Non –aqueos titration المعايرات في الاوساط اللامائية

<u>المقدمه النظريه:</u>

تستعمل هذه المعايرات لمعايرة المركبات الشحيحة الذوبان في الماء مثل الامينات والكحولات ويتضح من الاسم ان هذه المعايرات تجرى في وسط خال تماما من الماء ، وذلك لان الماء متردد له صفه قاعدية ضعيفة حيث يتفاعل مع حمض البيروكلوريك HClO₄ وهو المادة الشائعه الاستخدام في مثل هذا النوع من المعايرات .

المذيبات اللامائية:

تعرف على أنها أى وسط سائل غير الماء له القدرة على إذابة العديد من المركبات ويسمح بالتفاعلات الكيميائية.

هناك عدة اسباب لإختيار المذيبات اللا مائية نذكر منها:

- 1. كثير من المركبات العضويه لا تذوب في الماء
- 2. لا يمكن معايرة الاحماض والقواعد الضعيفه جدا(التي لها قيم \mathbf{k}_{b} و \mathbf{k}_{b} أقل من 10 -7)كميا في وسط مائي .

تعتبر معايرات الأحماض والقواعد في الاوساط اللامائية من أهم المعايرات اللامائية ، و من المعتاد أن تكون تفاعلات التعادل سريعة وكمية وعليه فليس من الغريب أن تكون هذه التفاعلات أساسا لكثير من الطرق المستخدمة لتعيين المواد العضوية كمياً . من الممكن ان تتم تفاعلات التعادل العضوية بشكل مباشر أو غير مباشر. ويتم الكشف عن نقطة نهاية المعايرة بالعريد من الطرق منها طرق التوصيل الكهربائي, الطرق الطيفية , الطرق الحرارية .

الجدول التالى يوضح بعض الادلة الشائعة الاستخدام:

Indicator	Color change		
	basic	neutral	acidic
Crystal Violet (0.5 per cent in glacial acetic acid)	violet	blue- green	yellowish-green
α-Naphtholbenzein (0.2 per cent in glacial acetic acid)	blue or blue- green	orange	dark-green
Oracet Blue B (0.5 per cent in glacial acetic acid)	blue	purple	pink
Quinaldine Red (0.1 per cent in methanol)	magenta		almost colorless

الطريقة العملية:

عايري 10ml من محلول القاعدة المحضرة بعد اضافة نقطة من الدليل مع محلول الحمض حتى نقطة التكافؤ كرري التجربة ثلاث مرات ثم احسبى تركيز الحمض

معادلة التفاعل

 $2HClO_4 + Na_2CO_3 \rightarrow 2 NaClO_4 + H_2O + CO_2$