Q1: Let $\mathrm{V}=\{0\}$ and define the addition and scalar multiplications as follows:
$0+0=0$ and $\mathrm{kO}=0$ for any scalar k .
Show (in details) that V is a vector space. (5 marks)

Q2: Let V be an inner product space. Let W be a subspace of V and define a set \mathbf{S} as follows: $\mathbf{S}=\{\mathbf{s} \in \mathbf{V} \mid$ the vectors \mathbf{s} and \mathbf{w} are orthogonal for all $\mathbf{w} \in \mathbf{W}\}$. Show that \mathbf{S} is a subspace of V . (3 marks)

Q3: Let $S=\left\{v_{1}=(1,1,1,1), v_{2}=(1,0,1,0), v_{3}=(1,0,0,1), v_{4}=(0,2,1,1)\right\}$ be a subset of the Euclidean space \mathbb{R}^{4}. Find a subset of S which is a basis of span(S). (4 marks)

Q4- Let $T: V \rightarrow \mathbb{R}$ be a map from an inner product space V to the set of real numbers \mathbb{R} defined by $T(v)=<3 v, 3 v_{0}>$ for all $v \in V$, where v_{o} is a fixed vector in V. (6 marks)
(a) Show that T is a linear transformation.
(b) Find $\operatorname{ker}(\mathrm{T})$.
(c) Show that if $\mathrm{v}_{\mathrm{o}} \in \operatorname{ker}(\mathrm{T})$ then $\operatorname{ker}(\mathrm{T})=\mathrm{V}$.

Q5- Let \mathbb{R}^{4} be the Euclidean space with a weighted inner product which $3,2,1,1$ are the weights respectively. Let $\mathrm{v}=(1,1,1,1)$ and $\mathrm{u}=(1,2,-1,1)$. (2 marks)

Find:
(i) $\langle u, v>$.
(ii) \|v\|.

