−⇒

+===+
 

the real parts on both sides must be equal 

)()()(

)8()()(

)()(

11

12

12

ixifxfxf

Zxixfxf

ixfxf

−=⇒

∈∀−=⇒

=−⇒

 

⇒ if for all Xx ∈ we set 

)9()(
~

)(
~

)(
~

11 ixfixfxf −=  

then from(8)  )()(
~

xfxf = on Z  

this shows that f
~

is an extension of f from Z to X , now we want to 

prove that: 

(a) f
~

is linear functional on the complex vector space .X  

(b) f
~

satisfies (4) on .X  

To prove (a) let Xyx ∈, and ℜ∈+=∈ baibaC ,,αα  

).(
~

)(
~

)(
~

)(
~

)(
~

)(
~

))(
~

)(
~

()(
~

)(
~

)9())((
~

)(
~

)(
~

1111

1111

11

yfxf

iyfiyfixfixf

iyfixfiyfxf

fromyxifiyxfyxf

+=

−+−=

+−+=

+−+=+
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and, 

[ ]

[ ] [ ]
[ ] [ ]

[ ] ).(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

)(
~

))((
~

)(
~

11

1111

1111

1111

1111

11

xfixfixfiba

ixfixfibixfixfa

xfiixfbixfixfa

xfibixfiaixfbxfa

xfbixfaiixfbxfa

bxiaxfiibxaxf

ibxaxf

xibafxf

α

α

=−+=

−+−=

++−=

+−+=

−−+=

−−+=

+=

+=

 

Hence, f
~

is linear. 

To prove (b) 

1- for any x such that 0)(
~

=xf this holds, since .0)( ≥xp  

2- Let Xx ∈ such that 0)(
~

≠xf , then we can write f
~

by using polar 

form of complex quantities 
θiexfxf )(

~
)(

~
=  

)(
~

)(
~

)(
~

xefexfxf ii θθ −− ==⇒  

since )(
~

xf is real, then )(
~

xef iθ−
is real 

)(
~

)(
~

1 xefxef ii θθ −− =⇒  

Now,  

)(

)2()(

)7()()(
~

)(
~

)(
~

1

xp

fromxpe

fromxepxefxefxf

i

iii

=

=

≤==

−

−−−

θ

θθθ

 

Hence .)()(
~

Xxxpxf ∈∀≤  

 

 

Hahn-Banach theorem (Normed space) (2.3.2) 

 

Let f be a bounded linear functional on a subspace Z of a normed 

space X , then there exists a bounded linear functional f
~

on X which is 

an extension of f to X and has the same norm 
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ZX
ff =

~
 

where 

.)(sup,)(
~

sup
~

11

xffxff

x
Zx

Z

x
XxX

=
∈

=
∈

==  

(and 0=
Z

f in the trivial case { }0=Z ). 

 

Proof: 

If { }0=Z , then 0=f and the extension is .0
~

=f  

Now, let { }0≠Z , we want to use theorem (2.3.1), for all Zx ∈ we 

have 

xfxf
Z

≤)(  

This is of the from (3) in theorem (2.3.1) 

xfxp
Z

=)(  

p Is defined on all of X , and p satisfies (1), since by the triangle 

inequality 

).()(

)()(

ypxpyfxf

yxfyxfyxp

ZZ

ZZ

+=+=

+≤+=+
 

p also satisfies(2) because 

).()( xpxfxfxp
ZZ

αααα ===  

Hence, we can apply theorem (2.3.1), that mean there exists a linear 

functional f
~

on X which is an extension of f and satisfies  

Xxxfxpxf
Z

∈=≤ )()(
~

 

Taking the supremum over all Xx ∈ of norm 1, we obtain the 

inequality 

)()(
~

sup
~

1

afxff
Z

x
XxX

≤=

=
∈

 

and since under an extension the norm cannot decrease, we also have 

)(
~

bff
ZX

≥  

hence, from(a) and (b) we get 

.
~

ZX
ff =  
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Definition (2.3.3) 

 

The dual space
*X of a normed space X  consists of the bounded linear 

functionals on X . 

 

 

Theorem (Bounded linear functionals) (2.3.4) 

 

Let X be a normed space and 0≠ox be any element of X , then there 

exists a bounded linear functional f
~

on X such that 
 

.)(
~

,1
~

oo xxff ==  

 

Proof: 

Let { }oxxxZ α== where α is a scalar, Z subspace of X , 

we define a linear functional ℜ→Zf : , by 

)1()()( oo xxfxf αα ==  

f is bounded and has norm 1=f ,because  

1sup)(sup

)()(

11

===

====

=
∈

=
∈

xxff

xxxxfxf

x
Zx

x
Zx

ooo ααα

 

and from theorem (2.3.2), f has linear extension f
~

from Z to X , of 

norm 1
~

== ff  

and from (1) we see that 

.)()(
~

ooo xxfxf ==  

 

 

Corollary (Norm, zero vector) (2.3.5) 

 

For every x in a normed space X , we have 

f

xf
x

f
Xf

)(
sup

0

*

≠
∈

=  

Hence if ox is such that 0)( =oxf for all
*Xf ∈ , then .0=ox  
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Proof: 

From theorem (2.3.4), we have, writing x for ox  

)1(
1

~

)(
~

)(
sup

0

*

x
x

f

xf

f

xf

f
Xf

==≥

≠
∈

 

and from xfxf ≤)( we obtain 

)2(
)(

sup

0

*

x
f

xf

f
Xf

≤

≠
∈

 

so, from (1) and (2) we get 

.
)(

sup

0

* f

xf
x

f
Xf

≠
∈

=  

 

Applications: 
 

A- Let p be defined on a vector space X and satisfy 

Xyxypxpyxp ∈∀+≤+ ,)()()(  

and  )()( xpxp αα =   for every scalar α 

Then for any given Xxo ∈ there is a linear functional f
~

on X such that 

)()(
~

oo xpxf = and )()(
~

xpxf ≤ for all .Xx ∈  
 

Proof: 

Let Xxo ∈ fixed and { }CxxxZ o ∈== αα , , 

 and define CZf →: by 

)()( oo xpxf αα =  

clearly f is linear functional on Z , also 

)()()()()()()( xpxpxpxpxpxfxf ooooo ==≤=== ααααα  

)()( xpxf ≤⇒  

By theorem (2.3.1), f has linear extension f
~

on X such that 

Xxxpxf ∈∀≤ )()(
~

 

and if 1=α , we get ).())((1)()(
~

oooo xpxpxfxf ===  
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B- Let X be a normed space and 
*X its dual space. If 0≠X , 

then *X cannot be { }.0  
 

Proof: 

Let 0, ≠∈ oo xXx , then by theorem (2.3.4) there exists a bounded 

linear functional f on X such that  

1=f and oo xxf =)(  

since Xxxfxx oooo ∈∀≠⇒≠⇒≠ 0)(00 (since { }0≠X ) 

Hence { }.00
* ≠⇒≠ Xf  

 

 

C- If )()( yfxf =  for every bounded linear functional f on a normed 

space X , then .yx =  
 

Proof: 

Let 
*)()( Xfyfxf ∈∀=  

*
0)()( Xfyfxf ∈∀=−⇒  

*0)( Xfyxf ∈∀=−⇒ (since f is linear) 

.

0

yx

yx

=⇒

=−⇒
 

 

 

D- Under the assumptions of theorem (2.3.4) there is a bounded linear 

functional f̂ on X such that 
1ˆ −

= oxf and .1)(ˆ =oxf  
 

Proof: 

Let 0, ≠∈ oo xXx , then by theorem (2.3.4) there exists a bounded 

linear functional g on X such that  

1=g and oo xxg =)(  

Now, let
1ˆ −

= oxgf , then 
111

)(1ˆ −−−
=== ooo xxxgf  

and .1)()(ˆ 11
===

−−

ooooo xxxxgxf  
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2.4 Open mapping theorem 

 

Definition (2.4.1) 
 

Let X  and Y  be metric spaces, then YTDT →)(:  with domain 

XTD ⊂)( is called an open mapping if for every open set in )(TD the 

image is an open set inY . 

 

Remark (Baire's category theorem) (2.4.2) 

 

If a metric space φ≠X is complete, it is nonmeager in itself, hence if 

U
∞

=

=
1k

kAX , where kA closed, Then at least one kA contains a nonempty 

open subset. 

 

Lemma (Open unit ball) (2.4.3) 
 

A bounded linear operatorT from a Banach space X onto a Banach 

spaceY has the property that the image )( 0BT of the open unit 

ball XBB ⊂= )1;0(0 contains an open ball about Y∈0 . 

Proof: 

Proceeding stepwise, we prove: 

(a) )( 1BT contains an open ball, where )
2

1
;0(1 BB = . 

(b) )( nBT  contains an open ball Nn ∈∀ , where )2;0( n

n BB −= . 

(c) )( 0BT  contains an open ball about Y∈0 . 
 

(a) We consider the open ball XBB ⊂= )
2

1
;0(1 , any fixed Xx ∈ is 

in 1kB  with real k , clearly  U
∞

=

⊂
1

1 )1(
k

XkB since NkXkB ∈∀⊂ ,1  

and let Xx ∈ , 02 >x , then 
2

2 x
x

k
xxk <⇒>∃ , then  

)2(
1

11 XxkBBkx
k

x ∈∀⊂∈
∞

=

U  

Hence, from (1) and (2) we get U
∞

=

=
1

1

k

kBX



Chapter 2   -54- 

sinceT is surjective and linear, 

U U UU

U U

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

=⊂==

=⊂=⇒

1 1 1

1

1

111

1 1

11

)()()()(

)()()(

k k kk

k k

BkTBTkBkTkBT

XTYBTkBkT

 

sinceY is complete, it is nonmeager in itself, then by (2.4.2) 

Nko ∈∃ such that )( 1BTko contain an open ball, say  

)();( 1BTkyB oo ⊂α  

.,)();(
1

);( 1

o

o

o

o
k

BTyB
k

yB
α

εαε =⊂=⇒  

 

(b) From (a) we shown that )( 1BT contain an open ball, 

say )();( 1BTyB o ⊂ε for some .0,)( 1 >∈ εBTyo  

Hence, ooo yBTyyBB −⊂−= )();();0( 1εε  

Now, let oyBTy −∈ )( 1 , then )( 1BTyy o ∈+ , then there are 

1Bu n ∈ such that on yyTu +→  

and   1Bvn ∈ such that on yTv →   

1
2

1

2

1
=+<+≤−⇒ nnnn vuvu  

0Bvu nn ∈−⇒  

since yTvTuvuT nnnn →−=− )(  

)( 0BTy ∈⇒  

Hence, )3()()();();0( 01 BTyBTyyBB ooo ⊂−⊂−= εε  

Now, let XBB n

n ⊂= − )2;0( , 02)1;0(2)2;0( BBBB nnn

n

−−− ===  

since T is linear 

    )(2)( 0BTBT n

n

−=⇒  

from (3) we thus obtain )4()()
2

;0( nnn BTBV ⊂=
−

ε
 

 

(c) We finally prove that )()
2

;0( 01 BTBV ⊂=
ε

 

Let 1),4()( 11 =⊂∈ nfromBTVy  
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yBTy ⇒∈ )( 1 is a limit point of )( 1BT  

⇒ every neighborhood of y contains a point of )( 1BT  

11 Bx ∈∃⇒ such that 21
2

ε
<− Txy  

this implies that 1Txy − belong to )()
2

;0( 222 BTBV ⊂=
ε

 

⇒ 1Txy −  is a limit point of )( 2BT  

⇒ every neighborhood of 1Txy − contains a point of )( 2BT  

22 Bx ∈∃⇒ such that 321
2

ε
<−− TxTxy  

this implies that 21 TxTxy −− belong to )()
2

;0( 333 BTBV ⊂=
ε

 

and so on ,in the n th step we can choose an nn Bx ∈ such that 

)5(
2 1

1
+

=

<−∑ n

n

i

iTxy
ε

 

let nn xxz ++= ...1 , since kk Bx ∈ we have kkx
2

1
< . This yield for 

mn >  

∑ ∑
+=

∞

+=

→<≤−
n

mk mk
kkmn xzz

1 1

0
2

1
 

as ∞→m . Hence )( nz is Cauchy. )( nz converse, say 

xzn → because X is complete. Also 0Bx ∈ since 0B has radius 1and 

∑ ∑
∞

=

∞

=

=<
1 1

1
2

1

k k
kkx  

since T is continuous, TxTz n → and (5) shows that yTx = . Hence 

).( 0BTy ∈  

 

 

 

Open mapping theorem, Bounded inverse theorem (2.4.4) 

 

A bounded linear operator T from a Banach space X onto a Banach 

spaceY is an open mapping. Hence ifT is bijective, 
1−

T is continuous 

and thus bounded. 
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Proof: 

We want to prove that for every open set XA ⊂ the image )( AT is 

open inY , this we do by showing that for every )( ATTxy ∈= the set 

)( AT contains an open ball about Txy =  

Now, let AxTxy ∈= , , since A is open, then A  contains an open ball 

about x , say  

 
AxB ⊂);( ε  

xAxxBB X −⊂−=⇒ );();0( εε  

TxATBT X −⊂⇒ )());0(( ε  

TxATBT X −⊂⇒ )())1;0(
1

(
ε

 

TxATBT −⊂⇒ )()(
1

0ε
 

))(()( 0 TxATBT −⊂⇒ ε  

But from (2.4.3)  

)( 0BT contains a ball about Y0 , say );0( δYB   

))(()();0( 0 TxATBTB Y −⊂⊂⇒ εδ  

TxATB Y −⊂⇒ )();0(
1

δ
ε

 

TxATB Y −⊂⇒ )();0(
ε

δ
 

)();0( ATTxB Y ⊂+⇒
ε

δ
 

)();( ATTxB ⊂⇒
ε

δ
 

Hence, )( AT contains an open ball about Txy = , so )( AT is open 

inY . 

 

Finally, if XYT →− :1
exists, it is continuous because T is open. 

Since
1−

T is linear, then it is bounded. 
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Applications 
 

A- Let X be the normed space whose points are sequences of complex 

numbers )( ix ξ= with only finitely many nonzero terms and norm 

defined by i
i

x ξsup= , 

Let YXT →: be defined by 
∞
==== 121 )(,.......)

2

1
,( i

i

i
Txy

ξ
ξξ  

Then T is linear and bounded but 
1−T is unbounded. 

 

Proof: 

Let )(),(,, ii yxXyx ηξ ==∈ , α is any scalar 

1- .)()()()()( 1111 TyTx
iiiii

yxT i
i

i
i

i
ii

i
ii +=+=+=

+
=+ ∞

=
∞
=

∞
=

∞
=

ηξηξηξ
 

2- .)()()( 11 Tx
ii

xT i
i

i
i α

ξ
α

αξ
α === ∞

=
∞
=  

Hence, T is linear. 

Also, x
i

Tx i
i

i

i

=≤= ξ
ξ

supsup , then T is bounded. 

Let 0)( =⇒∈= ii Xx ξξ for all but finite number of iξ 's 

Let 0,0)(0 =⇒∀=⇒== xi
i

Tx i
i ξ

ξ
, hence T is one to one, then 

XTRT →− )(:1
exists. 

Let 0)( =⇒∈= ii Xy ηη  for all but finite number of iη 's 

Xi i ∈⇒ )( η and )()( iiiT ηη = , so T is surgective. 

Now, let XTRT →−
)(:

1
is defined by 

∞
=

− == 1

1 )()( iiiyTx η  

Let ,....),...,,(, )()(

2

)(

1

n

k

nn

nn yXy ηηη=∈ , where







≠

=
=

nk

nk
n

n

k

0

1
)(η  

n
yn

1
=⇒  

and ,.....)0,1,0,.....,0,0()(1 =−
nyT where 1is the n th term 

nyT =⇒ ,...)0,1,0,...0(  
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Nnn

n
y

yT

y

yT
T

n

nn

y
Xy

∈∀==≥=

−−

≠
∈

−

1

1)()(
sup

11

0

1

 

1−⇒ T is unbounded. 

This example does not contradict the open mapping theorem, as X is 

not Banach space. 

 

B- Let YXT →: be a bounded linear operator, where X andY are 

Banach spaces. IfT is bijective, then there are positive real 

number a and b such that 

xbxTxa ≤≤ )(   for all .Xx ∈  

 

Proof: 

Since T is bounded, then b∃ such that )1()( XxxbxT ∈∀≤  

And since T is bounded linear operator from a Banach space X onto a 

Banach spaceY , then 
1−T is bounded, so α∃ such that 

TxyYyyyT =∈∀≤−
,)(

1 α   

for all Xx ∈ )()(
1

xTxTTx α≤=⇒ −
,  

put )2()(
1

XxxTxa
a

∈∀≤⇒=α  

Hence, from (1) and (2) we get 

xbxTxa ≤≤ )(    for all .Xx ∈  

 

C- Let X and Y be Banach spaces and YXT →: an injective 

bounded linear operator, then XTRT →− )(:1
is bounded if and only 

if )(TR is closed inY . 

 

Proof: 

Suppose that XTRT →− )(:1
is bounded, and let )(TRy ∈ , then there 

is the sequence )( ny in )(TR such that yyn → .since )(TRyn ∈ , 

nnnnn yTxXxTxy 1, −=⇒∈=  

Now, since )( ny is convergent, it is a Cauchy sequence. Hence  

mnmnmnmn yyTyyTyTyTxx −≤−=−=− −−−− 1111
)(  since 

1−T is bounded 
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therefore, if 0>ε is given Nk ∈∃ ε such that εkmn ≥∀ ,  

1−
<−

T
yy mn

ε
 

which implies that ε<− mn xx , so )( nx is Cauchy sequence in X , 

and hence is convergent since X  is Banach space, say xxn →  

nn Txy =⇒ converges to Tx  

By the uniqueness of the limit )()( TRTRyyTx ⇒∈⇒= is closed. 

 

Conversely 

Let )(TR is closed inY , then )(TR is Banach space so that 

)(: TRXT → is a bijective bounded linear operator defined from a 

Banach space X onto a Banach space )(TR , hence by open mapping 

theorem 
1−T is bounded. 
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2.5  Closed Linear Operators, Closed Graph Theorem 

 

Definition (Closed linear operator) (2.5.1) 

 

Let X andY be normed space and YTDT →)(: a linear operator with 

domain XTD ⊂)( , ThenT is called a closed linear operator if its 

graph 

{ }TxyTDxyxT =∈= ),(:),()(ϑ  

is closed in the normed space YX × , where the two algebraic 

operations of a vector space in YX × are defined as usual, that is 

),(),(),( 21212211 yyxxyxyx ++=+  

),(),( yxyx ααα =  

(α a scalar) and the norm on YX × is defined by 

.),( yxyx +=  

 

Remark (2.5.2) 

 

A subspace M of a complete X is itself complete if and only if 
M closed in X . 

 

Closed Graph Theorem (2.5.3) 

 

Let X andY be Banach spaces and YTDT →)(: a closed linear 

operator, where XTD ⊂)( , then if )(TD is closed in X , the 

operatorT is bounded. 

 

Proof: 

We first show that YX × with norm defined by yxyx +=),( is 

complete, 

Let )( nz be Cauchy in YX × , where ),( nnn yxz = , then for 

every 0>ε , there is Nk ∈ε such that 

)1(, εε knmyyxxzz mnmnmn ><−+−=−  

Hence )( nx and )( ny are Cauchy in X and Y respectively, and 

converge. Say xxn → and yyn → , because X andY are complete. 
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This implies that ),( yxzzn =→ since from (1) with ∞→m we 

have ε≤− zz n , for εkn > , Since the Cauchy sequence )( nz was 

arbitrary, hence YX × is complete. 

 

By assumption, )(Tϑ is closed in YX × and )(TD is closed in X  

Hence )(Tϑ and )(TD  are complete by (2.5.2), 

We consider the mapping 
)()(: TDTp →ϑ  

    xTxxp =),(  

p is linear, p is bounded because 

.),(),( TxxTxxxTxxp =+≤=  

 

 p is bijective; in fact the inverse mapping is 

)()(:1 TTDp ϑ→−
 

),()(
1

Txxxp =−
 

Since )(Tϑ and )(TD are complete, we can apply the bounded inverse 

theorem (2.4.4) and see that
1−p is bounded, say 

xbTxx ≤),(   for some b and all )(TDx ∈  

 HenceT is bounded because 

).(),( TDxxbTxxxTxTx ∈∀≤=+≤  

 

Theorem (Closed linear operator) (2.5.4) 

 

Let YTDT →)(: be a linear operator, where XTD ⊂)( and X and 

Y are normed spaces, thenT is closed if and only if it has the following 

property:  

If xxn → where )(TDxn ∈ , and yTx n → , then )(TDx ∈ and .yTx =  

 

Lemma (Closed operator) (2.5.5) 

 

Let YTDT →)(: be abounded linear operator with domain 

XTD ⊂)( , where X and Y are normed spaces, then: 

(a)  If )(TD is closed subset of X , ThenT is closed. 

(b)  IfT is closed and Y is complete, then )(TD is a closed subset of X . 
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Proof: 

(a) If )( nx is in )(TD and converges, say xxn → and is such that 

)( nTx also converges, then )()( TDTDx =∈ since )(TD is closed, and 

TxTx n → sinceT is continuous , Hence T is closed by theorem (2.5.4) 
 

(b) For )(TDx ∈ there is a sequence )( nx in )(TD such that xxn → , 

sinceT is bounded 

mnmnmn xxTxxTTxTx −≤−=− )(  

This show that )( nTx is Cauchy, )( nTx converges, Say YyTx n ∈→  

becauseY is complete. SinceT is closed, )(TDx ∈ by theorem (2.5.4) 

and yTx = , Hence )(TD is closed because )(TDx ∈ was arbitrary. 

 

Remark (2.5.6) 

 

Closedness does not imply boundedness of a linear operator. 

 

Example: 

Let [ ]1,0CX = and XTDT →)(: is defined by 

xxT ′=)(  

where XTDx ⊆∈ )( , )(TD is subspace of functions Xx ∈ which 

have continuous derivative, Then T is not bounded, but is closed. 
 

Proof: 

We see from (1.3) thatT is not bounded. 

To prove thatT is closed by appling theorem (2.5.4) 

Let )( nx in )(TD be such that both )( nx and )( nTx converge, say 

 xxn →  and   yxTx nn →′=   

Since convergence in the norm of [ ]1,0C is uniform convergence on 

[ ]1,0 , from yxn →′ we have 

∫∫ ∫ −=′=′=
→∞→∞

t

n
n

n

t t

n
xtxdxdxdy

00 0

)0()()(lim)(lim)( ττττττ  

That is ∫+=
t

dyxtx
0

)()0()( ττ  

This show that )(TDx ∈ and yx =′ , by theorem (2.5.4) T is closed. 
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Remark (2.5.7) 

 

Boundedness does not imply Closedness of a linear operator. 

 

Example: 

Let XTDTDT ⊆→ )()(: be the identity operator on )(TD , where 

)(TD is a proper dense subspace of a normed space X , then T is linear 

and bounded butT is not closed, this follows immediately from theorem 

(2.5.4) if we take )(TDXx −∈ and a sequence )( nx in )(TD which 

converges to x . 

 

 

Lemma (2.5.8) 

 

Let X andY be normed spaces, and let YTDT →)(: be a closed linear 

operator, XTD ⊆)( . If XTRT →−
)(:

1
exists, it is a closed linear 

operator. 

 

Proof: 

We have see from theorem (1.2.5(b)) if XTRT →− )(:1
exists, it is 

linear. 

To show that XTRT →− )(:1
is closed 

Suppose that T is a closed operator, and let )( ny be a sequence in )(TR  

such that )( ny converges to Yy ∈ , and ))(( 1

nyT −
 converges to Xx ∈ , 

then nn Txy = for some )(TDxn ∈  

Hence )()( 1

nn yTx −= is sequence in )(TD which converges to Xx ∈  

sinceT is closed, and )()( nn Txy =  converges to y , we must 

have Txy = . That is )()( 1−=∈ TDTRy , hence yTx 1−=  

This implies that
1−

T is closed by theorem (2.5.4). 
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Applications 
 

A- The Null space )(TN of a closed linear operator YXT →: is a 

closed subspace of .X  

 

Proof: 

Let )(TNx ∈ then there exist a sequence )( nx in )(TN such that 

xxn →  

Now, NnxT n ∈∀= ,0)( so that 0)( →nxT  

Since T is closed, then )(TDx ∈ , and )()(0 TNxxT ∈⇒= , 

then )(TN is a closed subspace of .X  

 

B- LetT be closed linear operator with domain )(TD in a Banach space 

X and range )(TR in a normed spaceY .If
1−

T exists and is bounded, 

then )(TR is closed. 

 

Proof: 

Suppose that )()(:1 TDTRT →−
exists, 

Since YTDT →)(: is closed, then
1−T is closed linear operator by 

lemma (2.5.8), Since )()(:
1

TDTRT →−
is bounded and closed linear 

operator, so )()( 1 TRTD =−
is closed by lemma (2.5.5(b)). 

 

C- If YXT →: is a closed linear operator, where X and Y are 

normed space, andY is compact, then T is bounded. 

 

Proof: 

SinceY is compact, thenY is complete, so )()(1 TDXYT ==−
is closed 

by lemma (2.5.5), 

Hence T is bounded by theorem (2.5.3). 
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