
Lecture 3

Cohomologies, curvatures

Maxwell equations

The Maxwell equations for electromagnetic fields are expressed as

~∇× ~E = −
∂ ~H

∂t
, ~∇ · ~H = 0,

~∇ · ~E = 4πρ, ~∇× ~H −
∂ ~E

∂t
= 4π~j.

These equations can be simplified if we use the 4-dimensional notation as

∂µFνρ − ∂νFµρ = 0, ∂µFµν = 4πJν ,

where an anti-symmetric tensor field Fµν and a vecfor field Jµ are given by by

F0i = Ei, Fij = −ǫijkHk,

J0 = ρ, Ji = −ji.

It is natural to regard them as differential forms, F = 1
2Fµνdx

µ ∧ dxν and J = Jµdx
µ. The

Maxwell equations can then be expressed as

dF = 0, δF = −4πJ.

The equation dF = 0 can be solved if we set F = dA. On R4, one can show conversely that
any solution to dF = 0 is given by F = dA for some A. This is an example of the Poincaré
lemmna. In the terminology of electromagnetism, φ = A0 is the scalar potential and −Ai is the
vector potential.

The choice of A is not unique. If F = dA, we can replace A by A′ = A + dλ and we still
have F = dA′. The Maxwell equations have gauge symmetry.

Question 1: We can restrict the gauge degrees of freedom by imposing the condition δA = 0.
For any F , can we choose an appropriate gauge to satisfy this condition? Is there any remaining
gauge symmetry after imposing this condition? Discuss this for both a positive definite metric
and a Lorentzian signature metrics.

co-homologies

We can generalize the relation between the field strength 2-form F and the gauge potential
1-form A to other differential forms. If a k-form ω satisfies dω = 0, it is called closed. If it can
be written as ω = dλ for some (k − 1)-form λ, we say ω is exact. Clearly, if an exact form is
closed. On Rn, the converse is also true.

[Poincaré Lenma]

On Rn, if a k-form ω is closed, it is also exact.
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This also holds when M is contractible, namley when one can smoothly shrink M to a point.
This is not true on a general manifold. However, it is true on each coordinate chart. The issue
is how these charts are patched together globally.

It is interesting to ask what are closed differential forms that are not exact. This leads us to
introduce the concept of cohomology. We first consider a space of closed k-forms,

Zk(M) = {ω ∈ Ck(M) : dω = 0}.

Clearly, if ω is closed, so is ω + dλ. So, we can introduce an equivalence relation in Zk: ω ∼ ω′

if and only if their difference is exact. The k-th de Rham cohomology Hk(M) is defined as a
quotient of Zk by the space of exact forms,

Bk(M) = {dλ : λ ∈ Ck−1(M)},

as
Hk(M) = Zk(M)/Bk(M).

The dimensions of Hk is called the Betti number,

bk = dimHk(M).

The Betti numbers are topological invariant of M . In particular, their alternative sum is the
Euler characteristic,

χ(M) =
n
∑

k=0

(−1)kbk.

Question 2: Show that b0 = 1 if M is connected. What if M has m disjoint components?

Question 3: Compute the first cohomology H1 of a circle S1.

Hk(M) is called co-homology since it is related to an object called homology. That will be
discussed later.

representatives of cohomologies

If M is endowed with a Riemannian (positive definite) metric g, we can define the codiffer-
ential δ and a positive definite inner product (α, β) as discussed in Lecture 2.

Question 4: Express the inner product (α, β) of k-forms in their components.

It is easy to see that the Laplace-Beltrami operaotr ∆ = δd + dδ commutes with d. Thus, we
can choose a solution to dω = 0 to be an eigenstate of ∆.

(dδ + δd)ω = ǫω.

If ǫ 6= 0, since dω = 0, we have ω = d(δω/ǫ), which would mean that ω is exact. So, if we want
a closed but not exact form, it should be a zero eigenstate of ∆, i.e., a harmonic form. Thus,
we can choose ω ∈ Hk(M) as a harmonic form.

In fact, this fixes the gauge degrees of freedom. To see that, we write

(ω,∆ω) = (dω, dω) + (δω, δω).
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and observe that the right-hand side is a sum of non-negative numbers. Therefore, ω is harmonic
if and only if ω is closed (dω = 0) and co-closed (δω = 0). Now, suppose ω and ω+ dλ are both
harmonic. This means in particular that δdλ = 0. However, (dλ, dλ) = (λ, δdλ) = 0. Thus,
dλ = 0. Namely, if we require ω to be harmonic, there is no more gauge degrees of freedom.
Since ∆ω = 0 is equivalent to dω = 0 and δω = 0, this means that we can choose representatives
ω of Hk(M) to be co-closed δω = 0.

The condition δω = 0 is a generalization of the Lorentz gauge condition in the Maxwell
theory.

It is also useful to know that any k-form on a compact orientable Riemannian manifold can
be uniquely expressed as a sum of an exact form, a co-exact form, and a harmonic form. This
is called the Hodge decomposition.

As we saw in the last lecture, the operators d and δ are analogous to the supersymmetry
operators (supercharges) acting on the space of differential forms ⊕kC

k(M). Differential forms
with k even are bosons and those with k odd are fermions. The supercharges map bosons
to fermions and vice versa. The Laplace-Beltrami operator ∆ = {d, δ} is analogous to the
Hamiltonian. If ω is a supersymmetric state, dω = 0, δω = 0. This means that ∆ω = 0.
Namely, any supersymmetric state has zero energy. Some people thinks that this may help us
explain why the dark energy (cosmological constant) of the Universe is so small.

covariant derivatives, curvature

The exterior derivative is a special derivative operator defined for differential forms. It is
also just one derivative operator. On the other hand, to derive differential equations on M ,
we may want more differential operators. Unfortunately, on a general differnetiable manifold
M without futhre structure, it is not possible to define a partial derivative ∂/∂xi on a general
tensor field, as it depends on a choice of coordinates.

Another say to point out the problem is as follows. If we have a smooth function f : M → R,
we can define its partial derivatives with respect to coordinates xi as

∂f

∂xi
= lim

ǫ→0

1

ǫ

(

f(x1, ..., xi + ǫ, ..., xn)− f(x1, ..., xi, ..., xn)
)

.

This requires comparing values of f at x and x + ǫ. Since f is taking values in R, there is no
problem with taking the difference of the two numbers, at x and x+ ǫ. This does not work for
a tangent vector v, for example. At x it takes value in TxM . At x+ ǫ, it takes value in Tx+ǫM .
A priori, there is not natural identification of the two vector spaces, so we cannot compare the
values of v at the two points.

The situation is better if we have a metric gij . With it, we can define the affine connection
(Christoffel symbol) as,

Γi
jk =

1

2
gil(∂jglk + ∂kglj − ∂lgjk).

A covariant derivative ∇i of a rank-p tensor field Ti1···ip can be defined as

∇iTi1···ip = ∂iTi1···ip − Γj
ii1
Tji2···ip − · · · − Γj

iip
Ti1···ip−1j.

A covariant derivative of a tensor with upper indices, e.g., T ij, can be defined similarly, with
the + sign instead of the − sign in front of the affine connection Γ. In a later lecture, we will
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discuss why this procedure resolves the issue of comparing TxM and Tx+ǫM . For now, I just
point out that, if T transforms as a tensor of rank (r, s), then ∇T transforms as a tensor of rank
(r + 1, s).

The affine connection is defined in such a way that the metric is covariantly constant,

∇igjk = 0,

and the torsion tensor defined as an antisymmetric part of the Christoffel symbol is zero,

T i
jk =

1

2
(Γi

jk − Γi
kj) = 0.

The Riemann curvatuve Ri
jkl is defined as a failure of the covariant derivatives to commute

with each other,
[∇i,∇j ]Tk = R l

ijk Tl.

Explicitly,
R l

ijk = ∂iΓ
l
jk − ∂jΓ

l
ik + Γm

ikΓ
l
mj − Γm

jkΓ
l
mi.

The Riemann curvature satisfies the following properties,

Rijkl = −Rjikl = −Rijlk.

The first half of the equation follows simply by the definition and the second half is a consequance
of the fact that the metric is covariantly constant.

R[ijk]l = 0,

where [ijk] means the antisymmetrization of the 3 indices. This can be proven by writing
d2ω = 0 in terms of the covariant derivatives.

∇[iRjk]lm = 0.

The last equation is called the Bianchi identity. It is an important identity, but is not easy to
verify this directly using the component notation.

curvature as seen by differential forms

The above expressions are simplified if we use the language of differential forms. First
remember the vielbein eai satisfying gij =

∑

a e
a
i e

a
j . Use this to devine a basis of C1(M) as,

ea = eai dx
i.

The affine spin connection ωa
b is a 1-form defined by

(1) dea + ωa
b ∧ eb = 0.

(The left-hand side is the torsion 2-form. We are setting the torsion to be zero.)

The curvature 2-form is defined by

(1) Rc
d =

1

2
R c

ab de
a ∧ eb = dωc

d + ωc
f ∧ ωf

d.
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Question 5: Show that the curvature defined in this way is related to the Riemann curvature
discussed earlier by

R k
ij l = R c

ab de
a
i e

b
je

k
ce

d
l .

By taking the exterior derivative of (1), we find

Ra
b ∧ eb = 0,

which in components is equivalent to R[ijk]l = 0.

Question 6: Show that the exterior derivative of (2) gives,

dRa
b + ωa

c ∧Rc
b −Ra

c ∧ ωc
b = DRa

b = 0,

and that it is equivalent to the Bianchi identity.
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