Differential Equations of Order One

Dr. Bander Almutairi

King Saud University

5 Feb 014

(1) Family of Curves
(2) Existence of a Unique Solution
(3) Separable Equations

Example:

$$
\begin{equation*}
(x-c)^{2}+(y-c)^{2}=2 c^{2} . \tag{1}
\end{equation*}
$$

represents a family of circles with their centers on $y=x$. If we assume that c in the equation (1) is arbitrary constant, then by using the elimination of arbitrary constant, then result equation is called differential equation of the family of curve (1).

Example:

$$
\begin{equation*}
(x-c)^{2}+(y-c)^{2}=2 c^{2} . \tag{1}
\end{equation*}
$$

represents a family of circles with their centers on $y=x$. If we assume that c in the equation (1) is arbitrary constant, then by using the elimination of arbitrary constant, then result equation is called differential equation of the family of curve (1).
We can rearrange equation (1) to be the following

$$
x^{2}+y^{2}-2 c(x+y)=0
$$

Example:

$$
\begin{equation*}
(x-c)^{2}+(y-c)^{2}=2 c^{2} \tag{1}
\end{equation*}
$$

represents a family of circles with their centers on $y=x$. If we assume that c in the equation (1) is arbitrary constant, then by using the elimination of arbitrary constant, then result equation is called differential equation of the family of curve (1).
We can rearrange equation (1) to be the following

$$
x^{2}+y^{2}-2 c(x+y)=0
$$

So we get

$$
\frac{x^{2}+y^{2}}{x+y}=2 c, y \neq-x
$$

$Q(1)$: Find a differential equation satisfied by the family of parabolas having their virtices at the origin and their foci (focus) on the y-axis. $Q(2)$: Find the differential equation of the family of circles having their centers on the y-axis.

Theorem

For a first order differential equation (IVP)

$$
\begin{aligned}
\frac{d y}{d x} & =f(x, y) \\
y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

there exists a unique solution if

Theorem

For a first order differential equation (IVP)

$$
\begin{aligned}
\frac{d y}{d x} & =f(x, y) \\
y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

there exists a unique solution if

- $f(x, y)$ and $\frac{\partial f(x, y)}{\partial y}$ are continous with in the region \mathbb{R}^{2} of $x y$-plane.

Theorem

For a first order differential equation (IVP)

$$
\begin{aligned}
\frac{d y}{d x} & =f(x, y) \\
y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

there exists a unique solution if

- $f(x, y)$ and $\frac{\partial f(x, y)}{\partial y}$ are continous with in the region \mathbb{R}^{2} of $x y$-plane.
- $\left(x_{0}, y_{0}\right)$ be a point in the region \mathbb{R}^{2}.

Theorem

For a first order differential equation (IVP)

$$
\begin{aligned}
\frac{d y}{d x} & =f(x, y) \\
y\left(x_{0}\right) & =y_{0}
\end{aligned}
$$

there exists a unique solution if

- $f(x, y)$ and $\frac{\partial f(x, y)}{\partial y}$ are continous with in the region \mathbb{R}^{2} of $x y$-plane.
- $\left(x_{0}, y_{0}\right)$ be a point in the region \mathbb{R}^{2}.

Q: Find the largest region of the $x y$-plane for which the following initial value problems have unique solutions:
(a) $\sqrt{x^{2}-4} y^{\prime}=1+\sin (x) \ln (y)$, with initial condition $y(3)=4$.
(b) $\ln (x-2) \cdot \frac{d y}{d x}=\sqrt{y-2}$, with initial condition $y\left(\frac{5}{2}\right)=4$.
(c) $\sqrt{\frac{x}{y}} y^{\prime}=\cos (x+y) ; y \neq 0$, with initial condition $y(1)=1$.

Consider a first-order differential equation of the form:

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

where M and N are two function of x, y.

Consider a first-order differential equation of the form:

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{2}
\end{equation*}
$$

where M and N are two function of x, y. Sometimes we can write the equation (2) as follows:

$$
\begin{equation*}
F(x) d x+G(y) d y=0 \tag{3}
\end{equation*}
$$

the variables separated here and we can find a solution immediately. $Q(i):$ Find a solution for each of the following:
(a) $2 x\left(y^{2}+y\right) d x+\left(x^{2}-1\right) y d y=0 ; y \neq 0$.
(b) $(x y+1) d x=\left(x^{2} y^{2}+x^{2}+y^{2}+1\right) d y$.

Q(ii): Solve the following IVP

$$
e^{y} \frac{d y}{d x}=\cos (2 x)+2 e^{y} \sin ^{2}(x)-1 ; y\left(\frac{\pi}{2}\right)=\ln (2)
$$

