King Saud University College of science Mathematics department

Linear operators and Linear functionals on normed spaces

Preparation:

&

Heba Al-Halees

Manal Al-Darwish

Supervision:

Dr. Fatmah Jamjoom

Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in mathematics

Contents

Chapter1: Normed Spaces, Banach Spaces:

1.1: Normed and Banach Space	1
1.2: Linear operators	
1.3: Bounded and continuous linear operators	24
1.4: Linear functionals	.33

Chapter2: Fundamental theorem for normed and Banach spaces

2.1: Zorn's lemma	38
2.2: Hahn-Banach theorem	40
2.3: Hahn Banach theorem for complex vector spaces and	
normed spaces	46
2.4: Open mapping theorem	53
2.5: Closed linear operators, Closed graph theorem	60
References	65

Normed Spaces, Banach Spaces

1.1 Normed and Banach Space

Definition (1.1.1)

A <u>normed space</u> X is a vector space with a norm defined on it A norm on a vector X is a real valued function $\|\cdot\|: X \to \Re$ value at an $x \in X$ is denoted by $\|x\|$ and which has the properties:

1-
$$||x|| \ge 0, ||x|| = 0 \iff x = 0.$$

2- $||\alpha x|| = |\alpha| ||x||.$
3- $||x + y|| \le ||x|| + ||y||.$

where x, y are arbitrary vector in X and α is any scalar. A normed space is a pair $(X, \|\cdot\|)$ simply by X.

<u>Remark</u> (1.1.2)

Let $\|\cdot\| : X \to \Re$ be a norm on X, then the norm is continuous on X.

Proof:

Let
$$x_o$$
 be an arbitrary point of X , and let $\mathcal{E} > 0$ be given
Take $\delta = \mathcal{E}$
 $x \in X$ such that $||x - x_o|| < \delta = \mathcal{E}$
 $||x|| = ||x + x_o - x_o|| \le ||x - x_o|| + ||x_o|| \to ||x|| - ||x_o|| \le ||x - x_o||$ (1)
 $||x_o|| = ||x_o + x - x|| \le ||x_o - x|| + ||x|| \to ||x_o|| - ||x|| \le ||x - x_o||$
 $\to ||x|| - ||x_o|| \ge -||x - x_o||$ (2)

from (1) and (2) we have: $-\|x - x_o\| \le \|x\| - \|x_o\| \le \|x - x_o\|$ $\to \|\|x\| - \|x_o\| \le \|x - x_o\| < \delta = \varepsilon$

then $\|\cdot\|: X \to \Re$ is continuous at x_o , since x_o is arbitrary point of X, then $\|\cdot\|$ is continuous on X.

<u>**Remark** (Minkowski inequality)</u> (1.1.3) Given two sequences $(\xi_i)_{i=1}^{\infty}, (\eta_i)_{i=1}^{\infty}$ s.t. $\sum_{i=1}^{\infty} |\xi_i|^p < \infty, \sum_{i=1}^{\infty} |\eta_i|^p < \infty, p > 1$ Then $(\sum_{i=1}^{\infty} |\xi_i + \eta_i|^p)^{\frac{1}{p}} \le (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}} + (\sum_{i=1}^{\infty} |\eta_i|^p)^{\frac{1}{p}}$.

Examples of normed spaces:

Example (1):

Define $\|\cdot\| : \Re^n \to \Re$ by $\|x\| = (\sum_{i=1}^n \xi_i^2)^{\frac{1}{2}}, x = (\xi_1, \xi_2, ..., \xi_n)$

Clearly $\|\cdot\|$ is well defined.

Now, Let $x, y \in \Re^n$ and α is any scalar:

$$\begin{aligned} 1 - \|x\| &= \left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{\frac{1}{2}} \ge 0, \\ \text{and} \|x\| &= 0 \Leftrightarrow \left(\sum_{i=0}^{n} \xi_{i}^{2}\right)^{\frac{1}{2}} = 0 \Leftrightarrow \xi_{i}^{2} = 0 \forall i \Leftrightarrow \xi_{i} = 0 \forall i \Leftrightarrow x = 0. \\ 2 - \|\alpha x\| &= \left(\sum_{i=1}^{n} (\alpha \xi_{i})^{2}\right)^{\frac{1}{2}} = \left(\sum_{i=1}^{n} \alpha^{2} \xi_{i}^{2}\right)^{\frac{1}{2}} = (\alpha^{2} \sum_{i=1}^{n} \xi_{i}^{2})^{\frac{1}{2}} \\ &= (\alpha^{2})^{\frac{1}{2}} \left(\sum_{i=1}^{n} \xi_{i}^{2}\right)^{\frac{1}{2}} = |\alpha| \|x\|. \end{aligned}$$

3-
$$||x + y|| = (\sum_{i=1}^{n} (\xi_i + \eta_i)^2)^{\frac{1}{2}}$$

 $\leq (\sum_{i=1}^{n} \xi_i^2)^{\frac{1}{2}} + (\sum_{i=1}^{n} \eta_i^2)^{\frac{1}{2}} = ||x|| + ||y||.$ (by Minkowski inequality)

Hence, from 1, 2, and 3 $(\Re^n, \|.\|)$ is norm space. *Example* (2):

Let $\Re^2 = \{x = (\xi_1, \xi_2) : \xi_1, \xi_2 \in \Re\}$, Let $x = (\xi_1, \xi_2), y = (\eta_1, \eta_2)$ are any elements in \Re^2 , α is any scalar, then the following equations are norms on \Re^2 :

(a) $||x||_1 = |\xi_1| + |\xi_2|$ $1 - ||x||_1 = |\xi_1| + |\xi_2| \ge 0,$

and
$$||x||_1 = 0 \Leftrightarrow |\xi_1| + |\xi_2| = 0 \Leftrightarrow \xi_1 = 0, \xi_2 = 0 \Leftrightarrow x = 0.$$

$$2 - ||\alpha x||_1 = ||(\alpha \xi_1, \alpha \xi_2)||_1 = |\alpha \xi_1| + |\alpha \xi_2| = |\alpha|(|\xi_1| + |\xi_2|) = |\alpha|||x||_1.$$

$$3 - ||x + y||_1 = ||(\xi_1 + \eta_1, \xi_2 + \eta_2)||_1 = |\xi_1 + \eta_1| + |\xi_2 + \eta_2|$$

$$\leq |\xi_1| + |\eta_1| + |\xi_2| + |\eta_2| = (|\xi_1| + |\xi_2|) + (|\eta_1| + |\eta_2|) = ||x||_1 + ||y||_1.$$

Hence, from 1, 2, and $3(\Re^2, \|\cdot\|_1)$ is norm space.

(b)
$$\|x\|_{2} = (\xi_{1}^{2} + \xi_{2}^{2})^{\frac{1}{2}}$$

1- $\|x\|_{2} = (\xi_{1}^{2} + \xi_{2}^{2})^{\frac{1}{2}} \ge 0$,
and $\|x\|_{2} = (\xi_{1}^{2} + \xi_{2}^{2})^{\frac{1}{2}} \ge 0 \Leftrightarrow \xi_{1}^{2} + \xi_{2}^{2} = 0 \Leftrightarrow \xi_{1}^{2} = 0, \xi_{2}^{2} = 0$
 $\Leftrightarrow \xi_{1} = 0, \xi_{2} = 0 \Leftrightarrow x = 0$.
2- $\|\alpha x\|_{2} = ((\alpha \xi_{1})^{2} + (\alpha \xi_{2})^{2})^{\frac{1}{2}} = (\alpha^{2} (\xi_{1}^{2}, \xi_{2}^{2}))^{\frac{1}{2}}$
 $= |\alpha| (\xi_{1}^{2} + \xi_{2}^{2})^{\frac{1}{2}} = |\alpha| \|x\|_{2}$.
3- $\|x + y\|_{2} = \|(\xi_{1} + \eta_{1}, \xi_{2} + \eta_{2})\|_{2} = ((\xi_{1} + \eta_{1})^{2} + (\xi_{2} + \eta_{2})^{2})^{\frac{1}{2}}$
 $\le (\xi_{1}^{2} + \xi_{2}^{2})^{\frac{1}{2}} + (\eta_{1}^{2} + \eta_{2}^{2})^{\frac{1}{2}}$
 $= \|x\|_{2} + \|y\|_{2}$ (by Minkowski inequality)

Hence, from 1, 2, and $3(\Re^2, \|.\|_2)$ is norm space. (c) $\|x\|_{\infty} = \max \{ |\xi_1|, |\xi_2| \}$

$$1 - ||x||_{\infty} = \max \{ |\xi_1|, |\xi_2| \} \ge 0,$$

and $||x||_{\infty} = 0 \Leftrightarrow \max \{ |\xi_1|, |\xi_2| \} = 0 \Leftrightarrow \xi_1 = 0, \xi_2 = 0 \Leftrightarrow x = 0.$
$$2 - ||\alpha x||_{\infty} = \max \{ |\alpha \xi_1|, |\alpha \xi_2| \} = |\alpha| \max \{ |\xi_1|, |\xi_2| \} = |\alpha| ||x||_{\infty}.$$

$$3 - ||x + y||_{\infty} = \max \{ |\xi_1 + \eta_1|, |\xi_2 + \eta_2| \} \le \max \{ |\xi_1| + |\eta_1|, |\xi_2| + |\eta_2| \}$$

$$= \max \{ |\xi_1|, |\xi_2| \} + \max \{ |\eta_1|, |\eta_2| \} = ||x||_{\infty} + ||y||_{\infty}.$$

Hence, from 1, 2, and $3(\Re^2, \|\cdot\|_{\infty})$ is norm space. *Example* (3):

There are several norms of practical importance on the vector space of ordered n-tuples of numbers, notably those defined by

$$(a) \|x\|_{1} = |\xi_{1}| + |\xi_{2}| + \dots + |\xi_{n}|$$

$$(b) \|x\|_{p} = (|\xi_{1}|^{p} + |\xi_{2}|^{p} + \dots + |\xi_{n}|^{p})^{\frac{1}{p}} \qquad 1
$$(c) \|x\|_{\infty} = \max \{ |\xi_{1}|, |\xi_{2}|, \dots, |\xi_{n}| \}.$$$$

Now,
$$x = (\xi_1, \xi_2, ..., \xi_n), y = (\eta_1, \eta_2, ..., \eta_n)$$
 and α is any scalar:
(a) $||x||_1 = |\xi_1| + |\xi_2| + ... + |\xi_n|$

$$\begin{aligned} 1 - \|x\|_{1} &= |\xi_{1}| + |\xi_{2}| + \dots + |\xi_{n}| \ge 0, \\ \text{and } \|x\|_{1} &= 0 \Leftrightarrow |\xi_{1}| + \dots + |\xi_{n}| = 0 \Leftrightarrow \xi_{i} = 0 \forall 1 \le i \le n \Leftrightarrow x = 0. \\ 2 - \|\alpha x\|_{1} &= |\alpha \xi_{1}| + \dots + |\alpha \xi_{n}| = |\alpha|(|\xi_{1}| + \dots + |\xi_{n}|) = |\alpha|\|x\|_{1}. \\ 3 - \|x + y\|_{1} &= |\xi_{1} + \eta_{1}| + \dots + |\xi_{n} + \eta_{n}| \\ &\le |\xi_{1}| + |\eta_{1}| + \dots + |\xi_{n}| + |\eta_{n}| = (|\xi_{1}| + \dots + |\xi_{n}|) + (|\eta_{1}| + \dots + |\eta_{n}|) \\ &= \|x\|_{1} + \|y\|_{1}. \end{aligned}$$
(b) $\|x\|_{p} = (|\xi_{1}|^{p} + \dots + |\xi_{n}|^{p})^{\frac{1}{p}} \qquad 1$

$$1 - ||x||_{p} = (|\xi_{1}|^{p} + + |\xi_{n}|^{p})^{\frac{1}{p}} \ge 0,$$

and
$$||x||_{p} = 0 \Leftrightarrow (|\xi_{1}|^{p} + + |\xi_{n}|^{p})^{\frac{1}{p}} = 0 \Leftrightarrow \xi_{i} = 0 \forall 1 \le i \le n \Leftrightarrow x = 0.$$

$$2 - ||\alpha x||_{p} = (|\alpha \xi_{1}|^{p} + + |\alpha \xi_{n}|^{p})^{\frac{1}{p}} = (|\alpha|^{p} (|\xi_{1}|^{p} + + |\xi_{n}|^{p})^{\frac{1}{p}})$$

$$= |\alpha|(|\xi_{1}|^{p} + + |\xi_{n}|^{p})^{\frac{1}{p}} = |\alpha|||x||_{p}.$$

$$3 - ||x + y||_{p} = (\sum_{i=1}^{n} |\xi_{i} + \eta_{i}|^{p})^{\frac{1}{p}}$$

$$\leq (\sum_{i=1}^{n} |\xi_{i}|^{p})^{\frac{1}{p}} + (\sum_{i=1}^{n} |\eta_{i}|^{p})^{\frac{1}{p}} \text{ (by Minkowski inequality)}$$

$$= ||x||_{p} + ||y||_{p}.$$

(c) $||x||_{\infty} = \max \{|\xi_{1}|,, |\xi_{n}|\}$

$$1 - ||x||_{\infty} = \max \{ |\xi_{1}|, ..., |\xi_{n}| \} \ge 0, \text{ since } |\xi_{i}| \ge 0 \quad \forall 1 \le i \le n, \\ ||x||_{\infty} = 0 \Leftrightarrow \max \{ |\xi_{1}|, ..., |\xi_{n}| \} = 0 \Leftrightarrow \xi_{i} = 0 \forall 1 \le i \le n \Leftrightarrow x = 0. \\ 2 - ||\alpha x||_{\infty} = \max \{ |\alpha \xi_{1}|, ..., |\alpha \xi_{n}| \} = |\alpha| \max \{ |\xi_{1}|, ..., |\xi_{n}| \} = |\alpha| ||x||_{\infty}. \\ 3 - ||x + y||_{\infty} = \max \{ |\xi_{1} + \eta_{1}|, ..., |\xi_{n} + \eta_{n}| \} \le \max \{ |\xi_{1}| + |\eta_{1}|, ..., |\xi_{n}| + |\eta_{n}| \} \\ = \max \{ |\xi_{1}|, ..., |\xi_{n}| \} + \max \{ |\eta_{1}|, ..., |\eta_{n}| \} = ||x||_{\infty} + ||y||_{\infty}.$$

Example (4):

(Unit sphere), the sphere $S(0;1) = \{x \in X : ||x|| = 1\}$ in a normed space X is called the unit sphere; we want to show that for the following norms:

Definition (1.1.4)

A norm on a vector space X a <u>metric</u> d on $X \times X$ which is given by

$$d(x, y) = ||x - y|| \qquad x, y \in X$$

d is well defined, since the norm is a well defined function $1 - d(x, y) = ||x - y|| \ge 0.$ $2 - d(x, y) = 0 \Leftrightarrow x = y,$ $d(x, y) = 0 \Leftrightarrow ||x - y|| = 0 \Leftrightarrow x - y = 0 \Leftrightarrow x = y.$ 3 - d(x, y) = d(y, x), d(x, y) = ||x - y|| = ||y - x|| = d(y, x). $4 - d(x, y) \le d(x, z) + d(z, y),$ $d(x, y) = ||x - y|| = ||x - y + z - z|| \le ||x - z|| + ||z - y||$ = d(x, z) + d(z, y).

Thus true, every normed space is a metric space. The converse is not true,

<u>Counterexample</u>:

Let $d: S \times S \to \mathfrak{R}^+$, where S is set of all sequences, d defined by $d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|}$ Let $x = (\xi_i), y = (\eta_i), z = (\alpha_i), \quad x, y, z \in S$ $1 \cdot d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|} \ge 0.$ $2 \cdot d(x, y) = 0 \Leftrightarrow \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|} = 0 \Leftrightarrow |\xi_i - \eta_i| = 0$ $\Leftrightarrow \xi_i = \eta_i \forall i \Leftrightarrow x = y.$ $3 \cdot d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|} = \sum_{i=1}^{n} \frac{1}{2^i} \frac{|\eta_i - \xi_i|}{1 + |\eta_i - \xi_i|} = d(y, x).$ $4 \cdot d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|} = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i + \alpha_i - \alpha_i|}{1 + |\xi_i - \eta_i - \xi_i|}$

$$\leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i} - \alpha_{i}\right| + \left|\alpha_{i} - \eta_{i}\right|}{1 + \left|\xi_{i} - \alpha_{i}\right| + \left|\alpha_{i} - \eta_{i}\right|}$$

$$= \sum_{i=1}^{\infty} \frac{1}{2^{i}} \left(\frac{\left|\xi_{i} - \alpha_{i}\right| + \left|\alpha_{i} - \eta_{i}\right|}{1 + \left|\xi_{i} - \alpha_{i}\right| + \left|\alpha_{i} - \eta_{i}\right|} + \frac{\left|\alpha_{i} - \eta_{i}\right|}{1 + \left|\xi_{i} - \alpha_{i}\right| + \left|\alpha_{i} - \eta_{i}\right|}\right)$$

$$\leq \sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{\left|\xi_{i} - \alpha_{i}\right|}{1 + \left|\xi_{i} - \alpha_{i}\right|} + \sum_{i=1}^{n} \frac{1}{2^{i}} \frac{\left|\alpha_{i} - \eta_{i}\right|}{1 + \left|\alpha_{i} - \eta_{i}\right|} = d(x, z) + d(z, y).$$

then (S, d) is metric space. On the other hand, Let $x = (1,1,0,0,....), y = (1,0,0,0,....), \alpha = 3$ $\rightarrow \alpha x = (3,3,0,0,....), \alpha y = (3,0,0,0,....)$ Now, $|\alpha|d(x, y) = \alpha \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|} = 3 \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\xi_i - \eta_i|}{1 + |\xi_i - \eta_i|}$ $= 3 \left[\frac{1}{2^1} \frac{|1 - 1|}{1 + |1 - 1|} + \frac{1}{2^2} \frac{|1 - 0|}{1 + |1 - 0|} + 0 + ... \right] = \frac{3}{4} \cdot \frac{1}{2} = \frac{3}{8}.$ and $d(\alpha x, \alpha y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|\alpha \xi_i - \alpha \eta_i|}{1 + |\alpha \xi_i - \alpha \eta_i|}$ $= \left[\frac{1}{2^1} \frac{|3 - 3|}{1 + |3 - 3|} + \frac{1}{2^2} \frac{|3 - 0|}{1 + |3 - 0|} + 0 + ... \right] = \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{16}.$

that means $|\alpha| d(x, y) \neq d(\alpha x, \alpha y)$,

hence d is not obtained from a norm, this may immediately be seen from the following lemma which states two basic properties of a metric d obtained from a norm.

Lemma (1.1.5)

A metric d induced by a norm on a norm space X satisfies:

- (a) d(x+a, y+a) = d(x, y).
- (b) $d(\alpha x, \alpha y) = |\alpha| d(x, y).$

for all $x, y, a \in X$ and every scalar α .

<u>Proof</u>:

$$d(x + a, y + a) = ||x + a - (y + a)|| = ||x - y|| = d(x, y),$$

and $d(\alpha x, \alpha y) = ||\alpha x - \alpha y|| = |\alpha|||x - y|| = |\alpha||d(x, y).$

Definition (1.1.6)

Let $(x_n)_{n=1}^{\infty}$ be a sequence in a normed vector space $(X, \|\cdot\|)$, we say (x_n) <u>converges</u> to x_0 , and denoted by $x_n \to x_0$ if for any $\varepsilon > 0$ $\exists k_{\varepsilon} \in \mathbb{N}$ such that $\forall n > k_{\varepsilon} \Rightarrow ||x_n - x_0|| < \varepsilon$.

Definition (1.1.7)

Let $(x_n)_{n=1}^{\infty}$ be a sequence in a normed vector space $(X, \|.\|)$, we say (x_n) is a <u>Cauchy sequence</u> if $\forall \varepsilon > 0 \quad \exists k_{\varepsilon} \in \mathbb{N}$ such that $\|x_n - x_m\| < \varepsilon \quad \forall n, m > k_{\varepsilon}$.

Definition (1.1.8)

Let $(X, \|\cdot\|)$ be a normed vector space, we say X is <u>complete</u> or <u>Banach</u> if every Cauchy sequence in $(X, \|\cdot\|)$ is convergent.

Examples of complete normed spaces:

Example (1):

Let $C[a,b] = \{x : x : [a,b] \to \Re \text{ is continuous } \}$ we define a norm $\|\cdot\| : C[a,b] \to \Re \text{ by } \|x\| = \max_{t \in [a,b]} |x(t)|$ (1),

The norm is well defined, since x is continuous on a closed and bounded interval, that means x attains the maximum value on the interval, then $\max_{t \in [a,b]} |x(t)|$ exists and unique.

Now, we want to show that $(C[a,b], \|.\|)$ is norm space Let *x*, *y* are any elements in C[a,b], α is any scalar:

1-
$$||x|| = \max_{t \in [a,b]} |x(t)| \ge 0$$
, since $|x(t)| \ge 0$ $\forall t \in [a,b]$
and $||x|| = \max_{t \in [a,b]} |x(t)| = 0 \Leftrightarrow x(t) = 0$ $\forall t \in [a,b] \Leftrightarrow x = 0$.
2- $||\alpha x|| = \max_{t \in [a,b]} |\alpha x(t)| = \max_{t \in [a,b]} |\alpha ||x(t)|) = |\alpha| \max_{t \in [a,b]} |x(t)| = |\alpha| ||x||.$

3.
$$||x + y|| = \max_{i \in [a,b]} |(x + y)(t)| = \max_{i \in [a,b]} |x(t) + y(t)|$$

 $\leq \max_{i \in [a,b]} (|x(t)| + |y(t)|) = \max_{i \in [a,b]} |x(t)| + \max_{i \in [a,b]} |y(t)| = ||x|| + ||y||.$
Hence, from 1, 2, and 3 $(C[a,b], ||\cdot||)$ is norm space.
Now, we want to show that $C[a,b]$ is complete,
Let $(x_m)_{m=1}^{\infty}$ is any Cauchy sequence in $C[a,b], x_m : [a,b] \rightarrow \Re$ is
continuous $\Rightarrow \forall \varepsilon > 0 \quad \exists k_{\varepsilon} \in \mathbb{N}$ such that
 $||x_m - x_n|| < \varepsilon \quad \forall n, m > k_{\varepsilon}$
from (1)
 $\Rightarrow \max_{i \in [a,b]} |x_m(t) - x_n(t)| < \varepsilon$
 $\Rightarrow \forall t \in [a,b] \quad n, m \ge k_{\varepsilon}$
 $\Rightarrow |x_m(t) - x_n(t)| \le \max_{i \in [a,b]} |x_m(t) - x_n(t)| < \varepsilon$ (2)
 $\Rightarrow \forall t \in [a,b] \quad (x_m(t))_{m=1}^{\infty}$ is a Cauchy sequence of numbers, since
 \Re is complete,
 $\Rightarrow (x_m(t))_{m=1}^{\infty}$ is convergent, i.e. $\lim_{m \to \infty} x_m(t)$ exists $\forall t \in [a,b]$
So, we can define a function $x : [a,b] \rightarrow \Re$ by
 $x(t) = \lim_{m \to \infty} x_m(t)$ (3),
clearly x is well defined, since the limit exists

Now, we using (2), for
$$t \in [a,b]$$
 $n \ge k_{\varepsilon}$
 $|x_n(t) - x(t)| = \left| x_n(t) - \lim_{m \to \infty} x_m(t) \right|$ from (3)
 $= \lim_{m \to \infty} |x_n(t) - x_m(t)|$ (since the limit is a continuous function).
 $< \varepsilon$

Since the limit depends $\boldsymbol{\epsilon}$

 $\Rightarrow (x_n) \text{ Converges uniformly to } x$ $\Rightarrow x \text{ is continuous}$ that means $x \in C[a,b]$ and $x_n \to x$ $\Rightarrow C[a,b] \text{ is complete.}$

Example (2):

Let
$$l^p = \left\{ x = (\xi_i) : \xi_i \in C, \sum_{i=1}^{\infty} |\xi_i|^p < \infty \right\}$$
, we define a norm
 $\|\cdot\| : l^p \to \Re$ by $\|x\| = (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}}$ (1),
The norm is well defined by definition.
Now, we want to show that $(l^p, \|\cdot\|)$ is norm space,
Let $x = (\xi_i), y = (\eta_i)$ are any elements in l^p , α is any scalar:
1- $\|x\| = (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}} \ge 0$
and $\|x\| = 0 \Leftrightarrow (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}} = 0 \Leftrightarrow \xi_i = 0 \forall i \Leftrightarrow (\xi_i) = 0 \Leftrightarrow x = 0.$
2- $\|\alpha x\| = \|\alpha(\xi_i)_{i=1}^{\infty}\| = (\sum_{i=1}^{\infty} |\alpha\xi_i|^p)^{\frac{1}{p}} = (\sum_{i=1}^{\infty} |\alpha|^p |\xi_i|^p)^{\frac{1}{p}} = (|\alpha|^p \sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}}$
 $= (|\alpha|^p)^{\frac{1}{p}} (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}} = |\alpha| (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}} = |\alpha| \|x\|.$
3- $\|x + y\| = \|(\xi_i) + (\eta_i)\| = (\sum_{i=1}^{\infty} |\xi_i + \eta_i|^p)^{\frac{1}{p}}$
 $\leq (\sum_{i=1}^{\infty} |\xi_i|^p)^{\frac{1}{p}} + (\sum_{i=1}^{\infty} |\eta_i|^p)^{\frac{1}{p}}$ (from Minkowski inequality)
 $= \|x\| + \|y\|.$

Hence, from 1, 2 and 3 $(l^p, \|\cdot\|)$ is norm space. Now, we want to show that l^p is complete, Let (x_m) be a Cauchy sequence in l^p , where $x_m = (\xi_j^{(m)})_{j=1}^{\infty}$,

and let $\varepsilon > 0$ be given, then $\exists k_{\varepsilon} \in \mathbb{N}$ such that

$$\|x_m - x_n\| < \varepsilon \qquad \forall m, n \ge k_{\varepsilon}$$

from(1)

$$\Rightarrow \left(\sum_{j=1}^{\infty} \left| \boldsymbol{\xi}_{j}^{(m)} - \boldsymbol{\xi}_{j}^{(n)} \right|^{p} \right)^{\frac{1}{p}} < \boldsymbol{\varepsilon} \qquad \forall m, n \ge k_{\boldsymbol{\varepsilon}}$$
$$\Rightarrow \sum_{j=1}^{\infty} \left| \boldsymbol{\xi}_{j}^{(m)} - \boldsymbol{\xi}_{j}^{(n)} \right|^{p} < \boldsymbol{\varepsilon}^{p} \qquad \forall m, n \ge k_{\boldsymbol{\varepsilon}} \qquad (2)$$
$$\Rightarrow \forall j \in \mathbf{N}, \forall m, n \ge k_{\boldsymbol{\varepsilon}} \qquad , \left| \boldsymbol{\xi}_{j}^{(m)} - \boldsymbol{\xi}_{j}^{(n)} \right| \le \sum_{j=1}^{\infty} \left| \boldsymbol{\xi}_{j}^{(m)} - \boldsymbol{\xi}_{j}^{(n)} \right| < \boldsymbol{\varepsilon}$$

so, $\forall m, n \ge k_{\varepsilon}$ $j \in \mathbb{N} \Rightarrow \left| \xi_{j}^{(m)} - \xi_{j}^{(n)} \right| < \varepsilon$ $\Rightarrow \forall j \in \mathbb{N}$, $(\xi_{j}^{(m)})_{m=1}^{\infty}$ is a Cauchy sequence of numbers, since *C* is complete, $\Rightarrow (\xi_{j}^{(m)})_{m=1}^{\infty}$ is convergent for each $j \in \mathbb{N}$ say, $(\xi_{j}^{(m)})_{m=1}^{\infty}$ converges to ξ_{j} , put $x = (\xi_{1}, \xi_{2}, \xi_{3}, ...) = (\xi_{j})_{j=1}^{\infty}$ Claim:

1-
$$x \in l^p$$
 i.e. $\sum_{j=1}^{\infty} \left| \xi_j \right|^p < \infty$.
2- $(x_m) \to x$.

Now, from (2)
$$\forall k \in \mathbb{N}$$
, $m \ge k_{\varepsilon}$

$$\sum_{j=1}^{k} \left| \xi_{j}^{(m)} - \xi_{j} \right| = \sum_{j=1}^{k} \left| \xi_{j}^{(m)} - \lim_{n \to \infty} \xi_{j}^{(n)} \right|^{p} = \lim_{n \to \infty} \sum_{j=1}^{k} \left| \xi_{j}^{(m)} - \xi_{j}^{(n)} \right|^{p}$$

$$\leq \lim_{n \to \infty} \sum_{j=1}^{\infty} \left| \xi_{j}^{(m)} - \xi_{j}^{(n)} \right|^{p} < \varepsilon^{p}$$

$$\Rightarrow \left\| x_{m} - x \right\|^{p} = \sum_{j=1}^{\infty} \left| \xi_{j}^{(m)} - \xi_{j} \right| < \varepsilon^{p} \qquad (3)$$

$$\Rightarrow x_{m} - x \text{ belong to } l^{p}$$
since $x_{m} \in l^{p}$, and l^{p} is a vector space

$$\Rightarrow x = x_{m} - (x_{m} - x) \in l^{p}, \qquad (4)$$
and from (3) it clear that $\forall m \ge k_{\varepsilon}, \qquad \| x_{m} - x \| < \varepsilon$

$$\Rightarrow (x_{m}) \rightarrow x \qquad (5)$$
from (4)and(5) $\Rightarrow l^{p}$ is complete.

Example (3):

We proved that $(\mathfrak{R}^n, \|.\|)$ is norm space with norm given by

$$||x|| = (\sum_{j=1}^{n} \xi_{j}^{2})^{\frac{1}{2}}, x \in \Re^{n}.$$

Now, we want to show that \mathfrak{R}^n is complete, Let (x_m) be a Cauchy sequence in \mathfrak{R}^n , $x_m = (\xi_1^{(m)}, \xi_2^{(m)}, ..., \xi_n^{(m)})$ $\Rightarrow \forall \varepsilon > 0 \quad \exists k_{\varepsilon} \in \mathbb{N}$ such that $\|x_m - x_r\| < \varepsilon \quad \forall m, r > k_{\varepsilon}$

$$\Rightarrow \left(\sum_{j=1}^{n} \left(\xi_{j}^{(m)} - \xi_{j}^{(r)}\right)^{2}\right)^{\frac{1}{2}} < \varepsilon \qquad \forall m, r > k_{\varepsilon}$$

$$\Rightarrow \forall j \in \mathbb{N}, \quad \forall m, r > k_{\varepsilon}, \quad \left|\xi_{j}^{(m)} - \xi_{j}^{(n)}\right| < \varepsilon$$
since \Re is complete $\Rightarrow \forall j \in \mathbb{N}, \quad \left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ is convergent $\forall j \in \mathbb{N}$, say $\left(\xi_{j}^{(m)}\right)_{m=1}^{\infty}$ converges to ξ_{j} , put $x = \left(\xi_{1}, \xi_{2}, ..., \xi_{n}\right) = \left(\xi_{j}\right)_{j=1}^{n}, x \in \Re^{n}$ we want to prove that $x_{m} \to x$, since $\left(\xi_{j}^{(m)}\right) \to \xi_{j}, \quad \lim_{m \to \infty} \xi_{j}^{(m)} = \xi_{j}$

$$\Rightarrow \exists k_{j} \in \mathbb{N} \text{ such that } m \ge k_{j} \Rightarrow \left|\xi_{j}^{(m)} - \xi_{j}\right| < \frac{\varepsilon}{\sqrt{n}} \quad \forall j = 1, 2, ..., n$$
Take $k = \max\{k_{1}, k_{2}, ..., k_{n}\}$

$$\Rightarrow \forall m \ge k \Rightarrow \left|\xi_{j}^{(m)} - \xi_{j}\right| < \frac{\varepsilon}{\sqrt{n}}$$

$$\Rightarrow \sum_{j=1}^{n} \left(\xi_{j}^{(m)} - \xi_{j}\right)^{2} < \sum_{j=1}^{n} \frac{\varepsilon^{2}}{n} = n \frac{\varepsilon^{2}}{n} = \varepsilon^{2}$$

$$\Rightarrow \left(\sum_{j=1}^{n} \left(\xi_{j}^{(m)} - \xi_{j}\right)^{2}\right)^{\frac{1}{2}} < \varepsilon$$

$$\Rightarrow \|x_{m} - x\| < \varepsilon$$

$$\Rightarrow x_{m} \to x$$

 $\Rightarrow \Re^n$ is complete.

 $\underline{Example}_{\text{Let } l^{\infty}} = \{ x = (\xi_j), \quad (\xi_j) \text{ is bounded sequence } \}, \text{ we define} \\
 \| . \| : l^{\infty} \to \Re_{\text{by}} \| x \| = \sup_{j \in \mathbb{N}} |\xi_j| \qquad (1),$

The norm is well defined, since $x = (\xi_j) \in l^{\infty}$ is bounded sequence $\Rightarrow |\xi_j| \le c_x \forall j \in \mathbb{N}$ for some $c_x > 0 \Rightarrow \{\xi_j | : j \in \mathbb{N}\}$ is bounded subset of \Re , $\Rightarrow \sup_{j \in \mathbb{N}} |\xi_j|$ exists and unique.

Now, we want to show that $(l^{\infty}, \|\cdot\|)$ is norm space, Let $x = (\xi_j), y = (\eta_j)$ are any elements in l^{∞}, α is any scalar: $1 - \|x\| = \sup_{j \in \mathbb{N}} |\xi_j| \ge 0$, and $\|x\| = 0 \Leftrightarrow \sup_{j \in \mathbb{N}} |\xi_j| = 0 \Leftrightarrow \xi_j = 0 \quad \forall j \in \mathbb{N} \Leftrightarrow x = 0.$

2.
$$\|\alpha x\| = \sup_{j \in \mathbb{N}} (|\alpha \xi_j|) = \sup_{j \in \mathbb{N}} (|\alpha \| \xi_j|) = |\alpha| \sup_{j \in \mathbb{N}} |\xi_j| = |\alpha| \| x \|.$$

3. $\|x + y\| = \sup_{j \in \mathbb{N}} |\xi_j + \eta_j| \le \sup_{j \in \mathbb{N}} (|\xi_j| + |\eta_j|) = \sup_{j \in \mathbb{N}} |\xi_j| + \sup_{j \in \mathbb{N}} |\eta_j| = \|x\| + \|y\|.$
Hence, from 1, 2 and 3 $(l^*, \|\cdot\|)$ is norm space.
Now, we want to show that l^∞ is complete.
Let (x_m) be a Cauchy sequence in l^∞ , $x_m = (\xi_j^{(m)})_{j=1}^{\infty}$
 $\Rightarrow \forall \varepsilon > 0 \quad \exists k_{\varepsilon} \in \mathbb{N}$ such that
 $\|x_m - x_n\| < \varepsilon \quad \forall m, n > k_{\varepsilon}$
from (1)
 $\Rightarrow \sup_{j \in \mathbb{N}} |\xi_j^{(m)} - \xi_j^{(n)}| < \varepsilon \quad \forall m, n > k_{\varepsilon}$
 $\Rightarrow \forall j \in \mathbb{N}, \quad m, n > k_{\varepsilon}, \quad |\xi_j^{(m)} - \xi_j^{(n)}| < \sup_{j \in \mathbb{N}} |\xi_j^{(m)} - \xi_j^{(n)}| < \varepsilon$ (2)
 $\Rightarrow \forall j \in \mathbb{N}, \quad (\xi_j^{(m)})_{m=1}^{\infty}$ is Cauchy sequence of numbers, since *C* is
complete, $\Rightarrow (\xi_j^{(m)})_{m=1}^{\infty}$ is convergent for each $j \in \mathbb{N}$, say $(\xi_j^{(m)})_{m=1}^{\infty}$
converges to ξ_j , put $x = (\xi_1, \xi_2,) = (\xi_j)_{j=1}^{\infty}$
Claim:
1. $x \in l^\infty$ i.e. $x = (\xi_j^{(m)})_{m=1}^{\infty}$ is bounded sequence.
2. $(x_m) \to x$.
Now, $\forall j \in \mathbb{N}, \quad m \ge k_{\varepsilon}$
 $\Rightarrow |\xi_j^{(m)} - \xi_j| = |\xi_j^{(m)} - \lim_{n \to \infty} \xi_j^{(n)}| = \lim_{n \to \infty} |\xi_j^{(m)} - \xi_j^{(n)}| from(2)$
 $< \varepsilon$ (3)

 $\Rightarrow x_m - x$ is bounded sequence $\Rightarrow x_m - x$ belong to l^{∞}

since $x_m \in l^{\infty}$, and l^{∞} is vector space

$$\Rightarrow x = x_m - (x_m - x) \in l^{\infty}$$
(4)

and from (3) it clear that $\forall m \ge k_{\varepsilon}$,

$$\left\|x_m - x\right\| < \varepsilon$$

 $\Rightarrow (x_m) \to x \qquad (5)$
from (4)and(5) $\Rightarrow l^{\infty} \text{ is complete.}$

Example of non-complete norm space:

Define $\|\cdot\|: \Re^+ \to \Re^+$ by $\|x\| = |x|$ Clearly, the norm is well defined Now, let $x, y \in \Re^+$ and α is any scalar: 1- $\|x\| = |x| \ge 0$ and $\|x\| = 0 \Leftrightarrow |x| = 0 \Leftrightarrow x = 0$. 2- $\|\alpha x\| = |\alpha x| = |\alpha| \|x| = |\alpha| \|x\|$. 3- $\|x + y\| = |x + y| \le |x| + |y| = \|x\| + \|y\|$. Hence, from 1, 2, and 3 $(\Re^+, \|\cdot\|)$ is norm space Now, let x_n be a sequence in \Re^+ , $x_n = (\frac{1}{n})_{n=1}^{\infty}$ $n \in N$ $\forall \varepsilon > 0$ $\exists k_{\varepsilon} \in N$ such that $k_{\varepsilon} > \frac{2}{\varepsilon}$ $m, n > k_{\varepsilon}$ $\|x_n - x_m\| = |x_n - x_m| = \left|\frac{1}{n} - \frac{1}{m}\right| = \left|\frac{1}{n} + (-\frac{1}{m})\right| \le \left|\frac{1}{n}\right| + \left|\frac{1}{m}\right|$ $= \frac{1}{n} + \frac{1}{m} < \frac{1}{k_{\varepsilon}} + \frac{1}{k_{\varepsilon}} = \frac{2}{k_{\varepsilon}} < \varepsilon$ $\Rightarrow x_n$ is Cauchy sequence but $x_n = (\frac{1}{n}) \to 0$ $0 \notin \Re^+$ $\Rightarrow (\Re^+, \|\cdot\|)$ is not complete.

1.2 *Linear operators*

Definition (1.2.1)

A *linear operator* T is an operator such that:

(a) The domain D(T) of T is a vector space and the range R(T) lies in a vector space over the same field.

(b) for all $x, y \in D(T)$ and scalars α ,

$$T(x + y) = T(x) + T(y).$$
$$T(\alpha x) = \alpha T(x).$$

Definition (1.2.2)

The <u>Null space</u> of T is the set of all $x \in D(T)$ such that T(x) = 0.

Examples of linear operators:

Example (1)

The Identity operator $I_X : X \to X$ is defined by

$$I_X(x) = x \qquad \forall x \in X$$

this operator is linear, since

$$I(x + y) = x + y = I(x) + I(y)$$
 $\forall x, y \in X$.
 $I(\alpha x) = \alpha x = \alpha I(x)$, where α any scalar, $x \in X$

Example (2)

Let be X a vector space of all polynomials on the closed bounded interval [a, b], we define the operator $T : X \to Y$ by:

$$T(x(t)) = x'(t) \quad \forall x \in X$$

this operator is linear, since $\forall x, y \in X$ $t \in [a,b]$
 $(T(x+y))(t) = T((x+y)(t)) = (x+y)'(t) = x'(t) + y'(t)$
 $= T(x(t)) + T(y(t)) = (T(x) + T(y))(t)$
there for $T(x+y) = T(x) + T(y)$.
and
 $(T(\alpha x))(t) = T((\alpha x)(t)) = (\alpha x)'(t) = \alpha x'(t) = \alpha T(x(t)) = (\alpha T(x))(t).$

there for $T(\alpha x) = \alpha T(x)$. Hence $T: X \to Y$ is linear operator.

Example (3)

The operator T from C[a,b] into itself $T:C[a,b] \rightarrow C[a,b]$ can be defined by

$$T(x(t)) = \int_{a}^{t} x(\tau) d\tau \qquad t \in [a, b]$$

this operator is linear, since $\forall x, y \in X$ $t \in [a, b]$

$$(T(x+y))(t) = \int_{a}^{t} (x+y)(\tau) d\tau = \int_{a}^{t} (x(\tau)+y(\tau)) d\tau$$
$$= \int_{a}^{t} x(\tau) d\tau + \int_{a}^{t} y(\tau) d\tau = (Tx(t)) + (Ty(t))$$

then T(x + y) = T(x) + T(y). and $(T(\alpha x)(t)) = \int_{a}^{t} (\alpha x)(\tau) d\tau = \alpha \int_{a}^{t} x(\tau) d\tau = (\alpha T(x))(t)$ then $T(\alpha x) = \alpha T(x)$. Hence $T : C[a,b] \to C[a,b]$ is linear operator.

Example (4)

The cross product with one factor kept fixed defines a linear operator $T: \Re^3 \to \Re^3$ by $Tx = x \times a = (x_2\alpha_3 - x_3\alpha_2, x_3\alpha_1 - x_1\alpha_3, x_1\alpha_2 - x_2\alpha_1)$ where $a = (\alpha_i) \in \Re^3$ is fixed, $a \neq 0$ say $\alpha_1 \neq 0$ this operator is linear, since $\forall x, y \in \Re^3$, α is any scalar: 1- $T(x + y) = (x + y) \times a = (x \times a) + (y \times a) = Tx + Ty$. 2- $T(\alpha x) = (\alpha x) \times a = \alpha (x \times a) = \alpha Tx$. Hence, T is linear. The null space of this operator is $N(T) = \{x \in \Re^3 : Tx = (0,0,0)\},$ $Tx = (0,0,0) \Leftrightarrow (x_2\alpha_3 - x_3\alpha_2, x_3\alpha_1 - x_1\alpha_3, x_1\alpha_2 - x_2\alpha_1) = (0,0,0)$ $\Leftrightarrow (1)x_2\alpha_3 - x_3\alpha_2 = 0$ (2) $x_3\alpha_1 - x_1\alpha_3 = 0$ (3) $x_1\alpha_2 - x_2\alpha_1 = 0$ since $\alpha_1 \neq 0$, then from(2) we get $x_3 = \frac{\alpha_3}{\alpha_1}x_1$, and from (3)we get $x_2 = \frac{\alpha_2}{\alpha_1}x_1$ $\Rightarrow x = (x_1, x_2, x_3) = (x_1, \frac{\alpha_2}{\alpha_1}x_1, \frac{\alpha_3}{\alpha_1}x_1) = x_1(1, \frac{\alpha_2}{\alpha_1}, \frac{\alpha_3}{\alpha_1})$ Now, multiplying both said by α_1 we get $\alpha_1 x = x_1(\alpha_1, \alpha_2, \alpha_3)$ $\Rightarrow x = \frac{x_1}{\alpha_1} \cdot a \Rightarrow x = \beta \cdot a$, where $\beta = \frac{x_1}{\alpha_1}$ Hence the Null space is $N(T) = span \{a\}$.

Theorem (Range and null space) (1.2.3)

Let T be a linear operator, then:

- (a) The range R(T) is a vector space.
- (b) If dim $D(T) = n < \infty$, then dim $R(T) \le n$.
- (c) The null space N(T) is a vector space.

Proof:

(a) Let $y_1, y_2 \in R(T)$ we want to show that $\alpha y_1 + \beta y_2 \in R(T)$ for any scalars α, β

Now, we have $y_1 = T(x_1)$, $y_2 = T(x_2)$ for some $x_1, x_2 \in D(T)$ and $\alpha x_1 + \beta x_2 \in D(T)$ because D(T) is a vector space and since *T* is linear, we have $T(\alpha x_1 + \beta x_2) = \alpha T(x_1) + \beta T(x_2) = \alpha y_1 + \beta y_2$ hence $\alpha y_1 + \beta y_2 \in R(T)$, since $y_1, y_2 \in R(T)$ were arbitrary and so were

the scalars this prove that R(T) is a vector space.

(b) We choos n + 1 element $y_1, y_2, ..., y_{n+1}$ of R(T) in an arbitrary fashion. Then we have $y_1 = T(x_1), ..., y_{n+1} = T(x_{n+1})$ for some $x_1, x_2, ..., x_{n+1}$ in D(T)

Since dim D(T) = n, this set $\{x_1, x_2, ..., x_{n+1}\}$ must be linearly dependent. Hence $\alpha_1 x_1 + ... + \alpha_{n+1} x_{n+1} = 0_X$

for some scalars $\alpha_1, ..., \alpha_{n+1}$ not all zero. Since *T* is linear and $T 0_X = 0_Y$, application of *T* on both sides gives

$$T(\alpha_{1}x_{1} + \dots + \alpha_{n+1}x_{n+1}) = \alpha_{1}y_{1} + \dots + \alpha_{n+1}y_{n+1} = 0_{Y}$$

This shows that $\{y_1, ..., y_{n+1}\}$ is linearly dependent set because the α_j 's are not all zero. Remembering that this subset of R(T) was chosen in an arbitrary fashion, we conclude that R(T) has no linearly independent subsets of n+1 or more element. By definition this means that dim $R(T) \le n$.

(c) Let $x_1, x_2 \in N(T)$, then $T(x_1) = T(x_2) = 0$, α any scalar, Since T is linear $T(x_1 + x_2) = T(x_1) + T(x_2) = 0 + 0 = 0$, hence $x_1 + x_2 \in N(T)$ (1) $T(\alpha x_1) = \alpha T(x_1) = \alpha 0 = 0$, hence $\alpha x_1 \in N(T)$ (2) Then, from (1), (2) N(T) is a vector space.

Definition (1.2.4)

Let *X*, *Y* be a vector spaces, $T : D(T) \to Y$ is said to be <u>injective</u> or <u>one</u> <u>to one</u>, if for any $x_1, x_2 \in D(T)$

 $x_1 \neq x_2 \Longrightarrow T(x_1) \neq T(x_2)$

equivalently,

$$T(x_1) = T(x_2) \Longrightarrow x_1 = x_2.$$

Definition (1.2.5)

Let $T : D(T) \to R(T)$ is one to one, The mapping $T^{-1} : R(T) \to D(T)$ defined by $T^{-1}(y) = x$

which maps every $y \in R(T)$ onto that $x \in D(T)$ for which T(x) = y, the mapping T^{-1} is called the *inverse* of *T*. we clearly have

$T^{-1}T(x) = x$	$\forall x \in D(T)$
$TT^{-1}(y) = y$	$\forall y \in R(T).$

Theorem (Inverse theorem) (1.2.6)

Let X, Y be a vector spaces, let T : D(T) → Y be a linear operator with domain D(T) ⊂ X and range R(T) ⊂ Y, then:
(a) The inverse T⁻¹ : R(T) → D(T) exist if and only if T(x) = 0 ⇒ x = 0.
(b) If T⁻¹ exists, it is a linear operator.
(c) If dim D(T) = n < ∞ and T⁻¹ exists, then dim R(T) = dim D(T).

Proof:

(a) Suppose that $T^{-1}: R(T) \to D(T)$ exists, then $T: D(T) \to R(T)$ is one to one, suppose T(x) = 0, then

$$T(x) = T(0) = 0 \Longrightarrow x = 0$$

Conversely

Suppose that $T(x) = 0 \Rightarrow x = 0$, let $T(x_1) = T(x_2)$, since T is linear, $T(x_1 - x_2) = T(x_1) - T(x_2) = 0$

so that $x_1 - x_2 = 0$ Hence $x_1 = x_2$ Hence *T* is one to one and so T^{-1} exists.

(b) If $T^{-1} : R(T) \to D(T)$ exists, it is a linear operator. Indeed, Let $y_1, y_2 \in D(T^{-1}) = R(T)$, then $\exists x_1, x_2 \in X$ such that $y_1 = T(x_1), y_2 = T(x_2)$, then $x_1 = T^{-1}(y_1), x_2 = T^{-1}(y_2)$ Now, $T^{-1}(\alpha y_1 + \beta y_2) = T^{-1}(\alpha T(x_1) + \beta T(x_2))$ $= T^{-1}(T(\alpha x_1 + \beta x_2))$ $= \alpha x_1 + \beta x_2$ $= \alpha T^{-1}(y_1) + \beta T^{-1}(y_2).$

Hence, T^{-1} is a linear operator.

(c) Suppose dim $D(T) = n < \infty$, and $T^{-1} : R(T) \to X$ exists, By theorem (1.2.3(b)) we have dim $R(T) \le \dim D(T) = n$ Now, $n = \dim D(T) = \dim R(T^{-1}) \le \dim D(T^{-1}) = \dim R(T) \le n$ Hence, dim $D(T) = \dim R(T)$.

Applications:

A- Let $T_1 : \mathfrak{R}^2 \to \mathfrak{R}^2$ be defined by $T_1(\xi_1, \xi_2) = (\xi_1, 0)$

Then T_1 is linear operator.

<u>Proof:</u>

Let
$$x = (\xi_1, \xi_2) \in \Re^2$$
, $y = (\eta_1, \eta_2) \in \Re^2$, and α is any scalar
 $T_1(x + y) = T_1((\xi_1, \xi_2) + (\eta_1, \eta_2)) = T_1(\xi_1 + \eta_1, \xi_2 + \eta_2)$
 $= (\xi_1 + \eta_1, 0) = (\xi_1, 0) + (\eta_1, 0) = T_1(x) + T_1(y).$
 $T_1(\alpha x) = T_1(\alpha \xi_1, \alpha \xi_2) = (\alpha \xi_1, 0) = \alpha(\xi_1, 0) = \alpha T_1(x).$
and $R(T_1) = \{(\xi_1, 0) : \xi_1 \in \Re\} = \Re \times \{0\}.$
 $N(T_1) = \{(\xi_1, \xi_2) \in \Re^2 : T_1(\xi_1, \xi_2) = (0, 0)\}$
 $= \{(\xi_1, \xi_2) \in \Re^2 : (\xi_1, 0) = (0, 0)\}$
 $= \{(\xi_1, \xi_2) \in \Re^2 : \xi_1 = 0\}.$

B- Let
$$T_2: \mathfrak{R}^2 \to \mathfrak{R}^2$$
 defined by
 $T_2(\xi_1, \xi_2) = (0, \xi_2)$

Then T_2 is linear operator.

Proof:

Let
$$x = (\xi_1, \xi_2) \in \Re^2$$
, $y = (\eta_1, \eta_2) \in \Re^2$, and α is any scalar
 $T_2(x + y) = T_2((\xi_1, \xi_2) + (\eta_1, \eta_2)) = T_2(\xi_1 + \eta_1, \xi_2 + \eta_2)$
 $= (0, \xi_2 + \eta_2) = (0, \xi_2) + (0, \eta_2) = T_2(x) + T_2(y).$
 $T_2(\alpha x) = T_2(\alpha \xi_1, \alpha \xi_2) = (0, \alpha \xi_2) = \alpha(0, \xi_2) = \alpha T_2(x).$
and $R(T_2) = \{(0, \xi_2) : \xi_2 \in \Re\} = \{0\} \times \Re.$
 $N(T_2) = \{(\xi_1, \xi_2) \in \Re^2 : T_2(\xi_1, \xi_2) = (0, 0)\}$
 $= \{(\xi_1, \xi_2) \in \Re^2 : (0, \xi_2) = (0, 0)\}$
 $= \{(\xi_1, \xi_2) \in \Re^2 : \xi_2 = 0\}.$

C- Let $T_3 : \mathfrak{R}^2 \to \mathfrak{R}^2$ defined by $T_3(\xi_1, \xi_2) = (\xi_2, \xi_1)$

Then T_3 is linear operator.

Proof:

Let
$$x = (\xi_1, \xi_2) \in \Re^2$$
, $y = (\eta_1, \eta_2) \in \Re^2$, and α is any scalar
 $T_3(x + y) = T_3((\xi_1, \xi_2) + (\eta_1, \eta_2)) = T_3(\xi_1 + \eta_1, \xi_2 + \eta_2)$
 $= (\xi_2 + \eta_2, \xi_1 + \eta_1) = (\xi_2, \xi_1) + (\eta_2, \eta_1) = T_3(x) + T_3(y).$
 $T_3(\alpha x) = T_3(\alpha \xi_1, \alpha \xi_2) = (\alpha \xi_2, \alpha \xi_1) = \alpha(\xi_2, \xi_1) = \alpha T_3(x).$
and $R(T_3) = \{(\xi_2, \xi_1) : \xi_1, \xi_2 \in \Re\} = \Re^2.$

D- Let
$$T_4 : \mathfrak{R}^2 \to \mathfrak{R}^2$$
 defined by
 $T_4(\xi_1, \xi_2) = (\gamma \xi_1, \gamma \xi_2)$

Then T_4 is linear operator.

Proof:

Let $x = (\xi_1, \xi_2) \in \Re^2$, $y = (\eta_1, \eta_2) \in \Re^2$, and α is any scalar

$$\begin{split} T_4(x+y) &= T_4((\xi_1,\xi_2) + (\eta_1,\eta_2)) = T_4(\xi_1 + \eta_1,\xi_2 + \eta_2) \\ &= (\gamma\xi_1 + \gamma\eta_1,\gamma\xi_2 + \gamma\eta_2) = (\gamma\xi_1,\gamma\xi_2) + (\gamma\eta_1,\gamma\eta_2) \\ &= T_4(x) + T_4(y). \\ T_4(\alpha x) &= T_4(\alpha\xi_1,\alpha\xi_2) = (\gamma\alpha\xi_1,\gamma\alpha\xi_2) = \alpha(\gamma\xi_1,\gamma\xi_2) = \alpha T_4(x). \\ \text{and } R(T_4) &= \{(\gamma\xi_1,\gamma\xi_2) : \xi_1,\xi_2 \in \Re\} = \Re^2. \\ N(T_4) &= \{(\xi_1,\xi_2) \in \Re^2 : T_4(\xi_1,\xi_2) = (0,0)\} \\ &= \{(\xi_1,\xi_2) \in \Re^2 : (\gamma\xi_1,\gamma\xi_2) = (0,0)\} \\ &= \{(\xi_1,\xi_2) \in \Re^2 : \xi_1 = 0, \xi_2 = 0\}. \end{split}$$

E- Let $T: D(T) \to Y$ be a linear operator whose inverse exists. If $\{x_1, ..., x_n\}$ is a linearly independent set in D(T), then the set $\{Tx_1, ..., Tx_n\}$ is linearly independent.

Proof:

We want to show $\{Tx_1, ..., Tx_n\}$ is linearly independent. So, let $\alpha_1, ..., \alpha_n$ be scalars such that

$$\alpha_1 T x_1 + \ldots + \alpha_n T x_n = 0_y$$

we want to prove $\alpha_i = 0, \forall i = 1,..., n$ since *T* is linear, then $T(\alpha_1 x_1 + ... + \alpha_n x_n) = 0_Y$ and since T^{-1} exists, then $T^{-1}(T(\alpha_1 x_1 + ... + \alpha_n x_n)) = T^{-1}(0_Y)$

 $\Rightarrow \alpha_1 x_1 + ... + \alpha_n x_n = 0_X$ since $\{x_1, ..., x_n\}$ linearly independent, then $\alpha_i = 0, \forall i = 1, ..., n$ Hence $\{Tx_1, ..., Tx_n\}$ is linearly independent.

F- Let $T : X \to Y$ be a linear operator and dim $X = \dim Y = n < \infty$, then R(T) = Y if and only if T^{-1} exists.

<u>Proof</u>:

Let $T: X \to Y$ be a linear operator and dim $X = \dim Y = n < \infty$, and R(T) = Y, we want to show that T^{-1} exists, i.e. T is one to one, i.e. $Tx = 0 \Rightarrow x = 0$, let $B = \{e_1, ..., e_n\}$ be a basis for X, and let $y \in Y = R(T)$, then

 $y = Tx \text{ for some } x \in X, x = \sum_{i=1}^{n} \alpha_{i} e_{i}$ $y = T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right) = \sum_{i=1}^{n} \alpha_{i} T\left(e_{i}\right), \text{ then } \{Te_{1}, ..., Te_{n}\} \text{ generates } Y = R(T)$ since dim $Y = n < \infty$, then $\{Te_{1}, ..., Te_{n}\}$ is a basis for YNow, let Tx = 0

$$\Rightarrow T\left(\sum_{i=1}^{n} \alpha_{i} e_{i}\right) = 0$$
$$\Rightarrow \sum_{i=1}^{n} \alpha_{i} T(e_{i}) = 0$$

since $\{Te_1, ..., Te_n\}$ is linearly independent (from E)

$$\Rightarrow \alpha_i = 0, \forall i$$
$$\Rightarrow x = 0$$

That means T is one to one, so T^{-1} exists.

Conversely Let $T: X \to Y$ be a linear operator and dim $X = \dim Y = n < \infty$, and T^{-1} exists, we want to show that R(T) = Y, Since T is linear operator, $T: X \to R(Y)$ $\Rightarrow \dim R(T) \le \dim X = n$ (1) since T^{-1} exists, $T^{-1}: R(T) \to X$ $\Rightarrow n = \dim X \le \dim R(T)$ (2) from (1)and (2) we get $\dim R(T) = n$ since R(T) subspace of Y, and dim Y = nHence R(T) = Y.

1.3 Bounded and continuous linear operators

Definition (1.3.1)

Let *X* and *Y* be normed space and $T: D(T) \to Y$ a linear operator, where $D(T) \subset X$. The operator *T* is said to be <u>bounded</u> if there is a real number *c* such that for all $x \in D(T)$

$$||Tx|| \le c ||x||$$
 (1)
the smallest possible c in (1)

$$\frac{\|Tx\|}{\|x\|} \le c \qquad \qquad x \neq 0$$

is that supremum. This quantity is denoted by ||T||; thus

$$||T|| = \sup_{\substack{x \in D(T) \\ x \neq 0}} \frac{||Tx||}{||x||}$$
 (2)

||T|| is called the norm of the operator T, if $D(T) = \{0\}$, we define ||T|| = 0.

Lemma (1.3.2)

Let T be a bounded linear operator, then:

(a) An alternative formula for the norm of T is: $||T|| = \sup_{\substack{x \in D(T) \\ ||x||=1}} ||Tx||$

(b) The norm defined by (2) satisfies the properties of norm.

Proof:

(a) we write
$$||x|| = a > 0$$
, and set $y = \frac{1}{a}x$, where $x \neq 0$, then
 $||y|| = \left\|\frac{1}{a}x\right\| = \frac{||x||}{a} = \frac{a}{a} = 1$, and since *T* is linear (2) gives
 $||T|| = \sup_{\substack{x \in D(T) \\ x \neq 0}} \frac{||Tx||}{||x||} = \sup_{\substack{x \in D(T) \\ x \neq 0}} \frac{1}{a} ||Tx|| = \sup_{\substack{x \in D(T) \\ x \neq 0}} \left\|T(\frac{1}{a}x)\right\| = \sup_{\substack{y \in D(T) \\ ||y||=1}} ||Ty||$
writing *x* for *y* on right, we have $||T|| = \sup_{\substack{x \in D(T) \\ ||x||=1}} ||Tx||$.

(b)
$$||T|| = \sup_{\substack{x \in D(T) \\ x \neq 0}} \frac{||Tx||}{||x||}$$

1- $||T|| = \sup_{\substack{x \in D(T) \\ x \neq 0}} \frac{||Tx||}{||x||} \ge 0$
and $||T|| = 0 \Leftrightarrow Tx = 0 \quad \forall x \in D(T)$, so that $T = 0$.
2- $||\alpha T|| = \sup_{||x||=1} ||\alpha Tx|| = \sup_{||x||=1} |\alpha| ||Tx|| = |\alpha| \sup_{||x||=1} ||Tx|| = |\alpha| ||T||.$
3- $||T_1 + T_2|| = \sup_{||x||=1} ||(T_1 + T_2)x|| = \sup_{||x||=1} ||T_1x + T_2x|| \le \sup_{||x||=1} ||T_1x|| + \sup_{||x||=1} ||T_2x||$
 $= ||T_1|| + ||T_2||. , x \in D(T).$

Examples:

Example (1):

The identity operator $I: X \to X$ on a normed space $X \neq \{0\}$ defined by Ix = x $\forall x \in X$, is bounded and has norm ||I|| = 1, since

$$\begin{split} \|Ix\| &\leq c \|x\| & c > 0 \\ \Rightarrow \frac{\|Ix\|}{\|x\|} &\leq c \\ \Rightarrow \frac{\|x\|}{\|x\|} &\leq c & \Rightarrow 1 \leq c & \Rightarrow \|I\| = 1. \end{split}$$

Example (2):

The zero operator $0: X \to Y$ on a normed space X defined by 0x = 0 $\forall x \in X$, is bounded and has norm ||0|| = 0, since

$$\begin{aligned} \|0x\| &\leq c \|x\| & c > 0 \\ \Rightarrow \frac{\|0x\|}{\|x\|} &\leq c \\ \Rightarrow \frac{0}{\|x\|} &\leq c &\Rightarrow 0 \leq c &\Rightarrow \|0\| = 0. \end{aligned}$$

Example (3):

Let X be the normed space of all polynomials on J = [0,1] with norm given $||x|| = \max |x(t)|, t \in J$. A differentiation operator T is defined on X by

$$Tx(t) = x'(t)$$

this operator is linear but not bounded, to proof this let $x_n(t) = t^n$, where $n \in N$

$$|x_n| = \max_{t \in [0,1]} |x_n(t)| = \max_{t \in [0,1]} |t^n| = 1$$

and

$$Tx_{n}(t) = x'_{n} = nt^{n-1}$$

$$\Rightarrow \|Tx_{n}\| \max_{t \in [0,1]} |Tx_{n}(t)| = \max_{t \in [0,1]} |nt^{n-1}| = n$$

$$\Rightarrow \frac{\|Tx_{n}\|}{\|x_{n}\|} = \frac{n}{1} = n \qquad n \in N$$
Now,
$$\frac{\|Tx_{n}\|}{\|x_{n}\|} = n \leq c \qquad n \in N$$

But no fixed number c such that $\frac{\|Tx_n\|}{\|x_n\|} = n \le c$ $\Rightarrow T$ is not bounded.

Example (4):

We defined an integral operator $T : C[0,1] \rightarrow C[0,1]$ by

$$y = Tx$$
, where $y(t) = \int_{0}^{1} k(t,\tau)x(\tau)d\tau$

k is given function, which is called the kernel of *T*, and is continuous on the closed square $G = J \times J$, J = [0,1], this operator is linear,

$$T(x+y) = \int_{0}^{1} k(t,\tau)(x+y)(\tau)d\tau = \int_{0}^{1} k(t,\tau)(x(\tau)+y(\tau))d\tau$$
$$= \int_{0}^{1} k(t,\tau)x(\tau)d\tau + \int_{0}^{1} k(t,\tau)y(\tau)d\tau = Tx + Ty.$$
$$T(\alpha x) = \int_{0}^{1} k(t,\tau)\alpha x(\tau)d\tau = \alpha \int_{0}^{1} k(t,\tau)x(\tau)d\tau = \alpha Tx.$$

-27-

T is bounded, to proof this, we first note that since *k* is continuous on the closed square \Rightarrow *k* is bounded

 $\Rightarrow \exists M > 0 \text{ such that } |k(t,\tau)| \le M \quad \forall (t,\tau) \in G \quad (1)$ and since $||x|| = \max_{t \in J} |x(t)|$ $\Rightarrow |x(t)| \le \max_{t \in J} |x(t)| = ||x|| \quad (2)$

Now,

$$\|y\| = \|Tx\| = \max_{t \in J} |Tx(t)| = \max_{t \in J} \left| \int_{0}^{1} k(t,\tau) x(\tau) d\tau \right|$$

$$\leq \max_{t \in J} \int_{0}^{1} |k(t,\tau)| |x(\tau)| d\tau \leq \max_{t \in J} \int_{0}^{1} M ||x|| \qquad from (1), (2)$$

$$\leq M ||x||$$

$$\Rightarrow \|Tx\| \leq M ||x|| \qquad M = c$$

$$\Rightarrow \|Tx\| \leq c \|x\|$$

$$\Rightarrow T \text{ is bounded.}$$

Lemma (1.3.3)

Let $\{x_1, \dots, x_n\}$ be a linearly independent set of vector in a normed space X (of any dimension), then there is number c > 0 such that for every choice of scalars $\alpha_1, \dots, \alpha_n$ we have

$$\|\boldsymbol{\alpha}_1 \boldsymbol{x}_1 + \dots + \boldsymbol{\alpha}_n \boldsymbol{x}_n\| \ge c(|\boldsymbol{\alpha}_1| + \dots + |\boldsymbol{\alpha}_n|).$$

Theorem (Finite dimension) (1.3.4)

If a normed space X is finite dimensional, then every linear operator on X is bounded.

Proof:

Let dim X = n and $\{e_1, \dots, e_n\}$ a basis for X, we take any $x = \sum_{i=1}^n \xi_i e_i$ and consider any linear operator T on X. Since T is linear

$$\Rightarrow \|Tx\| = \left\|T\left(\sum_{i=1}^{n} \xi_{i}e_{i}\right)\right\| = \left\|\sum_{i=1}^{n} \xi_{i}T\left(e_{i}\right)\right\| \leq \max_{k} \|T\left(e_{k}\right)\|\sum_{i=1}^{n} |\xi_{i}| \qquad (1)$$

we apply lemma (1.3.4) with $\alpha_{i} = \xi_{i}, x_{i} = e_{i}$, we get
 $c\sum_{i=1}^{n} |\xi_{i}| \leq \left\|\sum_{i=1}^{n} \xi_{i}e_{i}\right\|$
 $\Rightarrow \sum_{i=1}^{n} |\xi_{i}| \leq \frac{1}{c} \left\|\sum_{i=1}^{n} \xi_{i}e_{i}\right\| = \frac{1}{c} \|x\| \qquad (2)$
from (1) and(2)
 $\Rightarrow \|Tx\| \leq \max_{k} \|T\left(e_{k}\right)\|\sum_{i=1}^{n} |\xi_{i}| \leq \frac{1}{c} \|x\|\max_{k} \|T\left(e_{k}\right)\|$
 $\Rightarrow \|Tx\| \leq \gamma \|x\| \qquad where \qquad \gamma = \frac{1}{c} \max_{k} \|T\left(e_{k}\right)\|$
From this we see that is T bounded.

Definition (1.3.5)

Let $T: D(T) \to Y$ be a linear operator, where $D(T) \subset X$, and X, Yare normed spaces, we say T is <u>continuous</u> at x_o if for any $\varepsilon > 0$ $\exists \delta > 0$ such that if $||x - x_o|| < \delta$ $\Rightarrow ||Tx - Tx_o|| < \varepsilon$ $\forall x \in D(T)$.

Theorem (Continuity and boundedness) (1.3.6)

Let $T: D(T) \to Y$ be a linear operator, where $D(T) \subset X$, and X, Y are normed spaces, then:

(a) T is continuous if and only if T is bounded.

(b) If T is continuous at a single point, it is continuous.

Proof:

(a) Suppose that T is bounded,

 $\Rightarrow \exists c > 0 \text{ such that } ||Tx|| \le c ||x|| \qquad \forall x \in D(T)$ (1)

We want to prove *T* is continuous, so let $\varepsilon > 0$ be given and let $x_o \in D(T)$ be any point

Let
$$\delta = \frac{\varepsilon}{c}$$
, where c given in (1), then if $||x - x_o|| < \delta$
 $\Rightarrow ||Tx - Tx_o|| = ||T(x - x_o)||$ Since *T* is linear
 $\leq c ||x - x_o||$ Since *T* is bounded
 $< c \delta$
 $= c \frac{\varepsilon}{c} = \varepsilon$

 \Rightarrow T is continuous at x_o , since x_o is an arbitrary point in D(T), hence T is continuous on X.

Conversely, assume that *T* is continuous at an arbitrary $x_o \in D(T)$, then given $\varepsilon > 0$ $\exists \delta > 0$ such that if $||x - x_o|| < \delta$

$$\Rightarrow \left\| Tx - Tx_{o} \right\| < \varepsilon \qquad \qquad \forall x \in D(T) \qquad (2)$$

take any $y \in D(T)$, $y \neq 0$ and set $x = x_o + \frac{\delta}{\|y\|} y \Rightarrow x - x_o = \frac{\delta}{\|y\|} y$

 $\Rightarrow \|x - x_o\| = \left\|\frac{\delta}{\|y\|} y\right\| = \frac{\|\delta\|}{\|y\|} \|y\| = \delta$ $\Rightarrow \|Tx - Tx_o\| = \|T(x - x_o)\| \qquad \text{Since } T \text{ is linear}$ $= \left\|T(\frac{\delta}{\|y\|} y)\right\|$ $= \frac{\delta}{\|y\|} \|Ty\| \qquad \text{Since } T \text{ is linear}$ $\Rightarrow \|Tx - Tx_o\| = \frac{\delta}{\|y\|} \|Ty\| < \varepsilon \qquad \text{from (2)}$ $\Rightarrow \|Ty\| \le \frac{\varepsilon}{\delta} \|y\|$ $\Rightarrow \|Ty\| \le c\|y\| \qquad \text{where} \quad c = \frac{\varepsilon}{\delta}$ $\Rightarrow T \text{ is bounded.}$

(b) Continuity of T at a point implies bounded of T by the second part of the proof of (a), which in turn implies continuity of T by (a).

Corollary (Continuity, null space) (1.3.7)

Let *T* be a bounded linear operator, then:

(a) x_n → x (where x_n, x ∈ D(T)) implies Tx_n → Tx.
(b) The null space N(T) is closed.

<u>Proof</u>:

(a) $||Tx_n - Tx|| = ||T(x_n - x)||$ $\leq ||T|| ||x_n - x||$ Since *T* is linear $\leq ||T|| ||x_n - x||$ Since *T* is bounded $||T|| ||x_n - x|| \to 0$ $\Rightarrow ||Tx_n - Tx|| \to 0$ $\Rightarrow Tx_n \to Tx.$

(b) let $x \in \overline{N(T)}$, then there is a sequence (x_n) in N(T) such that $x_n \to x \implies Tx_n \to Tx \qquad from (a)$

Since
$$(x_n)$$
 in $N(T)$
 $\Rightarrow Tx_n = 0$
 $\Rightarrow Tx = 0$
 $\Rightarrow x \in N(T)$

 $\Rightarrow N(T)$ is closed.

Applications:

A- Let X and Y be normed spaces, then a linear operator $T: X \to Y$ is bounded if and only if T maps bounded sets in X into bounded sets in Y.

Proof:

Let $T : X \to Y$ be a bounded linear operator i.e. $\exists c \in \Re$ such that $||Tx|| \le c ||x|| \quad \forall x \in X$ (1) and let $A \subset X$, A is bounded set $\Rightarrow \exists M > 0$ such that $||x|| \le M \quad \forall x \in A$ (2) and $T(A) = \{Tx : x \in A\}$

Now, for all $x \in A$ $\Rightarrow ||Tx|| \le c ||x|| \qquad from (1)$ $\le cM \qquad from (2)$

 $\Rightarrow T(A)$ is bounded.

Conversely, suppose that *T* is a linear operator such that *T* maps bounded sets in *X* into bounded sets in *Y*, we want to show that *T* is bounded i.e. $\exists c \in \Re$ such that $||Tx|| \leq c ||x|| \quad \forall x \in X$,

So let
$$x \in X$$
, $x \neq 0 \Rightarrow \frac{x}{\|x\|} \in X$, and let $A = \left\{ \frac{x}{\|x\|} : x \in X \setminus \{0\} \right\}$,

then ||y|| = 1 $\forall y \in A$, *A* is bounded $\Rightarrow T(A)$ is bounded i.e. $\Rightarrow \exists M > 0$ such that $||Ty|| \le M$ $\forall y \in A$ Then $\forall x \in X$

$$\Rightarrow \left\| T\left(\frac{x}{\|x\|}\right) \right\| \le M$$
$$\Rightarrow \frac{1}{\|x\|} \|Tx\| \le M$$
$$\Rightarrow \|Tx\| \le M \|x\|$$
$$\Rightarrow \|Tx\| \le c \|x\| \qquad where \qquad c = M$$

 \Rightarrow *T* is bounded.

B- Let $T : l^{\infty} \to l^{\infty}$ be an operator defined by $y = (\eta_i) = Tx, \eta_i = \frac{\xi_i}{i}, x = (\xi_i)$

Then T is linear and bounded, but the range R(T) of T need not be closed.

Proof:

First we want to show that *T* is linear, Let $x_1, x_2 \in l^{\infty}, x_1 = (\xi_i^{(1)}), x_2 = (\xi_i^{(2)})$, and α is nay scalar: 1- $T(x_1 + x_2) = (\frac{\xi_i^{(1)} + \xi_i^{(2)}}{i}) = (\frac{\xi_i^{(1)}}{i}) + (\frac{\xi_i^{(2)}}{i}) = Tx_1 + Tx_2$.

2.
$$T(\alpha x_1) = (\alpha \frac{\xi_i^{(1)}}{i}) = \alpha(\frac{\xi_i^{(1)}}{i}) = \alpha T x_1$$
. Hence *T* is linear.
Now, we want to show that *T* is bounded,
 $||Tx_1|| = \sup_{i \in N} \left| \frac{\xi_i^{(1)}}{i} \right| \le \sup_{i \in N} \left| \xi_i^{(1)} \right| = ||x_1||$, hence *T* is bounded.
Finally, we want to show that the range $R(T)$ of *T* need not be closed,
 $R(T) = \left\{ (\frac{\xi_i}{i}) : x = (\xi_i) \in l^{\infty} \right\}$ is not closed i.e. $\exists (y_n)$ any sequence in
 $R(T)$ such that $y_n \to y$ but $y \notin R(T)$,
Now, let $x_n = (1, \sqrt{2}, ..., \sqrt{n}, 0, 0, ...)$, $x_n \in l^{\infty}$ for all $n \in N$, then
 $y_n = T(x_n) = (1, \frac{1}{\sqrt{2}}, ..., \frac{1}{\sqrt{n}}, 0, 0, ...) \Rightarrow y_n \in l^{\infty}$ for all $n \in N$,
Clearly $y_n \to y = (1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{3}}, ...) = (\frac{1}{\sqrt{i}})$,
Now, suppose that $y = Tx$ for some $x \in l^{\infty}$
 $\Rightarrow (\frac{1}{\sqrt{i}}) = (\frac{\xi_i}{i}) \Rightarrow \frac{1}{\sqrt{i}} = \frac{\xi_i}{i} \quad \forall i \in N \Rightarrow \xi_i = \sqrt{i} \quad \forall i \in N$
 $\Rightarrow x = (\xi_i) = (1, \sqrt{2}, \sqrt{3}, ...) \notin l^{\infty}$

C- Let T be a bounded linear operator from a normed space X onto normed space Y. If there is a positive b such that

$$\|Tx\| \ge b\|x\| \qquad \forall x \in X$$

Then $T^{-1}: Y \to X$ exists and bounded.

Proof:

Let
$$Tx = 0 \Rightarrow 0 = ||Tx|| \ge b ||x|| \Rightarrow ||x|| = 0 \Rightarrow x = 0$$
, then T^{-1} exists.
Now, let $y \in Y \Rightarrow T^{-1}(y) = x$ for some $x \in X$, then
 $||T^{-1}(y)|| = ||x|| \le \frac{1}{b} ||Tx|| = \frac{1}{b} ||y||$
 $\Rightarrow ||T^{-1}(y)|| \le \frac{1}{b} ||y||$
 $\Rightarrow T^{-1}$ is bounded.

1.4 Linear functionals

Definition (1.4.1)

A <u>linear functional</u> f is a linear operator with domain in a vector space X and range in the scalar field K of X; thus: $f: D(T) \rightarrow K$ where $K = \Re$ if X is real, and K = C if X is complex.

Definition (1.4.2)

A <u>bounded</u> linear functional f is a bounded linear operator with range in the scalar field of the normed space X in which the domain D(f)lies.

Thus there exist a real number *c* such that, for all $x \in D(f)$

$$\left|f(x)\right| \le c \left\|x\right\|.$$

Furthermore, the norm of f is

$$\|f\| = \sup_{\substack{x \in D(f) \\ x \neq 0}} \frac{|f(x)|}{\|x\|} \text{ or } \|f\| = \sup_{\substack{x \in D(f) \\ \|x\|=1}} |f(x)|$$
$$\Rightarrow |f(x)| \le \|f\| \|x\|.$$

Examples:

Example (1):

The familiar dot product with one factor kept fixed defines a functional $f: \Re^3 \to \Re$ by means of: $f(x) = x.a = \xi_1 \alpha_1 + \xi_2 \alpha_2 + \xi_3 \alpha_3$ where $a = (\alpha_1, \alpha_2, \alpha_3) \in \Re^3$ is a fixed, $x = (\xi_1, \xi_2, \xi_3)$ f is linear and bounded, first we want to prove f is linear, $1 - f(x + y) = (x + y).a = (\xi_1 + \eta_1, \xi_2 + \eta_2, \xi_3 + \eta_3).a$ $= (\xi_1 + \eta_1)\alpha_1 + (\xi_2 + \eta_2)\alpha_2 + (\xi_3 + \eta_3)\alpha_3$ $= (\xi_1 \alpha_1 + \xi_2 \alpha_2 + \xi_3 \alpha_3) + (\eta_1 \alpha_1 + \eta_2 \alpha_2 + \eta_3 \alpha_3)$ $= (\xi_1 + \xi_2 + \xi_3).a + (\eta_1 + \eta_2 + \eta_3).a = x.a + y.a = f(x) + f(y).$

2-
$$f(\alpha x) = (\alpha x).a = \alpha \xi_1 \alpha_1 + \alpha \xi_2 \alpha_2 + \alpha \xi_3 \alpha_3$$

 $= \alpha (\xi_1 \alpha_1 + \xi_2 \alpha_2 + \xi_3 \alpha_3) = \alpha (x.a) = \alpha f(x).$
Now, we want to prove f is bounded
 $|f(x)| = \left|\sum_{i=1}^{3} \xi_i \alpha_i\right| \le \sum_{i=1}^{3} |\xi_i \alpha_i| \le (\sum_{i=1}^{3} |\xi_i|^2)^{\frac{1}{2}} (\sum_{i=1}^{3} |\alpha_i|^2)^{\frac{1}{2}} = ||x|| ||a|$
By holder inequality,
There for f is bounded
So, $\forall x \in \Re^3, x \neq 0$
 $\frac{|f(x)|}{||x||} \le ||a|| \Rightarrow \sup \frac{|f(x)|}{||x||} \le ||a|| \Rightarrow ||f|| \le ||a||$ (1)
 $||f|| = \sup \frac{|f(x)|}{||x||} \ge \frac{|f(a)|}{||a||} = \frac{|\alpha_1 \alpha_1 + \alpha_2 \alpha_2 + \alpha_3 \alpha_3|}{(\alpha_1^2 + \alpha_2^2 + \alpha_3^2)^{\frac{1}{2}}}$
 $= (\alpha_1^2 + \alpha_2^2 + \alpha_3^2)^{\frac{1}{2}} = ||a|| \Rightarrow ||f|| \ge ||a||$ (2)
from (1) and (2)we get $||f|| = ||a||.$

Example (2):

We can obtain a linear functional f on the Hilbert space l^2 by choosing a fixed $a = (\alpha_i) \in l^2$, and define $f_a : l^2 \to C$ by $f_a(x) = \sum_{i=1}^{\infty} \xi_i \alpha_i$, where $x = (\xi_i) \in l^2$ Now, by holder inequality $\sum_{i=1}^{\infty} |\alpha_i \xi_i| \le (\sum_{i=1}^{\infty} |\alpha_i|^2)^{\frac{1}{2}} (\sum_{i=1}^{\infty} |\xi_i|^2)^{\frac{1}{2}} < \infty$ $\Rightarrow \sum_{i=1}^{\infty} \xi_i \alpha_i$ is absolutely convergent, then is convergent \Rightarrow for each $x \in l^2$ there corresponds number $\sum_{i=1}^{\infty} \alpha_i \xi_i$ $\Rightarrow f_a$ is well defined. $|f(x)| = \left|\sum_{i=1}^{\infty} \alpha_i \xi_i\right| \le \sum_{i=1}^{\infty} |\alpha_i \xi_i| \le (\sum_{i=1}^{\infty} |\alpha_i|^2)^{\frac{1}{2}} (\sum_{i=1}^{\infty} |\xi_i|^2)^{\frac{1}{2}} = ||a|| ||x||.$

<u>Theorem</u> (1.4.3)

If $f \neq 0$ be any linear functional on vector space X and x_o any fixed element of X - N(f), where N(f) is the null space of f, then any $x \in X$ has a unique representation $x = ax_o + y$, where $y \in N(f)$.

Proof:

Let $x \in X$, x_o any fixed element of X - N(f), let $\alpha = \frac{f(x)}{f(x_o)}$ $f(x - \frac{f(x)}{f(x_o)} \cdot x_o) = f(x) - \frac{f(x)}{f(x_o)} \cdot f(x_o) = 0$ Hence $x - \frac{f(x)}{f(x_o)} \cdot x_o$ belong to N(f) $\Rightarrow x - \frac{f(x)}{f(x_o)} \cdot x_o = y$ for some $y \in N(f)$ $\Rightarrow x = \frac{f(x)}{f(x_o)} \cdot x_o + y$

Hence, every $x \in X$ can be written of the form $x = \alpha x_o + y \ y \in N(f)$. To prove this form is unique

Let
$$x = \alpha x_o + y = \alpha' x_o + y'$$
 $y, y' \in N(f); \alpha, \alpha' \in K; \alpha \neq \alpha'$
 $\Rightarrow \alpha x_o - \alpha' x_o = y' - y$
 $\Rightarrow x_o(\alpha - \alpha') = y' - y$
 $\Rightarrow (\alpha - \alpha') x_o \in N(f)$
 $\Rightarrow x_o \in N(f),$

a contradiction, hence the representation is unique.

Application:

A- Let $f: X \to K$ be a linear functional, then two elements $x_1, x_2 \in X$ belong to the same element of the quotient space X/N(f) if and only if $f(x_1) = f(x_2)$.

Proof:

Suppose that $x_1, x_2 \in x_o + N(f)$ for some $x_o \in X$, we want to prove that $f(x_1) = f(x_2)$, Since $x_1, x_2 \in x_o + N(f)$ $\Rightarrow x_1 = x_o + y_1, x_2 = x_o + y_2$ $y_1, y_2 \in N(f)$ Now, $f(x_1) = f(x_o + y_1) = f(x_o) + f(y_1) = f(x_o)$ and $f(x_2) = f(x_o + y_2) = f(x_o) + f(y_2) = f(x_o)$ Therefore $f(x_1) = f(x_2)$.

Conversely: Suppose that for $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ $\Rightarrow f(x_1) - f(x_2) = 0$ $\Rightarrow f(x_1 - x_2) = 0$ $\Rightarrow x_1 - x_2 \in N(f)$ $\Rightarrow (x_1 - x_2) + N(f) = N(f)$ $\Rightarrow x_1 + N(f) = x_2 + N(f)$ $\Rightarrow x_1 = x_1 + 0 \in x_1 + N(f) = x_2 + N(f), x_2 \in x_2 + N(f)$

Hence, $x_1, x_2 \in X$ belong to the same element of the quotient space X/N(f).

B- Let $f: X \to K$ be a non zero linear functional on X, then $\dim(X/N(f)) = 1$.

Proof:

We want to prove that $X/N(f) = span \{x_o + N(f)\}$ for some $x_o \notin N(f)$ Clearly, $span \{x_o + N(f)\} \subseteq X/N(f)$ (1) Now, let $y \in X/N(f)$ y = x + N(f) for some $x \in X$, from(1.4.3) $x = \alpha x_o + y_1, y_1 \in N(f)$ $\Rightarrow y = x + N(f) = \alpha x_o + y_1 + N(f) = \alpha x_o + N(f) = \alpha (x_o + N(f))$ $y \in span \{x_o + N(f)\} \Rightarrow X/N(f) \subseteq span \{x_o + N(f)\}$ (2) Hence, from (1) and (2) we get $X/N(f) = span \{x_o + N(f)\}$, so dim(X/N(f)) = 1.

C- Let f_1 , f_2 be two non-zero linear functional on the same vector space such that $N(f_1) = N(f_2)$, then f_1 and f_2 are proportional.

Proof:

Since $f_1, f_2 \neq 0$, then $\exists x_o \in X$ such that $f_1(x_o) \neq 0$ Since $N(f_1) = N(f_2), f_2(x_o) \neq 0$ from theorem (1.4.3) any $x \in X, x = \alpha x_o + y$ for some scalar α , $y \in N(f_1)$ $x = \frac{f_1(x)}{f_1(x_o)} x_o + y$

 $y \in N(f_1) = N(f_2) \Rightarrow f_2(y) = 0$ Now,

$$f_{2}(x) = \frac{f_{1}(x)}{f_{1}(x_{o})} f_{2}(x_{o}) + f_{2}(y)$$
$$\Rightarrow f_{2}(x) = \frac{f_{2}(x_{o})}{f_{1}(x_{o})} f_{1}(x).$$

<u>**Remark**</u> (1.4.4)

Note that if *Y* is a subspace of vector space *X* and *f* is a linear functional on *X* such that $f(Y) \neq K$, then f(y) = 0 for all $y \in Y$. Indeed suppose that $\exists y_o \in Y \subseteq X$ such that $f(y_o) = \alpha_o \neq 0$, then for

any
$$\beta \in K \Rightarrow \beta = \frac{\beta}{\alpha_o} \alpha_o = \frac{\beta}{\alpha_o} f(y) = f(\frac{\beta}{\alpha_o} y) \in f(Y)$$

 $\Rightarrow K = f(Y)$, a contradiction
 $\Rightarrow f(y) = 0 \qquad \forall y \in Y.$

Fundamental theorem for normed and Banach spaces

2.1 Zorn's lemma

Definition (Partially ordered set, Chain) (2.1.1)

A <u>partially ordered set</u> is a set M on which there is defined a partial ordering, that is a binary relation which is written (\leq) and satisfies the conditions:

$a \le a$ for every $a \in M$	(Reflexivity)
If $a \le b$ and $b \le a$, then $a = b$	(Antisymmetry)
If $a \le b$ and $b \le c$, then $a \le c$	(Transitivity)

*If neither $a \le b \operatorname{nor} b \le a$ holds, then *a* and *b* called <u>incomparable</u> <u>elements</u>, in contrast, two elements *a* and *b* are called <u>comparable</u> <u>elements</u> if they satisfy $a \le b$ or $b \le a$ (or both).

*A *totally ordered set* or *Chain* is partially ordered set such that every elements of the set are comparable.

*An <u>upper bound</u> of a subset W of a partially ordered set M is an element $u \in M$ such that

 $x \le u \qquad \text{for every } x \in W$ *A <u>maximal element</u> of M is an $m \in M$ such that $m \le x \qquad \text{implies} \qquad m = x$

Examples:

(a) Let *M* be the set of all real numbers and let $x \le y$ have a usual meaning, *M* is totally ordered, *M* has no maximal element.

(b) Let P(X) be the power set (set of all subset) of a given set X and let $A \leq B \operatorname{mean} A \subset B$, that is A is subset of B, then P(X) is partially ordered, and the only maximal element of P(X) is X.

(c) Let *M* be the set of all ordered n-tuples $\{x = (\xi_1, ..., \xi_n | \xi_i \in \Re\}$, and $x \le y$ mean $\xi_i \le \eta_i$ for every i = 1, ..., n, where $\xi_i \le \eta_i$ has its usual meaning, *M* is partially ordered, *M* has no maximal element.

(d) Let M = N, the set of all positive integers, let $m \le n$ mean that *m* divides *n*, *N* is partially ordered.

Zorn's lemma (2.1.2)

Let *M* be a partially ordered set, suppose that every chain $C \subset M$ has upper bound, than *M* has at lest one maximal element.

Definition (2.1.3)

A <u>sublinear functional</u> is a real-valued functional p on a vector space X which is *Subaddative, that is $p(x+y) \le p(x) + p(y) \quad \forall x, y \in X.$ *Positive-homogenous, that is $p(\alpha x) = \alpha p(x) \quad \forall \alpha \in \Re, \alpha \ge 0, x \in X.$

2.2 Hahn-Banach theorem

Hahn-Banach theorem (Extension of linear functional) (2.2.1)

Let X be a real vector space and p a sublinear functional on X, furthermore, let f be a linear functional which is defined on subspace Z of X and satisfies:

$$f(x) \le p(x) \qquad \forall x \in Z$$

Then f has a linear extension \tilde{f} from Z to X satisfying:

$$\tilde{f}(x) \le p(x) \qquad \forall x \in X$$

That is, \tilde{f} is a linear functional on X, satisfying $\tilde{f}(x) \le p(x)$ on X, and $\tilde{f}(x) = f(x)$ $\forall x \in Z$.

Proof:

We shall prove:

(a) The set *E* of all linear extensions *g* of *f* satisfying $g(x) \le p(x)$ on their domain D(g) can be partially ordered and Zorn's lemma yields a maximal element \tilde{f} of *E*.

(b) \tilde{f} is defined on the entire space X.

(c) An auxiliary relation which was used in (b).

We start with part (a)

Let E be the set of all linear extensions g of f which satisfy the condition:

$$g(x) \le p(x) \qquad \forall x \in D(g)$$

Clearly, $E \neq \phi$ since $f \in E$,

On *E* we can define a partial ordering by $g \le h$ meaning *h* is an extension of *g*,

 \Rightarrow By definition, $D(g) \subset D(h)$ and h(x) = g(x) $\forall x \in D(g)$

Let $C \subset E$ is chain, we define \hat{g} by

$$\hat{g}(x) = g(x) \text{ if } x \in D(g)$$
 $(g \in C)$

 \hat{g} is linear functional, the domain being

I

$$D(\hat{g}) = \bigcup_{g \in C} D(g)$$

which is vector space, since C is a chain,

The definition of \hat{g} is unambiguous, Indeed, for an $x \in D(g_1) \cap D(g_2)$ with $g_1, g_2 \in C$, we have $g_1(x) = g_2(x)$, and $g_1 \leq g_2$ or $g_2 \leq g_1$ since C is chain Clearly, $g \leq \hat{g}$ for all $g \in C$ since $D(g) \subset D(\hat{g})$ for all $g \in C$ $\Rightarrow \hat{g}$ is an upper bound of C Since $C \subset E$ was arbitrary, then by Zone's lemma E has a maximal element \tilde{f} , and by the definition of E $\Rightarrow \tilde{f}$ is linear extension of f which satisfies: $\tilde{f}(x) \le p(x) \qquad \forall x \in D(\tilde{f}).$ (b) We want to show that $D(\tilde{f})$ is all of X, Suppose that this false $\Rightarrow \exists y_1 \text{ such that } y_1 \in X - D(\tilde{f})$ Consider the subspace Y_1 of X spanned by $D(\tilde{f})$ and y_1 Note that $y_1 \neq 0$, since $0 \in D(\tilde{f})$ Now, any $x \in Y_1$ can be written $x = y + \alpha y_1$ $y \in D(\tilde{f})$ This representation is unique, since Let $x = y + \alpha y_1$ and $x = y' + \beta y_1$ $y, y' \in D(\tilde{f})$ \Rightarrow y + α y₁ = y' + β y₁ \Rightarrow y - y' = (β - α)y₁ Since $y_1 \notin D(\tilde{f}), y - y' \in D(\tilde{f})$, then the only solution is y - y' = 0 and $\beta - \alpha = 0 \Rightarrow y = y'$ and $\beta = \alpha$. Hence the representation is unique. Now, a functional g_1 on Y_1 is defined by $g_1(y + \alpha y_1) = \tilde{f}(y) + \alpha c$ (1) where c any real constant g_1 is linear, since for $x_1, x_2 \in Y_1 \Rightarrow x_1 = y + \alpha y_1, x_2 = y' + \beta y_1$, 1- $g_1(x_1 + x_2) = g_1((y + \alpha y_1) + (y' + \beta y_1)) = g_1((y + y') + (\alpha + \beta)y_1)$ $= \tilde{f}(y + y') + (\alpha + \beta)c = \tilde{f}(y) + \tilde{f}(y') + \alpha c + \beta c \quad \text{since } \tilde{f} \text{ is linear}$ $= g_1(x_1) + g_1(x_2).$ 2- $g_1(rx_1) = g_1(r(y + \alpha y_1)) = g_1(ry + r\alpha y_1) = \tilde{f}(ry) + r\alpha c$ $= r\tilde{f}(y) + r\alpha c$ since \tilde{f} is linear $= r(\tilde{f}(y) + \alpha c) = rg_1(x_1)$, where r is any scalar.

Now, for $\alpha = 0 \Rightarrow x = y \Rightarrow g_1(y) = \tilde{f}(y)$, then g_1 is proper extension of \tilde{f} , since $D(\tilde{f}) \subset D(g_1)$

Now, if we can prove that $g_1 \in E$ by showing that

 $g_1(x) \le p(x) \qquad \forall x \in D(g_1)$

this will contradict the maximality of \tilde{f} , so that $D(\tilde{f}) \neq X$ is false and $D(\tilde{f}) = X$ is true.

(c) We must finally show that g_1 with a suitable c in (1) satisfies: $g_1(x) \le p(x)$ $\forall x \in D(g_1)$ consider any $y, z \in D(\tilde{f})$ $\Rightarrow \tilde{f}(y) - \tilde{f}(z) = \tilde{f}(y-z) \le p(y-z) = p(y+y_1-y_1-z)$ $\le p(y+y_1) + p(-y_1-z)$ since p is sublinear $\Rightarrow -p(-y_1-z) - \tilde{f}(z) \le p(y+y_1) - \tilde{f}(y)$

where y_1 is fixed, since y does not appear on the left and z not on the right, if we take the supremum over $z \in D(\tilde{f})$ on the left (call it m_o) and the infimum over $y \in D(\tilde{f})$ on the right (call it m_1) then $m_o \leq m_1$, and for a c with $m_o \leq c \leq m_1$

$$\Rightarrow -p(-y_1 - z) - \tilde{f}(z) \le c \qquad \forall z \in D(\tilde{f})$$
(2)
$$c \le p(y + y_1) - \tilde{f}(y) \qquad \forall y \in D(\tilde{f})$$
(3)

Now, for $\alpha < 0$ and z replaced by $\alpha^{-1}y$ in(2)

$$\Rightarrow -p(-y_1 - \frac{1}{\alpha}y) - \tilde{f}(\frac{1}{\alpha}y) \le c, \text{ multiplication by } -\alpha > 0 \Rightarrow \alpha p(-y_1 - \frac{1}{\alpha}y) + \alpha \tilde{f}(\frac{1}{\alpha}y) \le -\alpha c \Rightarrow \alpha p(-y_1 - \frac{1}{\alpha}y) + \tilde{f}(y) \le -\alpha c \Rightarrow \tilde{f}(y) + \alpha c \le -\alpha p(-y_1 - \frac{1}{\alpha}y) \Rightarrow g_1(x) \le p(\alpha y_1 + y) \Rightarrow g_1(x) \le p(x).$$

for $\alpha > 0$ and y replaced by $\alpha^{-1}y$ in (3)

$$\Rightarrow c \le p(\frac{1}{\alpha}y + y_1) - \tilde{f}(\frac{1}{\alpha}y), \text{ multiplication by } \alpha > 0$$

$$\Rightarrow \alpha c \le \alpha p(\frac{1}{\alpha}y + y_1) - \alpha \tilde{f}(\frac{1}{\alpha}y)$$

$$\Rightarrow \alpha c \le p(y + \alpha y_1) - \tilde{f}(y)$$

$$\Rightarrow \tilde{f}(y) + \alpha c \le p(y + \alpha y_1)$$

$$\Rightarrow g_1(x) \le p(x).$$

for $\alpha = 0$ we have $x \in D(\tilde{f})$ and nothing to prove.

Applications:

A- A sublinear functional *p* satisfies p(0) = 0 and $p(-x) \ge -p(x)$.

Proof:

Since p is sublinear functional
$$p: X \to \Re$$

 $\Rightarrow p(x+y) \le p(x) + p(y) \quad \forall x, y \in X$
and $p(\alpha x) = \alpha p(x) \quad \forall \alpha \in \Re, \alpha \ge 0, x \in X$
let $\alpha = 0$
 $p(0) = p(0x) = 0 p(x) = 0$
and
 $0 = p(0) = p(x-x) \le p(x) + p(-x)$
 $\Rightarrow p(-x) \ge -p(x).$

B- If a subadditive functional p on a normed space X is continuous at 0 and p(0) = 0, then p is continuous for all $x \in X$.

Proof:

Let x_o be an arbitrary (but fixed) point in X, we want to show that p is continuous at x_o ,

so let $\varepsilon > 0$ be given, since p continuous at 0 $\Rightarrow \exists \delta > 0$ such that if $||y - 0|| < \delta, y \in X$, then $|p(y)| < \varepsilon$ thus, of $y = x - x_o$

$$\|x - x_o\| < \delta \Rightarrow |p(x - x_o)| < \varepsilon$$
(1)

Now,

$$p(x) = p(x - x_o + x_o) \le p(x - x_o) + p(x_o)$$

$$\Rightarrow p(x) - p(x_o) \le p(x - x_o)$$
(2)

and

$$p(x_o) = p(x_o - x + x) \le p(x_o - x) + p(x)$$

$$\Rightarrow p(x) - p(x_o) \ge -p(x - x_o)$$
(3)

then, from(2) and (3)we get

$$-p(x - x_o) \le p(x) - p(x_o) \le p(x - x_o)$$

$$\Rightarrow |p(x) - p(x_o)| < |p(x - x_o)| < \varepsilon \qquad from (1)$$

hence p is continuous at x_o , and since x_o an arbitrary, then p is continuous for all $x \in X$.

C- If a subadditive functional defined on a normed space X is nonnegative outside a sphere $\{x |||x|| = r\}$, then it is nonnegative for all $x \in X$.

Proof:

Let $p: X \to \Re$, be a subadditive functional defined on a normed space X, and let $p(x) \ge 0$ for x such that ||x|| > r (1) we want to prove that $p(x) \ge 0$ for $x \in X$ (a) Let $x \in X$ such that ||x|| = r $\Rightarrow ||2x|| = 2||x|| = 2r > r \Rightarrow p(2x) \ge 0$ from (1) $\Rightarrow 2p(x) \ge 0 \Rightarrow p(x) \ge 0$ (b) Let $y \in X, y \ne 0$ then, $\left\|\frac{ry}{\|y\|}\right\| = r \frac{\|y\|}{\|y\|} = r \Rightarrow p(r \frac{y}{\|y\|}) \ge 0$ from(a) $\Rightarrow \frac{r}{\|y\|} p(y) \ge 0 \Rightarrow p(y) \ge 0$ for $y \in X, y \ne 0$ if $y = 0 \Rightarrow p(0) = 0$ Then, from (1), (a) and (b) $p(x) \ge 0$ $\forall x \in X$.

D- If p is sublinear functional on a real vector space X, then there exists a linear functional \tilde{f} on X such that $-p(-x) \leq \tilde{f}(x) \leq p(x)$.

Proof:

From theorem (2.2.1) we have
$$\tilde{f}(x) \le p(x)$$
 (1)
and $-\tilde{f}(x) = \tilde{f}(-x) \le p(-x)$ since \tilde{f} is linear
 $\Rightarrow \tilde{f}(x) \ge -p(-x)$ (2)
from (1) and(2) we get $-p(-x) \le \tilde{f}(x) \le p(x)$.

E- Let *p* be a sublinear functional on a real vector space *X*, and let *f* be defined on $Z = \{x \in X | x = \alpha x_o, \alpha \in \Re\}$ by $f(x) = \alpha p(x_o)$ with fixed x_o , then *f* is a functional on *Z* satisfying $f(x) \le p(x)$.

Proof:

First we want to prove that f is linear functional on Z, $f : Z \to \Re$ Let $x, y \in Z \Rightarrow x = \alpha x_o, y = \beta x_o, \alpha, \beta \in \Re \Rightarrow x + y = (\alpha + \beta) p(x_o)$, and let r is any scalar 1- $f(x + y) = (\alpha + \beta) p(x_o) = \alpha p(x_o) + \beta p(x_o) = f(x) + f(y)$. 2- $f(rx) = r\alpha p(x_o) = rf(x)$, hence f is linear functional on Z. Now we want to prove that $f(x) \le p(x)$, Since $f(x) = \alpha p(x_o), x = \alpha x_o$ if $\alpha \ge 0 \Rightarrow f(x) = \alpha p(x_o) = p(\alpha x_o) = p(x) \Rightarrow f(x) = p(x)$ (1) if $\alpha < 0 \Rightarrow -\alpha > 0$ $\Rightarrow f(x) = \alpha p(x_o) = -(-\alpha) p(x_o) = -p(-\alpha x_o) = -p(-x) < p(x)$ $\Rightarrow f(x) < p(x)$ (2) from (1) and (2) we get $f(x) \le p(x)$.

2.3 <u>Hahn Banach theorem for complex vector spaces and</u> <u>normed spaces</u>

Hahn Banach theorem(Generalized) (2.3.1)

Let X be a real or complex vector space and p a real-valued functional on X which is subadditive, that is

 $p(x+y) \le p(x) + p(y) \qquad \forall x, y \in X$ (1)

and for every scalar $\boldsymbol{\alpha}$ satisfies

$$p(\alpha x) = |\alpha| p(x) \tag{2}$$

Furthermore, let f be a linear functional which is defined on a subspace Z of X and satisfies

$$|f(x)| \le p(x) \quad \forall x \in Z$$
 (3)

Then, f has a linear extension \tilde{f} from Z to X satisfying $\left|\tilde{f}(x)\right| \le p(x) \quad \forall x \in X \quad (4)$

Proof:

(a) Real vector space:

If X is real, the situation is simple

$$\begin{aligned} f(x) &\leq \left| f(x) \right| \leq p(x) & from (3) \\ &\Rightarrow f(x) \leq p(x) & \forall x \in Z \end{aligned}$$

then, by theorem (2.2.1) there is a linear extension f from Z to X such that

$$\widetilde{f}(x) \le p(x) \quad \forall x \in X \quad (5)$$
Now, $-\widetilde{f}(x) = \widetilde{f}(-x) \le p(-x) = |-1| p(x) = p(x) \quad from (2)$

$$\Rightarrow -\widetilde{f}(x) \le p(x)$$

$$\Rightarrow \widetilde{f}(x) \ge -p(x) \quad (6)$$

Then from (5) and (6)

$$\Rightarrow -p(x) \le \tilde{f}(x) \le p(x)$$
$$\Rightarrow \left| \tilde{f}(x) \right| \le p(x).$$

(b) Complex vector space:

Let X be complex, then Z is a complex vector space, too

 $\Rightarrow f \text{ is complex-valued}$ $\Rightarrow \text{ we can write } f(x) = f_1(x) + if_2(x) \qquad x \in \mathbb{Z}$ where f_1 and f_2 are real-valued

for a moment we regard X and Z as real vector space and denote them by X_r and Z_r respectively, this simply means that we restrict multiplication by scalars to real numbers (instead of complex numbers), since f is linear on Z, and f_1, f_2 are real-valued $\Rightarrow f_1, f_2$ are linear functional on Z, also $f_1(x) \le |f(x)|$

$$\Rightarrow f_1(x) \le p(x) \qquad \forall x \in Z_r \qquad from (3)$$

 \Rightarrow by theorem (2.2.1), there is a linear extension \tilde{f}_1 of f_1 from Z_r to X_r , such that

$$\widetilde{f}_1(x) \le p(x) \qquad \forall x \in X_r \tag{7}$$

this take care of f_1 and we now turn of f_2

Now, returning to Z and using $f = f_1 + if_2$, we have for every $x \in Z$

$$i[f_1(x) + if_2(x)] = if(x) = f(ix) = f_1(ix) + if_2(ix)$$

$$\Rightarrow if_1(x) - f_2(x) = f_1(ix) + if_2(ix)$$

the real parts on both sides must be equal

$$\Rightarrow -f_2(x) = f_1(ix) \Rightarrow f_2(x) = -f_1(ix) \quad \forall x \in \mathbb{Z}$$

$$\Rightarrow f(x) = f_1(x) - if_1(ix)$$
(8)

 \Rightarrow if for all $x \in X$ we set

$$\widetilde{f}(x) = \widetilde{f}_1(x) - i\widetilde{f}_1(ix)$$
(9)

then from(8) f(x) = f(x) on Z

this shows that \tilde{f} is an extension of f from Z to X, now we want to prove that:

(a) \tilde{f} is linear functional on the complex vector space X.

(b) \tilde{f} satisfies (4) on X.

To prove (a) let $x, y \in X$ and $\alpha \in C, \alpha = a + ib$ $a, b \in \Re$

$$\begin{split} \widetilde{f}(x+y) &= \widetilde{f}_1(x+y) - i\widetilde{f}_1(i(x+y)) \qquad from \ (9) \\ &= \widetilde{f}_1(x) + \widetilde{f}_1(y) - i(\widetilde{f}_1(ix) + \widetilde{f}_1(iy)) \\ &= \widetilde{f}_1(x) - i\widetilde{f}_1(ix) + \widetilde{f}_1(y) - i\widetilde{f}_1(iy) \\ &= \widetilde{f}(x) + \widetilde{f}(y). \end{split}$$

-48-

and,

$$\begin{split} \widetilde{f}(\alpha x) &= \widetilde{f}((a+ib)x) \\ &= \widetilde{f}(ax+ibx) \\ &= \widetilde{f}_1(ax+ibx) - i\widetilde{f}_1(iax-bx) \\ &= a\widetilde{f}_1(x) + b\widetilde{f}_1(ix) - i\left[a\widetilde{f}_1(ix) - b\widetilde{f}_1(x)\right] \\ &= a\widetilde{f}_1(x) + b\widetilde{f}_1(ix) - ia\widetilde{f}_1(ix) + ib\widetilde{f}_1(x) \\ &= a\left[\widetilde{f}_1(x) - i\widetilde{f}_1(ix)\right] + b\left[\widetilde{f}_1(ix) + i\widetilde{f}_1(x)\right] \\ &= a\left[\widetilde{f}_1(x) - i\widetilde{f}_1(ix)\right] + ib\left[\widetilde{f}_1(x) - i\widetilde{f}_1(ix)\right] \\ &= a + ib\left[\widetilde{f}_1(x) - i\widetilde{f}_1(ix)\right] = \alpha \widetilde{f}(x). \end{split}$$

Hence, \tilde{f} is linear.

To prove (b)

1- for any x such that $\tilde{f}(x) = 0$ this holds, since $p(x) \ge 0$.

2- Let $x \in X$ such that $\tilde{f}(x) \neq 0$, then we can write \tilde{f} by using polar form of complex quantities

$$\widetilde{f}(x) = \left| \widetilde{f}(x) \right| e^{i\theta}$$
$$\Rightarrow \left| \widetilde{f}(x) \right| = \widetilde{f}(x) e^{-i\theta} = \widetilde{f}(e^{-i\theta}x)$$

since $\left| \tilde{f}(x) \right|$ is real, then $\tilde{f}(e^{-i\theta}x)$ is real

$$\Rightarrow \tilde{f}(e^{-i\theta}x) = \tilde{f}_1(e^{-i\theta}x)$$

Now,

$$\begin{split} \left| \tilde{f}(x) \right| &= \tilde{f}(e^{-i\theta}x) = \tilde{f}_1(e^{-i\theta}x) \le p(e^{-i\theta}x) \qquad from (7) \\ &= \left| e^{-i\theta} \right| p(x) \qquad from (2) \\ &= p(x) \end{split}$$

Hence $\left| \tilde{f}(x) \right| \le p(x) \qquad \forall x \in X.$

Hahn-Banach theorem (Normed space) (2.3.2)

Let f be a bounded linear functional on a subspace Z of a normed space X, then there exists a bounded linear functional \tilde{f} on X which is an extension of f to X and has the same norm

$$\left\|\widetilde{f}\right\|_{X} = \left\|f\right\|_{Z}$$

where

$$\left|\widetilde{f}\right\|_{X} = \sup_{\substack{x \in X \\ \|x\|=1}} \left|\widetilde{f}(x)\right| \qquad , \left\|f\right\|_{Z} = \sup_{\substack{x \in Z \\ \|x\|=1}} \left|f(x)\right|.$$

 $(\operatorname{and} \|f\|_{Z} = 0 \text{ in the trivial case } Z = \{0\}).$

Proof:

If $Z = \{0\}$, then f = 0 and the extension is $\tilde{f} = 0$.

Now, let $Z \neq \{0\}$, we want to use theorem (2.3.1), for all $x \in Z$ we have

$$\left|f\left(x\right)\right| \le \left\|f\right\|_{Z} \left\|x\right\|$$

This is of the from (3) in theorem (2.3.1)

$$p(x) = \left\| f \right\|_Z \left\| x \right\|$$

p Is defined on all of X, and p satisfies (1), since by the triangle inequality

$$p(x + y) = ||f||_{z} ||x + y|| \le ||f||_{z} (||x|| + ||y||)$$

= $||f||_{z} ||x|| + ||f||_{z} ||y|| = p(x) + p(y).$

p also satisfies(2) because

$$p(\alpha x) = ||f||_{Z} ||\alpha x|| = |\alpha|||f||_{Z} ||x|| = |\alpha|p(x).$$

Hence, we can apply theorem (2.3.1), that mean there exists a linear functional \tilde{f} on X which is an extension of f and satisfies

$$\left|\tilde{f}(x)\right| \le p(x) = \left\|f\right\|_{Z} \left\|x\right\| \qquad x \in X$$

Taking the supremum over all $x \in X$ of norm 1, we obtain the inequality

$$\left\| \tilde{f} \right\|_{X} = \sup_{\substack{x \in X \\ \|x\|=1}} \left| \tilde{f}(x) \right| \le \left\| f \right\|_{Z}$$
(a)

and since under an extension the norm cannot decrease, we also have

$$\left\|\widetilde{f}\right\|_{X} \ge \left\|f\right\|_{Z} \tag{b}$$

hence, from(a) and (b) we get

$$\left\|\widetilde{f}\right\|_{X}=\left\|f\right\|_{Z}.$$

Definition (2.3.3)

The <u>dual space</u> X^* of a normed space X consists of the bounded linear functionals on X.

Theorem (Bounded linear functionals) (2.3.4)

Let X be a normed space and $x_o \neq 0$ be any element of X, then there exists a bounded linear functional \tilde{f} on X such that

$$\left\| \widetilde{f} \right\| = 1$$
 , $\widetilde{f}(x_o) = \left\| x_o \right\|$.

Proof:

Let $Z = \{x | x = \alpha x_o\}$ where α is a scalar, Z subspace of X, we define a linear functional $f : Z \to \Re$, by

$$f(x) = f(\alpha x_o) = \alpha \|x_o\|$$
(1)

f is bounded and has norm ||f|| = 1, because

$$|f(x)| = |f(\alpha x_o)| = |\alpha| ||x_o|| = ||\alpha x_o|| = ||x||$$
$$||f|| = \sup_{\substack{x \in Z \\ ||x||=1}} |f(x)| = \sup_{\substack{x \in Z \\ ||x||=1}} ||x|| = 1$$

and from theorem (2.3.2), f has linear extension \tilde{f} from Z to X, of norm $\|\tilde{f}\| = \|f\| = 1$

and from (1) we see that

$$\widetilde{f}(x_o) = f(x_o) = ||x_o||.$$

Corollary (Norm, zero vector) (2.3.5)

For every x in a normed space X, we have

$$||x|| = \sup_{\substack{f \in X^* \\ f \neq 0}} \frac{|f(x)|}{||f||}$$

Hence if x_o is such that $f(x_o) = 0$ for all $f \in X^*$, then $x_o = 0$.

Proof:

From theorem (2.3.4), we have, writing x for x_o

$$\sup_{\substack{f \in X^* \\ f \neq 0}} \frac{\left| f(x) \right|}{\left\| f \right\|} \ge \frac{\left| \widetilde{f}(x) \right|}{\left\| \widetilde{f} \right\|} = \frac{\left\| x \right\|}{1} = \left\| x \right\| \tag{1}$$

and from $|f(x)| \le ||f||| ||x||$ we obtain

$$\sup_{\substack{f \in X^* \\ f \neq 0}} \frac{\left| f(x) \right|}{\left\| f \right\|} \le \left\| x \right\| \tag{2}$$

so, from (1) and (2) we get

$$||x|| = \sup_{\substack{f \in X^* \\ f \neq 0}} \frac{|f(x)|}{||f||}.$$

Applications:

A- Let p be defined on a vector space X and satisfy $p(x+y) \le p(x) + p(y)$ $\forall x, y \in X$ and $p(\alpha x) = |\alpha| p(x)$ for every scalar α Then for any given $x_o \in X$ there is a linear functional \tilde{f} on X such that $\tilde{f}(x_o) = p(x_o)$ and $|\tilde{f}(x)| \le p(x)$ for all $x \in X$.

Proof:

Let $x_o \in X$ fixed and $Z = \{x | x = \alpha x_o, \alpha \in C\}$, and define $f : Z \to C$ by $f(\alpha x_o) = \alpha p(x_o)$

clearly f is linear functional on Z, also $|f(x)| = |f(\alpha x_o)| = |\alpha p(x_o)| = |\alpha| |p(x_o)| \le |\alpha| p(x_o) = p(\alpha x_o) = p(x)$ $\Rightarrow |f(x)| \le p(x)$

By theorem (2.3.1), f has linear extension \tilde{f} on X such that $\left|\tilde{f}(x)\right| \le p(x) \quad \forall x \in X$ and if $\alpha = 1$, we get $\tilde{f}(x_o) = f(x_o) = 1(p(x_o)) = p(x_o)$.

B- Let X be a normed space and X^* its dual space. If $X \neq 0$, then X^* cannot be $\{0\}$.

Proof:

Let $x_o \in X$, $x_o \neq 0$, then by theorem (2.3.4) there exists a bounded linear functional f on X such that

 $\|f\| = 1 \text{ and } f(x_o) = \|x_o\|$ since $x_o \neq 0 \Rightarrow \|x_o\| \neq 0 \Rightarrow f(x_o) \neq 0 \qquad \forall x_o \in X \text{ (since } X \neq \{0\})$ Hence $f \neq 0 \Rightarrow X^* \neq \{0\}$.

C- If f(x) = f(y) for every bounded linear functional f on a normed space X, then x = y.

Proof:

Let
$$f(x) = f(y)$$
 $\forall f \in X^*$
 $\Rightarrow f(x) - f(y) = 0$ $\forall f \in X^*$
 $\Rightarrow f(x - y) = 0$ $\forall f \in X^*$ (since f is linear)
 $\Rightarrow x - y = 0$
 $\Rightarrow x = y$.

*D***-** Under the assumptions of theorem (2.3.4) there is a bounded linear functional \hat{f} on X such that

$$\|\hat{f}\| = \|x_o\|^{-1}$$
 and $\hat{f}(x_o) = 1$.

Proof:

Let $x_o \in X$, $x_o \neq 0$, then by theorem (2.3.4) there exists a bounded linear functional g on X such that

$$||g|| = 1$$
 and $g(x_o) = ||x_o||$

Now, let $\hat{f} = g \|x_o\|^{-1}$, then $\|\hat{f}\| = \|g\|\|x_o\|^{-1} = 1(\|x_o\|^{-1}) = \|x_o\|^{-1}$ and $\hat{f}(x_o) = g(x_o)\|x_o\|^{-1} = \|x_o\|\|x_o\|^{-1} = 1$.

2.4 Open mapping theorem

Definition (2.4.1)

Let X and Y be metric spaces, then $T: D(T) \to Y$ with domain $D(T) \subset X$ is called an <u>open mapping</u> if for every open set in D(T) the image is an open set in Y.

Remark (Baire's category theorem) (2.4.2)

If a metric space $X \neq \phi$ is complete, it is nonmeager in itself, hence if $X = \bigcup_{k=1}^{\infty} A_k$, where A_k closed, Then at least one A_k contains a nonempty open subset.

Lemma (Open unit ball) (2.4.3)

A bounded linear operator *T* from a Banach space *X* onto a Banach space *Y* has the property that the image $T(B_0)$ of the open unit ball $B_0 = B(0;1) \subset X$ contains an open ball about $0 \in Y$. **Proof:**

Proceeding stepwise, we prove:

(a) $\overline{T(B_1)}$ contains an open ball, where $B_1 = B(0; \frac{1}{2})$. (b) $\overline{T(B_n)}$ contains an open ball $\forall n \in N$, where $B_n = B(0; 2^{-n})$. (c) $T(B_0)$ contains an open ball about $0 \in Y$.

(a) We consider the open ball $B_1 = B(0; \frac{1}{2}) \subset X$, any fixed $x \in X$ is in kB_1 with real k, clearly $\bigcup_{k=1}^{\infty} kB_1 \subset X$ (1) since $kB_1 \subset X, \forall k \in N$ and let $x \in X, 2||x|| > 0$, then $\exists k_x > 2||x|| \Rightarrow ||x|| < \frac{k_x}{2}$, then $x \in k_x B_1 \subset \bigcup_{k=1}^{\infty} kB_1$ $\forall x \in X$ (2) Hence, from (1) and (2) we get $X = \bigcup_{k=1}^{\infty} kB_1$ since T is surjective and linear,

$$\Rightarrow \bigcup_{k=1}^{\infty} \overline{kT(B_1)} = \bigcup_{k=1}^{\infty} k\overline{T(B_1)} \subset Y = T(X)$$
$$= T(\bigcup_{k=1}^{\infty} kB_1) = \bigcup_{k=1}^{\infty} kT(B_1) \subset \bigcup_{k=1}^{\infty} k\overline{T(B_1)} = \bigcup_{k=1}^{\infty} \overline{kT(B_1)}$$

since Y is complete, it is nonmeager in itself, then by (2.4.2) $\exists k_a \in N$ such that $k_a T(B_1)$ contain an open ball, say

$$B(y_o; \alpha) \subset k_o T(B_1)$$

$$\Rightarrow B(y_o; \varepsilon) = \frac{1}{k_o} B(y_o; \alpha) \subset \overline{T(B_1)}, \varepsilon = \frac{\alpha}{k_o}.$$

(b) From (a) we shown that $\overline{T(B_1)}$ contain an open ball, say $B(y_o; \varepsilon) \subset \overline{T(B_1)}$ for some $y_o \in \overline{T(B_1)}, \varepsilon > 0$. Hence, $B(0;\varepsilon) = B(y_o;\varepsilon) - y_o \subset \overline{T(B_1)} - y_o$ Now, let $y \in \overline{T(B_1)} - y_o$, then $y + y_o \in \overline{T(B_1)}$, then there are $u_n \in B_1$ such that $Tu_n \rightarrow y + y_n$

 $v_n \in B_1$ such that $Tv_n \to y_o$ and

$$\Rightarrow \|u_n - v_n\| \le \|u_n\| + \|v_n\| < \frac{1}{2} + \frac{1}{2} = 1$$
$$\Rightarrow u_n - v_n \in B_0$$

since $T(u_n - v_n) = Tu_n - Tv_n \rightarrow y$ $\Rightarrow y \in \overline{T(B_0)}$

Hence, $B(0;\varepsilon) = B(y_{a};\varepsilon) - y_{a} \subset \overline{T(B_{1})} - y_{a} \subset \overline{T(B_{0})}$ (3)let $B_n = B(0; 2^{-n}) \subset X$, $B_n = B(0; 2^{-n}) = 2^{-n} B(0; 1) = 2^{-n} B_0$ Now. since T is linear

$$\Rightarrow \overline{T(B_n)} = 2^{-n} \overline{T(B_0)}$$

from (3) we thus obtain $V_n = B(0; \frac{\mathcal{E}}{2^{-n}}) \subset \overline{T(B_n)}$ (4)

(c) We finally prove that $V_1 = B(0; \frac{\varepsilon}{2}) \subset T(B_0)$ Let $y \in V_1 \subset \overline{T(B_1)}$ *from* (4), n = 1

 $y \in \overline{T(B_1)} \Rightarrow y \text{ is a limit point of } \overline{T(B_1)}$ $\Rightarrow \text{ every neighborhood of } y \text{ contains a point of } \overline{T(B_1)}$ $\Rightarrow \exists x_1 \in B_1 \text{ such that } \|y - Tx_1\| < \frac{\varepsilon}{2^2}$ this implies that $y - Tx_1$ belong to $V_2 = B(0; \frac{\varepsilon}{2^2}) \subset \overline{T(B_2)}$ $\Rightarrow y - Tx_1 \text{ is a limit point of } \overline{T(B_2)}$ $\Rightarrow \text{ every neighborhood of } y - Tx_1 \text{ contains a point of } \overline{T(B_2)}$ $\Rightarrow \exists x_2 \in B_2 \text{ such that } \|y - Tx_1 - Tx_2\| < \frac{\varepsilon}{2^3}$

this implies that $y - Tx_1 - Tx_2$ belong to $V_3 = B(0; \frac{\mathcal{E}}{2^3}) \subset \overline{T(B_3)}$ and so on ,in the *n* th step we can choose an $x_n \in B_n$ such that

$$\left\| y - \sum_{i=1}^{n} Tx_i \right\| < \frac{\mathcal{E}}{2^{n+1}}$$
 (5)

let $z_n = x_1 + \dots + x_n$, since $x_k \in B_k$ we have $||x_k|| < \frac{1}{2^k}$. This yield for n > m

$$||z_n - z_m|| \le \sum_{k=m+1}^n ||x_k|| < \sum_{k=m+1}^\infty \frac{1}{2^k} \to 0$$

as $m \to \infty$. Hence (z_n) is Cauchy. (z_n) converse, say $z_n \to x$ because X is complete. Also $x \in B_0$ since B_0 has radius 1 and

$$\sum_{k=1}^{\infty} \|x_k\| < \sum_{k=1}^{\infty} \frac{1}{2^k} = 1$$

since T is continuous, $Tz_n \to Tx$ and (5) shows that Tx = y. Hence $y \in T(B_0)$.

Open mapping theorem, Bounded inverse theorem (2.4.4)

A bounded linear operator T from a Banach space X onto a Banach space Y is an open mapping. Hence if T is bijective, T^{-1} is continuous and thus bounded.

Proof:

We want to prove that for every open set $A \subset X$ the image T(A) is open in Y, this we do by showing that for every $y = Tx \in T(A)$ the set T(A) contains an open ball about y = Tx

Now, let y = Tx, $x \in A$, since A is open, then A contains an open ball about x, say

$$B(x;\varepsilon) \subset A$$

$$\Rightarrow B(0_x;\varepsilon) = B(x;\varepsilon) - x \subset A - x$$

$$\Rightarrow T(B(0_x;\varepsilon)) \subset T(A) - Tx$$

$$\Rightarrow T(\frac{1}{\varepsilon}B(0_x;1)) \subset T(A) - Tx$$

$$\Rightarrow \frac{1}{\varepsilon}T(B_0) \subset T(A) - Tx$$

$$\Rightarrow T(B_0) \subset \varepsilon(T(A) - Tx)$$

But from (2.4.3)

 $T(B_0)$ contains a ball about 0_Y , say $B(0_Y; \delta)$

$$\Rightarrow B(0_Y; \delta) \subset T(B_0) \subset \mathcal{E}(T(A) - Tx)$$

$$\Rightarrow \frac{1}{\mathcal{E}} B(0_Y; \delta) \subset T(A) - Tx$$

$$\Rightarrow B(0_Y; \frac{\delta}{\mathcal{E}}) \subset T(A) - Tx$$

$$\Rightarrow B(0_Y; \frac{\delta}{\mathcal{E}}) + Tx \subset T(A)$$

$$\Rightarrow B(Tx; \frac{\delta}{\mathcal{E}}) \subset T(A)$$

Hence, T(A) contains an open ball about y = Tx, so T(A) is open in Y.

Finally, if $T^{-1}: Y \to X$ exists, it is continuous because T is open. Since T^{-1} is linear, then it is bounded.

Applications

A- Let X be the normed space whose points are sequences of complex numbers $x = (\xi_i)$ with only finitely many nonzero terms and norm defined by $||x|| = \sup_i |\xi_i|$,

Let $T: X \to Y$ be defined by $y = Tx = (\xi_1, \frac{1}{2}\xi_2, \dots) = (\frac{\xi_i}{i})_{i=1}^{\infty}$ Then *T* is linear and bounded but T^{-1} is unbounded.

Proof:

Let
$$x, y \in X, x = (\xi_i), y = (\eta_i), \alpha$$
 is any scalar
1. $T(x + y) = (\frac{\xi_i + \eta_i}{i})_{i=1}^{\infty} = (\frac{\xi_i}{i} + \frac{\eta_i}{i})_{i=1}^{\infty} = (\frac{\xi_i}{i})_{i=1}^{\infty} + (\frac{\eta_i}{i})_{i=1}^{\infty} = Tx + Ty.$
2. $T(\alpha x) = (\frac{\alpha \xi_i}{i})_{i=1}^{\infty} = \alpha (\frac{\xi_i}{i})_{i=1}^{\infty} = \alpha Tx.$
Hence, T is linear.
Also, $||Tx|| = \sup_i \left|\frac{\xi_i}{i}\right| \le \sup_i |\xi_i| = ||x||$, then T is bounded.
Let $x = (\xi_i) \in X \Rightarrow \xi_i = 0$ for all but finite number of ξ_i 's
Let $0 = Tx = (\frac{\xi_i}{i}) \Rightarrow \xi_i = 0, \forall i \Rightarrow x = 0$, hence T is one to one, then
 $T^{-1}: R(T) \to X$ exists.
Let $y = (\eta_i) \in X \Rightarrow \eta_i = 0$ for all but finite number of η_i 's
 $\Rightarrow (i\eta_i) \in X$ and $T(i\eta_i) = (\eta_i)$, so T is surgective.
Now, let $T^{-1}: R(T) \to X$ is defined by $x = T^{-1}(y) = (i\eta_i)_{i=1}^{\infty}$
Let $y_n \in X, y_n = (\eta_1^{(n)}, \eta_2^{(n)}, \dots, \eta_k^{(n)}, \dots)$, where $\eta_k^{(n)} = \begin{cases} \frac{1}{n} & k = n \\ 0 & k \neq n \end{cases}$
 $\Rightarrow ||y_n|| = \frac{1}{n}$
and $T^{-1}(y_n) = (0, 0, \dots, 0, 1, 0, \dots)$ where 1 is the n th term

$$\left\|T^{-1}\right\| = \sup_{\substack{y \in X \\ y \neq 0}} \frac{\left\|T^{-1}(y_n)\right\|}{\|y\|} \ge \frac{\left\|T^{-1}(y_n)\right\|}{\|y_n\|} = \frac{1}{\frac{1}{n}} = n \qquad \forall n \in N$$

 $\Rightarrow T^{-1}$ is unbounded.

This example does not contradict the open mapping theorem, as X is not Banach space.

B- Let $T: X \to Y$ be a bounded linear operator, where X and Y are Banach spaces. If T is bijective, then there are positive real number a and b such that

$$a \|x\| \le \|T(x)\| \le b \|x\|$$
 for all $x \in X$.

Proof:

Since *T* is bounded, then $\exists b$ such that $||T(x)|| \le b ||x|| \quad \forall x \in X$ (1) And since *T* is bounded linear operator from a Banach space *X* onto a Banach space *Y*, then T^{-1} is bounded, so $\exists \alpha$ such that $||T^{-1}(y)|| \le \alpha ||y|| \quad \forall y \in Y, y = Tx$ for all $x \in X \Rightarrow ||x|| = ||T^{-1}T(x)|| \le \alpha ||T(x)||$, put $\alpha = \frac{1}{a} \Rightarrow a ||x|| \le ||T(x)|| \quad \forall x \in X$ (2) Hence, from (1) and (2) we get $a ||x|| \le ||T(x)|| \le b ||x||$ for all $x \in X$.

C- Let *X* and *Y* be Banach spaces and $T: X \to Y$ an injective bounded linear operator, then $T^{-1}: R(T) \to X$ is bounded if and only if R(T) is closed in *Y*.

Proof:

Suppose that $T^{-1}: R(T) \to X$ is bounded, and let $y \in \overline{R(T)}$, then there is the sequence (y_n) in R(T) such that $y_n \to y$ since $y_n \in R(T)$, $y_n = Tx_n, x_n \in X \Rightarrow x_n = T^{-1}y_n$

Now, since (y_n) is convergent, it is a Cauchy sequence. Hence $||x_n - x_m|| = ||T^{-1}y_n - T^{-1}y_m|| = ||T^{-1}(y_n - y_m)|| \le ||T^{-1}||| ||y_n - y_m||$ since T^{-1} is bounded therefore, if $\varepsilon > 0$ is given $\exists k_{\varepsilon} \in N$ such that $\forall n, m \ge k_{\varepsilon}$

$$\left\| y_n - y_m \right\| < \frac{\varepsilon}{\left\| T^{-1} \right\|}$$

which implies that $||x_n - x_m|| < \varepsilon$, so (x_n) is Cauchy sequence in X, and hence is convergent since X is Banach space, say $x_n \to x$

 \Rightarrow $y_n = Tx_n$ converges to Tx

By the uniqueness of the limit $Tx = y \Rightarrow y \in R(T) \Rightarrow R(T)$ is closed.

Conversely

Let R(T) is closed in Y, then R(T) is Banach space so that $T: X \to R(T)$ is a bijective bounded linear operator defined from a Banach space X onto a Banach space R(T), hence by open mapping theorem T^{-1} is bounded.

2.5 <u>Closed Linear Operators, Closed Graph Theorem</u>

Definition (Closed linear operator) (2.5.1)

Let X and Y be normed space and $T: D(T) \to Y$ a linear operator with domain $D(T) \subset X$, Then T is called a <u>closed linear operator</u> if its graph

$$\vartheta(T) = \{(x, y) : x \in D(T), y = Tx\}$$

is closed in the normed space $X \times Y$, where the two algebraic operations of a vector space in $X \times Y$ are defined as usual, that is

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

 $\alpha(x, y) = (\alpha x, \alpha y)$

(α a scalar) and the norm on $X \times Y$ is defined by

$$||(x, y)|| = ||x|| + ||y||.$$

<u>*Remark*</u> (2.5.2)

A subspace M of a complete X is itself complete if and only if M closed in X.

Closed Graph Theorem (2.5.3)

Let *X* and *Y* be Banach spaces and $T: D(T) \to Y$ a closed linear operator, where $D(T) \subset X$, then if D(T) is closed in *X*, the operator *T* is bounded.

Proof:

We first show that $X \times Y$ with norm defined by ||(x, y)|| = ||x|| + ||y|| is complete,

Let (z_n) be Cauchy in $X \times Y$, where $z_n = (x_n, y_n)$, then for every $\varepsilon > 0$, there is $k_{\varepsilon} \in N$ such that

$$\|z_n - z_m\| = \|x_n - x_m\| + \|y_n - y_m\| < \varepsilon \qquad m, n > k_{\varepsilon}$$
(1)

Hence (x_n) and (y_n) are Cauchy in X and Y respectively, and converge. Say $x_n \to x$ and $y_n \to y$, because X and Y are complete.

This implies that $z_n \to z = (x, y)$ since from (1) with $m \to \infty$ we have $||z_n - z|| \le \varepsilon$, for $n > k_{\varepsilon}$, Since the Cauchy sequence (z_n) was arbitrary, hence $X \times Y$ is complete.

By assumption, $\vartheta(T)$ is closed in $X \times Y$ and D(T) is closed in XHence $\vartheta(T)$ and D(T) are complete by (2.5.2), We consider the mapping

$$p: \vartheta(T) \to D(T)$$
$$p(x,Tx) = x$$

p is linear, p is bounded because

 $||p(x,Tx)|| = ||x|| \le ||x|| + ||Tx|| = ||(x,Tx)||.$

p is bijective; in fact the inverse mapping is

$$p^{-1}: D(T) \to \vartheta(T)$$

 $p^{-1}(x) = (x, Tx)$

Since $\vartheta(T)$ and D(T) are complete, we can apply the bounded inverse theorem (2.4.4) and see that p^{-1} is bounded, say

 $\|(x,Tx)\| \le b \|x\| \quad \text{for some } b \text{ and all } x \in D(T)$ Hence *T* is bounded because $\|Tx\| \le \|Tx\| + \|x\| = \|(x,Tx)\| \le b \|x\|$

 $||Tx|| \le ||Tx|| + ||x|| = ||(x, Tx)|| \le b ||x|| \quad \forall x \in D(T).$

Theorem (Closed linear operator) (2.5.4)

Let $T : D(T) \to Y$ be a linear operator, where $D(T) \subset X$ and X and Y are normed spaces, then T is closed if and only if it has the following property:

If $x_n \to x$ where $x_n \in D(T)$, and $Tx_n \to y$, then $x \in D(T)$ and Tx = y.

Lemma (Closed operator) (2.5.5)

Let $T: D(T) \rightarrow Y$ be abounded linear operator with domain $D(T) \subset X$, where X and Y are normed spaces, then:

(a) If D(T) is closed subset of X, Then T is closed.

(b) If T is closed and Y is complete, then D(T) is a closed subset of X.

Proof:

(a) If (x_n) is in D(T) and converges, say $x_n \to x$ and is such that (Tx_n) also converges, then $x \in \overline{D(T)} = D(T)$ since D(T) is closed, and $Tx_n \to Tx$ since *T* is continuous, Hence *T* is closed by theorem (2.5.4)

(b) For $x \in \overline{D(T)}$ there is a sequence (x_n) in D(T) such that $x_n \to x$, since *T* is bounded

$$|Tx_n - Tx_m|| = ||T(x_n - x_m)|| \le ||T|| ||x_n - x_m||$$

This show that (Tx_n) is Cauchy, (Tx_n) converges, Say $Tx_n \to y \in Y$ because Y is complete. Since T is closed, $x \in D(T)$ by theorem (2.5.4) and Tx = y, Hence D(T) is closed because $x \in \overline{D(T)}$ was arbitrary.

<u>Remark (</u>2.5.6)

Closedness does not imply boundedness of a linear operator.

Example:

Let
$$X = C[0,1]$$
 and $T: D(T) \to X$ is defined by
 $T(x) = x'$

where $x \in D(T) \subseteq X$, D(T) is subspace of functions $x \in X$ which have continuous derivative, Then T is not bounded, but is closed.

Proof:

We see from (1.3) that *T* is not bounded. To prove that *T* is closed by appling theorem (2.5.4) Let (x_n) in D(T) be such that both (x_n) and (Tx_n) converge, say $x_n \to x$ and $Tx_n = x'_n \to y$ Since convergence in the norm of C[0,1] is uniform convergence on [0,1], from $x'_n \to y$ we have $\int_0^t y(\tau) d\tau = \int_0^t \lim_{n \to \infty} x'_n(\tau) d\tau = \lim_{n \to \infty} \int_0^t x'_n(\tau) d\tau = x(t) - x(0)$ That is $x(t) = x(0) + \int_0^t y(\tau) d\tau$ This show that $x \in D(T)$ and x' = y, by theorem (2.5.4) *T* is closed.

<u>Remark</u> (2.5.7)

Boundedness does not imply Closedness of a linear operator.

Example:

Let $T: D(T) \to D(T) \subseteq X$ be the identity operator on D(T), where D(T) is a proper dense subspace of a normed space X, then T is linear and bounded but T is not closed, this follows immediately from theorem (2.5.4) if we take $x \in X - D(T)$ and a sequence (x_n) in D(T) which converges to x.

Lemma (2.5.8)

Let *X* and *Y* be normed spaces, and let $T : D(T) \to Y$ be a closed linear operator, $D(T) \subseteq X$. If $T^{-1} : R(T) \to X$ exists, it is a closed linear operator.

Proof:

We have see from theorem (1.2.5(b)) if $T^{-1}: R(T) \to X$ exists, it is linear.

To show that $T^{-1}: R(T) \to X$ is closed

Suppose that *T* is a closed operator, and let (y_n) be a sequence in R(T) such that (y_n) converges to $y \in Y$, and $(T^{-1}(y_n))$ converges to $x \in X$, then $y_n = Tx_n$ for some $x_n \in D(T)$

Hence $(x_n) = (T^{-1}y_n)$ is sequence in D(T) which converges to $x \in X$ since *T* is closed, and $(y_n) = (Tx_n)$ converges to *y*, we must have y = Tx. That is $y \in R(T) = D(T^{-1})$, hence $x = T^{-1}y$ This implies that T^{-1} is closed by theorem (2.5.4).

Applications

A- The Null space N(T) of a closed linear operator $T: X \to Y$ is a closed subspace of X.

Proof:

Let $x \in \overline{N(T)}$ then there exist a sequence (x_n) in N(T) such that $x_n \to x$ Now, $T(x_n) = 0, \forall n \in N$ so that $T(x_n) \to 0$ Since *T* is closed, then $x \in D(T)$, and $0 = T(x) \Rightarrow x \in N(T)$, then N(T) is a closed subspace of *X*.

B- Let *T* be closed linear operator with domain D(T) in a Banach space *X* and range R(T) in a normed space *Y*. If T^{-1} exists and is bounded, then R(T) is closed.

Proof:

Suppose that T^{-1} : $R(T) \rightarrow D(T)$ exists,

Since $T : D(T) \to Y$ is closed, then T^{-1} is closed linear operator by lemma (2.5.8), Since $T^{-1} : R(T) \to D(T)$ is bounded and closed linear operator, so $D(T^{-1}) = R(T)$ is closed by lemma (2.5.5(b)).

C- If $T: X \to Y$ is a closed linear operator, where X and Y are normed space, and Y is compact, then T is bounded.

Proof:

Since *Y* is compact, then *Y* is complete, so $T^{-1}(Y) = X = D(T)$ is closed by lemma (2.5.5),

Hence T is bounded by theorem (2.5.3).

References:

1- Introductory Functional Analysis with Applications (by Erwm Kreyszig).

2- Internet.