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LOCALLY AND COLOCALLY FACTORABLE

BANACH SPACES

F. B. H. JAMJOOM and H. M. JEBREEN

Abstract. We generalize the concept of locality (resp. colocality) to
the concept of locally factorable (resp. colocally factorable) such that
Theorem 2 of [2] and Theorems 1.7 and 1.16 of [11] are still valid
for the new concepts. In addition we show that locally factorable and
colocally factorable are inherited by complemented subspace, then we
present some examples and establish relations between locally factorable
and colocally factorable. We prove some relations between being finitely
(resp. cofinitely) represented in a Banach space and being locally fac-
torable (resp. colocally factorable) some family of finite dimensional
Banach spaces.

1. INTRODUCTION

An operator T : X −→ Y of Banach spaces is an isomorphism if it is
an invertible bounded linear map, T is an into isometry if ‖Tx‖ = ‖x‖
for every x ∈ X, it is a λ-isomorphism, λ > 1, if T is an isomorphism
and ‖T‖ < λ,

∥

∥T−1
∥

∥ < λ, Heinrich [10, II.6]. The distance between two
homogeneous maps T1 and T2 acting between the same spaces is given by

dist (T1, T2) = sup {‖T1x− T2x‖ : ‖x‖ ≤ 1} .

We note that bounded maps are those maps at a finite distance from the zero
map, also it should be kept in mind that linear maps are not assumed to be
bounded. Let E be a family of finite dimensional Banach spaces, a Banach
space X is said to contain E uniformly complemented if there exists a
constant c such that for every E ∈ E , there is a c-complemented subspace
A of X which is c- isomorphic to E. It is clear that X contains E uniformly
complemented if and only if its second dual X∗∗does. A Banach space X is
said to be λ-locally E (or, if no quantitative estimate is needed, locally E) if
there exists a constant λ > 1 such that every finite dimensional subspaceA of
X is contained in a finite dimensional subspace B of X such that dBM (B,E)
< λ, for some E ∈ E , where dBM (B,E) is the Banach-Mazur distance
between B and E, and is defined by dBM (B,E) = inf{‖T‖

∥

∥T−1
∥

∥ : T :

B −→ E is an isomorphism of B onto E}. If E =
{

ℓnp
}∞

n=1
, then X is an

Lp-space, Lindenstrauss and Rosenthal [15].
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A closed subspace Y of a Banach space X is said to be locally comple-
mented in X if for every finite dimensional subspace E ⊂ X there exists
an operator P : E → Y such that P is the identity on Y ∩E, with ‖P‖ ≤M
for some M independent of E.

A Banach space X is called λ-colocally E (or colocally E) if there
exists a constant λ > 1 such that every finite dimensional quotient A of
X is a quotient of another finite dimensional quotient B of X satisfying
dBM (B,E) < λ for some E ∈ E , Jebreen, Jamjoom and Yost [11]. The
space Lp(µ), for any measure µ, is both locally and colocally

{

ℓnp
}∞

n=1
[11,

Corollary 1.2].
Let X be a Banach space, CX be the set of all finite dimensional subspaces

A of X directed by the inclusion, and let ℓ∞ (A; CX) be the collection of all
(x

A
)

A∈CX

∈ Π
A∈CX

A such that (‖x
A
‖)A∈CX

is bounded, with norm given by

∥

∥

∥
(x

A
)

A∈CX

∥

∥

∥

∞

= sup
A∈CX

‖x
A
‖ .

Let U be an ultrafilter on CX that refines the corresponding order filter,

and let

(

Π
A∈CX

A

)

U

be the ultraproduct of the family CX with respect to

the ultrafilter U , that is,

(

Π
A∈CX

A

)

U

is the quotient space ℓ∞ (A; CX) /NU ,

where NU =

{

(x
A
)

A∈CX

∈ ℓ∞ (A; CX) : lim
U

‖x
A
‖ = 0

}

. The elements of
(

Π
A∈CX

A

)

U

are denoted by (x
A
)
U
, and its norm is given by

∥

∥(x
A
)
U

∥

∥ =

lim
U

‖x
A
‖, Diestel, Jarchow and Tonge [8, p. 170], Sims [19, Proposition

4.1, p. 14]. The map JX : X −→

(

Π
A∈CX

A

)

U

defined by JX (x) = (xA)
U
,

where x
A

= x, if x ∈ A and x
A

= 0, otherwise, is an isometry of X onto

a subspace of

(

Π
A∈CX

A

)

U

[8, 8.8]. Moreover, the bidual of X is isometri-

cally isomorphic to a quotient of an ultraproduct of the finite dimensional
quotient spaces of X [8, 8.9].

A diagram 0 −→ Y
i

−→ X
q

−→ Z −→ 0 of quasi Banach spaces and
bounded linear operators is called an exact sequence if the kernel of each
arrow coincides with the image of the preceding one. The open mapping
theorem implies that X contains i(Y ) and the quotient X/i(Y ) is isomorphic
to Z. In this case, we shall say that X is a twisted sum of Y and Z. Two
exact sequences 0 −→ Y −→ X1 −→ Z −→ 0 and 0 −→ Y −→ X2 −→
Z −→ 0 are said to be equivalent if there is a bounded linear operator T
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making the diagram

0 −→ Y −→ X1 −→ Z −→ 0

‖ T ↓ ‖

0 −→ Y −→ X2 −→ Z −→ 0

commutative. The three-lemma and the open mapping theorem imply that
T must be an isomorphism. An exact sequence 0 −→ Y −→ X −→ Z −→ 0
is said to split if it is equivalent to the trivial exact sequence 0 −→ Y −→
Y ⊕ Z −→ Z −→ 0, in this case, we say that X is trivial. We denote by
Ext (Z, Y ) the space of all equivalence classes of locally convex twisted sums
of Y and Z. Thus Ext (Z, Y ) = 0 means that all locally convex twisted sums
of Y and Z are equivalent to the direct sum Y ⊕ Z.

A homogeneous map F : Z −→ Y between two Banach spaces Z and Y
is said to be quasi-linear if for some constant k and all z,w ∈ Z it satisfies

‖F (z +w) − F (z) − F (w)‖ ≤ k (‖z‖ + ‖w‖) .

The smallest constant satisfying the above inequality is called the quasi-
linearity constant of the map F and is denoted by Q (F ), Kalton and
Peck [14]. If F : Z −→ Y is a quasi-linear map, it is possible to construct a
twisted sum Y ⊕F Z by endowing the product space Y ×Z with the quasi-
norm ‖(y, z)‖ = ‖y − F (z)‖ + ‖z‖. Clearly, the subspace {(y, 0) : y ∈ Y }
of Y ⊕F Z is isometric to Y and the corresponding quotient (Y ⊕F Z) /Y
is isometric to Z . Conversely, given a short exact sequences 0 −→ Y −→
X −→ Z −→ 0, a quasi-linear map F : Z −→ Y can be obtained such
that X is equivalent to Y ⊕F Z, Castillo and González [4, 1.5]. Two quasi-
linear maps F and G of a Banach space Z into a Banach space Y are
said to be equivalent if the corresponding exact sequences 0 −→ Y −→
Y ⊕F Z −→ Z −→ 0 and 0 −→ Y −→ Y ⊕G Z −→ Z −→ 0 are equivalent,
in this case, we say that F is a version of G. It is shown that quasi-
linear maps F and G are equivalent if and only if d (F −G,L (Z, Y )) =
inf {dist(F −G,L) : L ∈ L (Z, Y )} < ∞ [14, Theorem 2.5], where L (Z, Y )
is the space of all linear maps L : Z −→ Y . A quasi-linear map F : Z −→ Y
is said to be trivial if the exact sequence 0 −→ Y −→ Y ⊕F Z −→ Z −→ 0
is equivalent to 0 −→ Y −→ Y ⊕ Z −→ Z −→ 0. Consequently, F is trivial
if and only if F is at a finite distance from some linear map, Benyamini and
Lindenstrauss [1, Theorem 16.2], In particular, F is trivial if and only if it
can be written as the sum of a bounded and a linear map. There is a one
to one correspondence between the classes of twisted sums Y ⊕F Z and the
classes of quasi-linear maps F : Z −→ Y [1, 16.2]. A homogeneous map
F : Z −→ Y acting between two Banach spaces is said to be zero-linear
if there is some constant k such that whenever z1, z2, ...zn are finitely many
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elements of Z then

‖F (Σn
i=1zi) − Σn

i=1F (zi)‖ ≤ k (Σn
i=1 ‖zi‖) .

The smallest constant satisfying the above inequality, denoted by Z (F ), is
called the zero-linearity constant of F . We note that a zero-linear map
is a quasi-linear map, and that a twisted sum Y ⊕F Z of Banach spaces Y
and Z is locally convex if and only if F is zero-linear, Cabello and Castillo
[3, Theorem 2] (see also, Castillo and González [5, 1.6.e]).

The locality of a family is used to determine the existence of nontriv-
ial twisted sums of certain Banach spaces, in fact, if a Banach spaceY is
complemented in its bidual Y ∗∗, and if Ext (W,Y ) = 0 for a Banach space
W containing a family E of finite dimensional subspaces uniformly com-
plemented, then Ext (Z, Y ) = 0 for any Banach space Z which is locally E ,
Cabello and Castillo [2, Theorem 2]. Using this fact, it is shown that there is
a nontrivial twisted sums of ℓ1 and ℓ2, of ℓ2 and c0, and that Ext(c0, ℓ1) 6= 0
[2, Examples 4.1, 4.2 and 4.3].

The reader is referred to [3, 4, 5, 14] for a detailed account of exact
sequences and twisted sums.

2. locally Factorable and colocally Factorable

Let E be a family of finite dimensional Banach spaces. A Banach space
X is said to be λ-locally E−factorable (or simply locally E−factorable
) if there is a constant λ > 1 such that for every finite dimensional subspace
A of X, there is EA ∈ E , called a companion of A, and there are bounded
linear maps ϕA:A → EA, ηA : EA → X with ‖ϕA‖ ≤ λ and ‖ηA‖ ≤ λ such
that ηA ◦ ϕA = iA, where iA : A → X is the inclusion map. The maps
ϕA, ηA are the bounded linear factorization of iA through EA, and the
diagram

A
iA
→֒ X

ϕ
A
ց ր η

A

E
A

is called a locally factorable diagram for A with respect to E
A
. Note that

a companion E
A
∈ E of A is not unique. It is clear that if a Banach space

X is λ-locally E , it is λ-locally E−factorable. Also, it is obvious that if a
Banach space X is locally E−factorable, so is every complemented subspace
of X and every Banach space isomorphic to X. On the other hand, a com-
plemented subspace of a Banach space which is locally E need not be locally
E also. Indeed, the space Lp (0, 1) , 1 < p < ∞, p 6= 2, is locally

{

ℓnp
}∞

n=1
,
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Lindenstrauss and Tzafriri [16, II.5.b] and contains a complemented sub-
space Ap which is not locally

{

ℓnp
}∞

n=1
since it is isomorphic to a Hilbert

space, Lindenstrauss and Tzafriri [17, p. 72], [16, II.3.1].
Throughout this paper E and F denote families of finite dimensional

Banach spaces and E∗ denotes the family of the duals of the spaces in E . We
say that E is c-chained to F , c > 1, if for each E ∈ E , there is G ∈ F and
bounded linear maps T : E → G, Q : G → E with ‖T‖ ≤ c, ‖Q‖ ≤ c such
that Q ◦ T = id

E
.

Theorem 1. Let E , F be two families of finite dimensional Banach spaces
such that E is c-chained to F . If X is a Banach space λ-locally E−factorable
then X is λc-locally F−factorable.

Proof. Let A be a finite dimensional subspace of X, and consider a locally
factorable diagram for A with respect to a companion EA ∈ E

A
iA
→֒ X

ϕA ց ր ηA
E

A

By hypothesis, there is GA ∈ F and bounded linear maps EA
T

−→ GA
Q
−→

EA such that Q ◦ T = idEA
with ‖T‖ ≤ c, ‖Q‖ ≤ c . It is clear that the

composition bounded linear maps ψA = T ◦ φA : A→ GA and βA = ηA ◦Q :
GA → X satisfy βA◦ψA = iA with ‖ψA‖ ≤ cλ, ‖βA‖ ≤ cλ. That is, the maps
ψA, βA are bounded linear factorization of iA through GA ∈ F , proving that
X is cλ-locally F−factorable. �

Theorem 2. Let X be a locally E−factorable Banach space, and let Y be a
locally complemented subspace of X. Then Y is locally E−factorable.

Proof. Let A be a finite dimensional subspace of Y , and consider a locally
factorable diagram for A with respect to a companion EA ∈ E

A
iA
→֒ X

ϕA ց ր ηA
E

A

Since Y is a locally complemented in X, and ηA(E
A
) is a finite dimensional

subspace of X, there is a bounded operator pA : ηA(E
A
) → Y such that

pA is the identity on ηA(E
A
) ∩ Y , and hence is the identity on A, since

A = iA(A) = ηA(ϕA(A)) ⊆ ηA(E
A
)∩ Y . Therefore, iA = pA ◦ iA = ηA ◦ϕA,

proving that Y locally E−factorable. �

Since any Banach space X is locally complemented in its bidual space
X∗∗, we have



164 F. B. H. JAMJOOM AND H. M. JEBREEN

Corollary 1. Any Banach space X has the same local factorable structure
as X∗∗.

The following Corollary is immediate since L∞ spaces are locally comple-
mented in any superspace.

Corollary 2. All L∞ spaces are locally E−factorable whenever an L∞ space
is contained in a locally E−factorable space.

Corollary 3. All L1 spaces are locally E∗−factorable whenever an L∞ space
is contained in a locally E−factorable space.

Proof. It is easy to see that the family {ℓn∞}∞n=1 is chained to the family
E , and hence the family {ℓn1}

∞

n=1is chained to the family E∗. �

Example 1. Recall that the Schreier Space S is the completion of the space
of finite sequences with respect to the following norm:

‖x‖ = sup
A

(Σj∈A |xj|) ,

where the supremum is taken over all
“
admissible

”
subsets of N , which are

defined as the finite subsets A = {n1, n2, ..., nk} of N such that n1 < n2 <
... < nk and k ≤ n1, Schreier [19] (see also Castillo and González [5, p.
119]). So, if Sk denotes the subspace of the Schreier space S generated by
the first k elements of the canonical basis{ei}

∞

i=1, then every L∞ space (re-
spectively, an L1 space) is locally {Sk}

∞

k=1 −factorable (respectively, locally
{S∗

k}
∞

k=1 −factorable), since S contains isometic copies of the L∞ space c0
[4, p.167].

Theorem 3. Let X be a Banach space which is λ-locally E−factorable and
complemented in its bidual. Let U be an ultrafilter refining the order filter
on the net CX of the finite dimensional subspaces A of X. Then X is iso-

morphic to a complemented subspace of the ultraproduct

(

Π
A∈CX

E
A

)

U

of all

companions EA ∈ E of A ∈ CX .

Proof. For each A ∈ CX , consider a locally factorable diagram with respect
to a companion EA ∈ E
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A
iA
→֒ X

ϕA ց ր ηA
E

A

Let (y
A
)
U

∈

(

Π
A∈CX

E
A

)

U

, then
(

‖y
A
‖
∞

)

A∈CX
is a bounded net, since

(y
A
)
U

= ((y
A
) +NU ) ∈ ℓ∞ (E

A
; CX) /NU , where

NU =

{

(y
A
)

A∈CX

∈ ℓ∞ (E
A
; CX) : lim

U
‖y

A
‖ = 0

}

.

Therefore, (η
A

(y
A
))A∈CX

is σ(X∗∗,X∗)−bounded inX∗∗, since it is bounded
in X →֒ X∗∗. By Kadison and Ringrose [13, Corollary 1.6.6], the
σ(X∗∗,X∗)-closure of {η

A
(y

A
) : A ∈ CX} in X∗∗ is compact, and hence,

the weak-* limit of (η
A

(y
A
))A∈CX

over U exists, by Sims [20, Lemma 3.2].

Accordingly, we can define a map Ψ :

(

Π
A∈CX

E
A

)

U

−→ X∗∗ by

Ψ ((yA)
U
) = weak ∗ lim(η

A
(y

A
))

U

.

If is π is a projection of X∗∗ onto X, and JX is the natural isometric em-

bedding of X into

(

Π
A∈CX

A

)

U

, then the composition maps

X
JX
→֒

(

Π
A∈CX

A

)

U

Φ
−→

(

Π
A∈CX

E
A

)

U

Ψ
−→ X∗∗ π

−→ X

is clearly the identity map on X, where Φ :

(

Π
A∈CX

A

)

U

−→

(

Π
A∈CX

E
A

)

U

is

the map given by Φ ((xA)
U
) = (ϕA (xA))

U
. That is, (π ◦ Ψ)◦(Φ ◦ JX) = idX ,

proving the theorem. �

Using the proof of Theorem 3 with E =
{

ℓnp
}∞

n=1
, the following collolary

is obvious.

Corollary 4. If a Banach space X is locally
{

ℓnp
}∞

n=1
−factorable, 1 ≤ p ≤

∞, then X is an Lp space (or an L2 if 1 < p <∞).

Example 2. (i) Consider the James space J , that is, the Banach space
(J, ‖.‖) of all real sequences x = (a1, a2, ....) such that limn→∞ an = 0

and sup

(

n
∑

i=1

(

ap2i−1 − ap2i

)2
)

< ∞ ,where the supremum is taken over all

choices of n and of positive integers p1 < p2 < .... < p2n, equipped with the
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norm

‖x‖ = sup

(

n
∑

i=1

(

ap2i−1 − ap2i

)2

)
1
2

.

The unit vectors {en}
∞

n=1 form a basis of J , Fetter de Buen [9, p. 12]. For
each n, let Jn = span {e1, ..., en}, then J is (1 + ǫ)-locally {Jn}

∞

n=1 by [11,
Lemma 1.4], and hence, is locally {Jn}

∞

n=1 −factorable .

(ii) Every separable Hilbert space is locally {Jn}
∞

n=1 −factorable . Indeed,
ℓ2 is isomorphic to a complemented subspace of J [9, Corollary 2.d.4], and
J is (1 + ǫ)-locally {Jn}

∞

n=1. The result follows by [13, 2.2.14].
The generalization of [2, Theorem 2] to locally factorable spaces is given

in the following:

Theorem 4. Let E be a family of finite dimensional Banach spaces, and let
Y be a Banach space complemented in its bidual. If Ext (W,Y ) = 0 for some
Banach space W containing E uniformly complemented, then Ext (X,Y ) = 0
for any Banach space X which is locally E−factorable.

Proof. Let X be a Banach space which is λ-locally E−factorable, and
let U be an ultrafilter refining the ordered filter on the net CX of the finite
dimensional subspaces A of X. Let F : X → Y be a zero-linear map, and
consider a a locally factorable diagram for A ∈ CX with respect to E

A
∈ E

A
iA
→֒ X

ϕ
A
ց ր η

A

E
A

Then F ◦ ηA : EA → Y is a z-linear map, and so there is, by [11, Lemma
1.6], a constant t, independent of A, and a linear map LA : EA → Y such
that

‖F ◦ ηA (y) − LA (y)‖ ≤ tZ (F ◦ ηA) ‖y‖ , y ∈ EA.

Note that if x ∈ X, then x = x
A
∈ A for some A ∈ CX , and so

‖L
A
◦ ϕA (x

A
)‖ ≤ ‖L

A
ϕA (x

A
) − F (ηA (ϕA (x

A
)))‖ + ‖F (ηA (ϕA (x

A
)))‖

≤ tZ (F ◦ ηA) ‖ϕA (x
A
)‖ + ‖F (x

A
)‖

≤ tZ (F ) ‖ϕA‖ ‖ηA‖ ‖xA
‖ + ‖F (x

A
)‖

≤ tλ2Z (F ) ‖x
A
‖ + ‖F (x

A
)‖ .

Let Φ :

(

Π
A∈CX

A

)

U

−→

(

Π
A∈CX

L
A
(E

A
)

)

U

be the map given by Φ
(

(x
A
)
U

)

=
(

L
A
◦ ϕ

A
(x

A
)
)

U
. As in the proof of Theorem 3, the σ(Y ∗∗, Y ∗)−limit of
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(

L
A
◦ ϕ

A
(x

A
)
)

A∈CX

over U exists in Y ∗∗, and hence, we can define a map

Ψ :

(

Π
A∈CX

L
A
(E

A
)

)

U

−→ Y ∗∗ by

Ψ
((

L
A
◦ ϕ

A
(x

A
)
)

U

)

= weak ∗ lim
U

(L
A
◦ ϕ

A
(x

A
)).

Given a projection π of Y ∗∗ onto Y , and putting L = Ψ ◦ Φ ◦ JX , where

JX is the natural isometric embedding of X into

(

Π
A∈CX

A

)

U

, we have for

every x ∈ X

‖F (x) − πL (x)‖ ≤ ‖π‖ ‖F (x) − L (x)‖

= ‖π‖ ‖F (x) − Ψ ◦ Φ((xA)U )‖

= ‖π‖

∥

∥

∥

∥

weak ∗ lim
U

(

F (x) − L
A
◦ ϕ

A
(x

A
)
)

∥

∥

∥

∥

= ‖π‖

∥

∥

∥

∥

weak ∗ -lim
U

(F ◦ ηA (ϕA (x
A
)) − LA (ϕA (x

A
)))

∥

∥

∥

∥

≤ tλ2Z (F ) ‖π‖ ‖x‖ ,

proving that F is trivial. �

Next we give a definition that includes colocality which can be inherited
by complemented subspaces.

Definition 1. Let E be a family of finite dimensional Banach spaces. A Ba-
nach space X is said to be λ-colocally E−factorable (or simply colocally
factorable E ) if there is a constant λ such that for every finite dimensional
quotient B of X, there is EB ∈ E , a companion of B, such that the quo-
tient map q

B
: X → B factors to bounded linear maps ψB : X → EB and

γB : EB → B with ‖ψB‖ ≤ λ and ‖γB‖ ≤ λ through EB , the diagram

X
q
B−→ B

ψ
B
ց ր γ

B

EB

is called a colocally factorable diagram for B.

Theorem 5. A Banach space X is λ-colocally E-factorable if and only if
X∗ is λ-locally E∗-factorable.

Proof. Suppose that X is λ-colocally E-factorable and let B be a finite
dimensional subspace of X∗. Since B is w∗-closed, B = (X/A)∗ for some
closed subspace A of X which implies that B∗ is a quotient of X, since
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B∗ = (X/A)∗∗ = X/A. Consider a colocally factorable diagram for B∗, and
then take adjoints of its maps

X
q

−→ B∗ B = B∗∗ q∗

−→ X∗

ψ ց ր γ ψ∗ ց ր γ∗

E
B∗ E∗

B∗

we have a colocally factorable diagram for B, since ψ∗◦ γ∗ = q∗ = iB ,
‖γ∗‖ = ‖γ‖ ≤ λ and ‖ψ∗‖ = ‖ψ‖ ≤ λ, proving that X∗ is locally E∗-
factorable.

Conversely, suppose that X∗ is λ-locally E∗-factorable, and let B = X/A
be a finite dimensional quotient of X, then B∗ = (X/A)∗ = A⊥ is a subspace
of X∗, and the adjoint of the quotient map q : X −→ B is the inclusion map
q∗ : B∗ −→ X∗ of B∗ into X∗, where A⊥ is the annihilator of A (see
Rudin [18, 4.7, 4.8]). Hence, there is E∗ ∈ E∗, and bounded linear maps

B∗ ϕ
−→ E∗ η

−→ X∗ such that η ◦ϕ = q∗, with ‖ϕ‖ ≤ λ and ‖η‖ ≤ λ. Taking
adjoints of the maps we have

X∗∗ q∗∗

−→ B∗∗ ≡ B

η∗ ց ր φ∗

E∗∗ ≡ E

It is easy to see that φ∗◦η∗ |X= q∗∗ |X= q, and soX is colocally E-factorable.
�

The following Corollary is immediate by Corollary 2, and Theorem 5.

Corollary 5. (i) All L∞ spaces are colocally E-factorable whenever an L∞

space is contained in a locally E-factorable space.

(ii) All L1 spaces are colocally E∗-factorable whenever an L∞ space is
contained in a locally E-factorable space.

Theorem 6. If the dual X∗ of a Banach space X is λ-colocally E∗-factorable,
then X is λ (1 + ǫ)-locally E-factorable, for every ǫ > 0.

Proof. Suppose that X∗ is λ-colocally E∗-factorable, and let A be a finite
dimensional subspace of X. Then A∗ = X/A⊥ is a quotient of X∗, and

hence, there is E∗ ∈ E∗, and bounded linear maps X∗ ψ
−→ E∗ γ

−→ A∗ such
that γ ◦ ψ = q with ‖ψ‖ ≤ λ and ‖γ‖ ≤ λ, where q : X∗ −→ A∗ is the
quotient map. Taking adjoints of the maps we have
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A ≡ A∗∗ q∗

−→ X∗∗

γ∗ ց ր ψ∗

E∗∗ = E

Since q∗ is the inclusion map of A ≡ A∗∗ into X∗∗, we have A = q∗(A) =
ψ∗(γ∗ (A)) ⊆ ψ∗ (E). By the principle of local reflexivity, for every ǫ >
0, there is an (1 + ǫ)-isomorphism T : ψ∗ (E) −→ X such that Tx = x
for all x ∈ ψ∗ (E) ∩ X, Johnson and Rosenthal [12], which implies that
(T ◦ ψ∗) ◦ γ∗ = q∗ = iA. That is, the diagram

A
iA
→֒ X

γ∗ ց ր T ◦ ψ
∗

E

is a locally factorable diagram for A, proving that X is λ (1 + ǫ)-locally
E-factorable, since ‖T ◦ ψ∗‖ ≤ λ (1 + ǫ). �

An immediate application of Theorem 5, and Theorem 6 we have:

Corollary 6. Let X be a Banach space. If X∗∗ is locally E-factorable (resp.
colocally E−factorable), then X is locally E-factorable (resp. colocally E-
factorable)

Theorem 7. Let X and Y be Banach spaces, and let ψ
1

: X −→ Y, ψ
2

:
Y −→ X be bounded linear operators such that ψ

1
◦ ψ

2
= idY . If X is

colocally E-factorable , so is Y .

Proof. Suppose that X is colocally E-factorable, then X∗ is locally E∗-
factorable, by Theorem 5. Let B be a finite dimensional subspace of Y ∗,
then A = ψ∗

1
(B) is a finite dimensional subspace of X ∗, hence there is

E∗ ∈ E∗, and bounded linear maps A
φ

−→ E∗ η
−→ X∗ such that η ◦ ϕ = iA.

Put ϕ
B

= ϕ ◦ψ∗

1
and η

B
= ψ∗

2
◦ η, where ψ∗

1
: Y ∗ → X∗ and ψ∗

2
: X∗ −→ Y ∗

are the adjoint maps of ψ
1
and ψ

2
, respectively. It is clear that the coposition

map η
B
◦ ϕ

B
is the identity operator id

Y ∗ on Y ∗, and hence Y ∗ is locally
E∗-factorable, which implies that Y is colocally E-factorable, by Theorem 5.
�

Corollary 7. If X is colocally E-factorable, so is every complemented sub-
space of X, and every Banach space isomorphic to X.

Example 3. Every separable Hilbert space is colocally
{

ℓnp
}∞

n=1
-factorable,

1 < p <∞, by [13, 2.2.13, 2.2.14] and Corollary 7.

The next theorem establishes a condition on the family E of finite dimen-
sional Banach spaces, so that locally E-factorable coincides with colocally
E-factorable.
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Theorem 8. Let X be a Banach space, and let U be an ultrafilter refining
the order filter on the net CX of all finite dimensional (resp. FX of all closed
finite codimensional) subspaces A of X. Suppose that:

(i) the bidual

(

Π
A∈CX

E
A

)∗∗

U

of the ultraproduct

(

Π
A∈CX

E
A

)

U

of all com-

panions EA ∈ E of A ∈ CX is colocally E-factorable and,

(ii) the bidual

(

Π
A∈FX

E∗
A

)∗∗

U

of the ultraproduct

(

Π
A∈FX

E∗
A

)

U

is colocally

E∗−factorable, where EA ∈ E is a companion of the quotient space X/A,
A ∈ FX .

Then X is locally E-factorable if and only if it is colocally E-factorable.
Proof. Suppose that X is locally E-factorable. Start as in the proof of

Theorem 3, and consider the second adjoint operators

X∗∗
(J

X
)∗∗

→֒

((

Π
A∈CX

A

)

U

)∗∗
Φ∗∗

−→

((

Π
A∈CX

E
A

)

U

)∗∗
Ψ∗∗

−→ X(4)

of the maps

X
JX
→֒

(

Π
A∈CX

A

)

U

Φ
−→

(

Π
A∈CX

E
A

)

U

Ψ
−→ X∗∗

Let π : X
(4)

−→ X∗∗ be a projection, then it is easy to see that

(π ◦ Ψ∗∗)◦(Φ∗∗◦(J
X

)∗∗) = π◦(Ψ ◦ Φ ◦ J
X

)∗∗ = π◦(i
X

)∗∗ = π
(

i
X∗∗

)

= id
X∗∗ ,

where X∗∗
i
X∗∗

→֒ X
(4)

is the inclusion map. Hence, X∗∗ is isomorphic to

a complemented subspace of

((

Π
A∈CX

E
A

)

U

)∗∗

,which implies that X∗∗ is

colocally E-factorable, by Corollary 7. Hence (X∗)∗∗ ∼= (X∗∗)∗ is locally
E∗−factorable, by Theorem 5, and so X∗ is locally E∗−factorable, by Corol-
lary 6, which implies that X is colocally E-factorable, by Theorem 5.

For the converse, note first that

(

Π
A∈FX

E∗

A

)

U

is the ultraproduct of

all companions in E∗of finite dimensional subspaces B of X∗, since B∗ =
(X/Z)∗∗ = X/Z for some closed subspace Z of X. Thus, if X is colo-
cally E-factorable, then X∗ is locally E∗-factorable, by Theorem 5. Since
(

Π
A∈FX

E∗

A

)∗∗

U

is colocally E∗-factorable, then X∗ is colocally E∗-factorable,

by Theorem 8, and hence, X is locally E-factorable, by Theorem 6. �

Example 4. A Banach space X is locally
{

ℓnp
}∞

n=1
-factorable if and only if

it is colocally
{

ℓnp
}∞

n=1
-factorable, 1 ≤ p ≤ ∞, since the ultrapower of ℓp is

reflexive.
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Theorem 9. Let Y be a Banach space, and let E be a family of finite
dimensional Banach spaces. If Ext (Y,W ) = 0 for some Banach space W
containing E uniformly complemented, then Ext (Y,Z) = 0 for every Banach
space Z complemented in its bidual and colocally E-factorable.

Proof. Let Z be a Banach space complemented in its bidual which is
λ-colocally factorable E , and let C be the net of all finite codimensional
subspaces A of Z directed by reverse inclusion. Let U be an ultrafilter which
refines the corresponding order filter on C, and note that

{

A⊥ : A ∈ C
}

is

the net of all finite dimensional subspaces of Z∗, and A⊥ ⊆ B⊥ when B ⊆ A,
A,B ∈ C. Let F : Y → Z be a z-linear map, and consider a pseudo-colocality
diagram for Z/A, A ∈ C with respect to E

A
∈ E

Z
qA
−→ Z/A

ψA ց ր γA

EA

It is clear that ψA ◦F : Y −→ EA is a z-linear map, and so there is, by [11,
Lemma 1.6], a constant c, independent ofA, and a linear map LA : Y −→ EA
such that

‖ψA ◦ F (y) − LA (y)‖ ≤ cZ (ψA ◦ F ) ‖y‖ ≤ cλZ (F ) ‖y‖ , y ∈ EA.

By Diestel [7, 8.8] and [18, 4.7, 4.8], there is a canonical isometric embed-
ding J : Z∗ →

(

ΠA∈CA
⊥
)

U
≡ (ΠA∈C (Z/A)∗)

U
given by J (f) = (fA)

U
,

f ∈ Z∗, where fA = f if f ∈ A⊥ and fA = 0 otherwise. Therefore, by
setting

(fA)
U

((z +A)
U
) = lim

U
(fA (z +A)) ,

(ΠA∈C (Z/A)∗)
U

embeds isometrically into (ΠA∈C (Z/A))∗
U

(see [7, 8.3]),
where the norm satisfies ‖(fA)

U
‖ = lim

U
‖fA‖. If Q : (ΠA∈C (Z/A))

U
→ Z∗∗

is the restriction of the adjoint operator J∗ : (ΠA∈C (Z/A))∗∗
U

→ Z∗∗ then

(Q ((z +A)
U
)) (f) = (J(f)) ((z +A)

U
) = lim

U
fA (z +A) = lim

U
(fA (z)) ,

for every f ∈ Z∗ and (z +A)
U
∈ (ΠA∈CZ

(Z/A))
U
.

We claim that Q ((qAF (y))
U
) = F (y). To see this, let f ∈ Z∗ and let Af

be an element in CZ such that f ∈ A⊥
f , then f ∈ A⊥for every A ∈ CZ , A ≥

Af , so fA (F (y)) = f (F (y)) . Therefore, considering any neighborhood V
of f (F (y)) , then {A ∈ CZ : fA (F (y)) ∈ V } belongs to U since it contains
{A ∈ CZ : A ≥ Af}, so that lim

U
(fA (F (y))) = f (F (y)) = F (y) (f), that

is QZ ((qAF (y))
U
) (f) = f(F (y)). Let L : Y −→ Z∗∗ be the linear map

defined by
L (y) = QZ (γALA (y))

U
.
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Since

‖γALA (y)‖ ≤ ‖γALA (y) − γA ψAF (y)‖ + ‖γA ψAF (y)‖

≤ cm2Z (F ) ‖y‖ + ‖F (y)‖ ,

then (γALA (y))A ∈ ℓ∞ (Z/A,Ω). Moreover

‖πL (y) − F (y)‖ ≤ ‖π‖ ‖QZ (γALA (y) − γA ψAF (y))
U
‖

≤ ‖π‖ ‖QZ‖m lim
U

‖LA (y) − ψAF (y)‖

≤ ‖π‖ ‖QZ‖m
2cZ (F ) ‖y‖ ,

where π : Z∗∗ −→ Z is a projection. So dist (πL,F ) < ∞, proving that F
is trivial. �

Recall that two families E and F of finite dimensional Banach spaces are
said to satisfy Ext (F , E) = 0 uniformly if there is a constant c such
that, for every couple of spaces A ∈ E and B ∈ F and every 0-linear map
F : B → A, there is a linear map L : B → A such that dist (F,L) ≤ cZ (F )
[2].

Theorem 10. Let E and F be two families of finite dimensional Banach
spaces such that Ext (E ,F) = 0 uniformly. If Y and Z are Banach spaces
such that Y is locally E-factorable, Z is colocally F-factorable and comple-
mented in its bidual, then Ext (Y,Z) = 0.

Proof. Suppose that Y is λ-locally E-factorable and Z is c-colocally F-
factorable. Let G be a finite dimensional subspace of Y , and let A be a
closed subspace of Z such that dimZ/A < ∞. Then there are EG ∈ E
and BA ∈ F such that the following locally factorable diagram for G and
colocally factorable diagram for Z/A commute

G
iG
→֒ Y Z

q
A−→ Z/A

ϕ
G
ց ր ηG ψA ց ր γA
E

G
BA

Given a z-linear map F : Y −→ Z, the composition map EG
ηG→ Y

F
→

Z
ψA→ BA is also a z-linear map. Since Ext (E ,F) = 0 uniformly, there is a

constant t and a linear map LG,A : EG −→ BA such that

‖ψAFηG (x) − LG,A (x)‖ ≤ tZ (ψAFηG) ‖x‖

≤ tλcZ (F ) ‖x‖ ,

for all x ∈ EG. In particular, for all y ∈ G,
∥

∥ψAF (y) − LG,A
(

ϕ
G

(y)
)
∥

∥ ≤ tλ2cZ (F ) ‖y‖ .
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Now let V be an ultrafilter refining the order filter on the net of all the
finite dimensional subspaces of Y , and define LA : Y −→ (Z/A)∗∗ = Z/A
by

LA (y) = w∗- lim
V

(γALG,A (ϕG (yG))) , where yG =

{

y if y ∈ G
0 otherwise

Since

‖γALG,A (ϕG (yG)) − γAψAF (yG)‖ ≤ ‖γA‖ ‖ψAF (yG) − LG,A (ϕG (yG))‖

≤ tλ2c2Z (F ) ‖y‖ ,

then
‖γALG,A (ϕG (yG))‖ ≤ tλ2c2Z (F ) ‖y‖ + ‖F (y)‖ ,

so that the map LA is well defined.
Next consider CZ ,U and QZ as described in the proof of the Theorem 9,

and define L : Y −→ Z∗∗ by L (y) = QZ ((LA (y))
U
). Hence,

‖πL (y) − F (y)‖ ≤ ‖π‖

∥

∥

∥

∥

QZ

(

w∗- lim
V
γALG,A (ϕG (yG)) − γAψAF (y)

)

U

∥

∥

∥

∥

≤ ‖π‖ ‖QZ‖ tλ
2c2Z (F ) ‖y‖ ,

where π : Z∗∗ −→ Z is a projection. Hence F is trivial. �

A Banach spaces Y is said to be finitely represented in a Banach spaces
X if for every λ > 1 and every finite dimensional subspace B of Y there is
a subspace A of X which is λ-isomorphic to B. Typical examples of spaces
finitely represented in X are X∗∗ and ultrapowers XU of X [8, Theorems
8.13, 8.16]. A Banach space Y is said to be cofinitely represented in a
Banach space X if for each λ > 1 and every finite dimensional quotient B of
Y , there is a finite dimensional quotient A of X which is λ-isomorphic to B,
D́ıaz and Basallote [6]. It is known that a Banach space Y is finitely (resp.
cofinitely) represented in a Banach space X if and only if Y ∗is cofinitely
(resp. finitely) represented in X∗ [6, 3.5]. It is easy to see that if a Banach
space Y is finitely represented (resp. cofinitely represented) in a Banach
space X, then Y is (1 + ǫ)-locally (resp. -colocally) the family of all finite
dimensional subspaces (resp. quotients) of X, for every ǫ > 0.

Theorem 11. Let X be a λ-locally E-factorable Banach space. If for every
finite dimensional subspace A of X, there is a companion EA ∈ E of A such
that η

A
(EA) = A, then any Banach space which is finitely represented in X

is α-locally EE-factorable, for every α > λ. In particular, X∗ is α-colocally
E∗-factorable.

Proof. Let Y be a Banach space finitely represented in X and let B be
a finite dimensional subspace of Y . If α > λ is given, let t = c

λ
and let
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ψB : B −→ A be a t-isomorphism onto a subspace of X. Given a locally
factorable diagram for A such that η

A
(Eα) = A we have the following

commutative diagram:

B
iB
→֒ Y

ψB ↓ ↑ ψ−1
B

A −→ A

φA ց ր ηA
EA

which implies that iB factors through EA with ‖φAψB‖ ≤ α,
∥

∥ψ−1
B ηA

∥

∥ ≤ α.
The last sentence is immediate since X∗∗ is finitely represented in X ,

and hence, it is locally E-factorable, which implies that X∗ is colocally E∗-
factorable, by Theorem 4. �

Remark 1. Let X be a Banach space which is locally E−factorable such that
every finite dimensional subspace of X is c-complemented for some constant
c. If A is a finite dimensional subspace of X, and

A
iA
→֒ X

φA ց րηA

EA

is a locally factorable diagram for A, then pA ◦ η
A

(EA) = A, where pA :
X → A is a projection of X onto A with ‖pA‖ ≤ c. Hence every Banach
space Y finitely represented in X is locally E-factorable.

Theorem 12. Let X be a λ-colocally E-factorable Banach space. If there
is a constant m such that for every finite dimensional quotient A of X,
there is a bounded linear operator rA : A −→ X such that ‖rA‖ ≤ m and
qArA = idA, then every Banach space Y cofinitely represented in X is c-
colocally E-factorable, for every c > mλ.

Proof. Let Y be a Banach space cofinitely represented in X, and let B be
a finite dimensional quotient of Y . Fix c > mλ, and let t = c

mλ
, then there

is a t-isomorphism ηB of B onto a quotient A of X. Consider a colocally
factorable diagram for A

X −→ A

ψ
A
ց ր γA
EA

Then the diagram
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Y
qB−→ B

ψArAηBqB
ց ր η−1

B γA
EA

is a colocally factorable diagram for B since
∥

∥ψ
A
rAηBqB

∥

∥ ≤ c,
∥

∥η−1
B γA

∥

∥ ≤ c
and γBψB = q

B
, proving that Y is c-colocally E-factorable. �
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