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Abstract
An introduction to linear operators in Hilbert space.
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outer product

For a finite-dimensional vector space, the outer product can be understood
as simple matrix multiplication:

|φ〉 〈ψ| .
=


φ1
φ2
...

φN

(ψ∗1 ψ∗2 · · · ψ∗N
)
=


φ1ψ∗1 φ1ψ∗2 · · · φ1ψ∗N
φ2ψ∗1 φ2ψ∗2 · · · φ2ψ∗N

...
...

. . .
...

φNψ∗1 φNψ∗2 · · · φNψ∗N


The outer product is an N×N matrix.

linear operators

The term ’linear operator’ is used in many contexts, in quantum mechanics
however, we are interested -mainly- in linear operators, acting on a Hilbert
space. Linear operators are maps from a Hilbert space to itself ( known
mathematically as Endomorphisms ). In simple words, they send ’kets’ to
’kets’. Operators are represented as square matrices ( for finite dimensional we shall always

mean linear operator
when we use the term
operator from now on

or countably infinite dimensional Hilbert spaces). Hence, all the algebra of
matrices will apply to operators. Such as :

The algebra of operators

1. Linearity:
Let Â and B̂ be operators acting on the Hilbert space H,α and β are
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scalars, and |ψ〉 and |φ〉 be vectors in H. Then the following properties
hold:

(αÂ + βB̂)|ψ〉 = α(Â|ψ〉) + β(B̂|ψ〉) (1)

Moreover:
Â(α|ψ〉+ β|φ〉) = α(Â|ψ〉) + β(Â|φ〉) (2)

A result from above :

Â|ψ〉 = ∑
i
〈i|ψ〉

(
Â|i〉

)
(3)

2. Eigenvalue:
A scalar λ is called an eigenvalue if it satisfied the equation:

Â|ψ〉 = λ|ψ〉 (4)

Called the eigenvalue equation, and the vector |ψ〉 is called an eigen-
ket/ eigenvector. This equation is equivalent to :

det
(

Â− λ Î
)
= 0 (5)

For Î or just I being the identity operator. An important result from
this property is the spectral decomposition, that we shall discuss later
in this lecture.

3. Self-adjointness ( Hermitian operators)
Let Â be an operator, then Â† is the hermitian conjugate of this opera-
tor It is simply the hermitian matrix in the matrix representation of Â .
The hermitian conjugate acts on the dual space of H ( acts on the Bras).
The following properties for the hermitian conjugation are listed below
( for reminding)

•
(

Â†)†
= Â involutiveness

• If an inverse for the operator exists then:(
Â−1

)†
=
(

Â†
)−1

• Antilinearity: (
αÂ + βB̂

)†
= α∗ Â† + β∗ B̂†

• (ÂB̂)† = B̂† Â†.

An operator is called self-adjoint , if it is equal to its hermitian conju-
gate:

Â† = Â

In other words, it acts both on the Kets and on the Bras. An important
theorem for self-adjoint operators is stated below:
All the eigenvalues for a self-adjoint operator are real

Other properties of the matrices can be revised from a linear algebra book.

spectral theorem

An important result from linear algebra is the spectral decomposition of an
operator in terms of its eigenvalues and eigenvectors. If the set eigenvec-
tors {|u1〉, |u2〉, |u3〉 · · · } form a basis for the Hilbert space, and the set of
eigenvalues {λi} satisfying:

Â|uj〉 = λj|uj〉 (6)
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Then the operator Â is decomposed as follows:

Â = ∑
i

λi|ui〉〈ui| (7)

Note that the outer product |ui〉〈ui| is gives the identity matrix / operator
I. Hence, we may diagonalise the operator Â if we have found all of its If two eigenkets have

different eigenvalues
they ought to be
orthogonal

eigenvalues.
As for uncountably-infinite dimensional Hilbert spaces , which we refer to
by: inseparable Hilbert spaces, the spectral theorem reads :

Â =
∫

dµ(λ)λ (8)

where, dµ(λ) is the integration measure that depends on the nature of
spectrum for the measurement outcomes in the theory. We are not going to
go further in the details, as they are beyond the scope of our course.

projection operators

The identity operator

From the commutativity of Kets with (complex) scalars now follows that

∑
i∈N

|ei〉〈ei| = Î (9)

must be the identity operator, which sends each vector to itself. This can be
inserted in any expression without affecting its value, for example

〈v|w〉 = 〈v| ∑
i∈N

|ei〉〈ei|w〉 = 〈v| ∑
i∈N

|ei〉〈ei| ∑
j∈N

|ej〉〈ej|w〉 = 〈v|ei〉〈ei|ej〉〈ej|w〉

(10)

Projection operators

We define the projection operator P̂α for a normalised vector |α〉,as :

P̂α ≡ |α〉〈α| (11)

. Observe that the projection operator is self-adjoint. and satisfies the identity:

P̂2
α = |α〉〈α||α〉〈α| = |α〉〈α| = P̂α (12)

.

unitary operators

An operator Û is called unitary if it preserves the inner product for two
vectors, and thereby the norm . This also can be stated as:

Û†Û = ÛÛ† = Î. (13)

Therefore, a unitary, self-adjoint operator is its own inverse .

examples

Rotation in the Euclidean 2-D space

A vector in the 2-D plane is represented by :

|r〉 =
(

x
y

)
(14)
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The basis vectors are:

|ex〉 =
(

1
0

)
, |ey〉 =

(
0
1

)
(15)

We can define a rotation operator R̂(ϑ), that acts on the vector |r〉 by rotating
it with an angle ϑ. This operator has a matrix representation:

R̂ =

(
cos ϑ − sin ϑ
sin ϑ cos ϑ

)
(16)

Figure 1: The rotation in 2-D space, carried put by the rotation operator.

The differential operator

There are operators also acting on function space, they have the same prop-
erties as the operators discussed above, but with slight modifications. For
example, the operators acting on function space cannot have an explicit matrix
representation.
The most famous operators which act on function space are the differential
operators; denoted by L̂. There are a variety of differential operators. They
play an important rôle in the theory of differential equations. In fact, most
of the problems in quantum mechanics are related to the analysis of the
differential operators related to dynamical observables; as we shall see.
Take the function f (x) = eλx. It is the eigenfunction of the differential opera-

tor
d

dx
, with an eigenvalue λ. Hence, we conclude that eλx, is a solution to

the differential equation:

d
dx

( f (x) = λ f (x) (17)

The operator
d2

dx2 has two eigenfunctions e+λx and e−λx they resemble solu-

tions for the differential equation :

d2

dx2 ( f (x) = λ f (x) (18)

And by the superposition principle, a general solution would be:

f (x) = Ae+λx + Be−λx (19)

commutators

Just like ordinary matrix multiplication, the product between operators is
generally non-commutative. In fact, this particular property of operator
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multiplication is behind the unfamiliar phenomena observed in quantum
mechanics, thus generally we have :

ÂB̂ 6= B̂Â (20)

We define the commutator between two operators as:

[Â, B̂] ≡ ÂB̂− B̂Â (21)

The commutator satisfies the following properties:
[αA + βB, C] = α[A, C] + β[B, C] linearity in both slots.
[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 Jacobi Identity
[AB, C] = [A, C]B + A[B, C] Product rule

For the last

property, it is a rule of thumb to think of the commutator as a kind of deriva-
tive DC = [·, C]:

DC (AB) = DC(A)B + ADC(B)

function of operator

Just like scalars, one can a function of an operator: f (Â) This is justified
because, one can expand the function f (Â) as a series:

f (Â) ≈ f0 I + f1 Â +
f2

2!
ÂÂ + . . . (22)

Since operator product is defined, the function itself is well-defined as well
Commutator of a function is given by :

[ f (B̂), Â] =

(
d f (B̂)

dB̂

)
[B̂, Â] (23)

Provided that
[[B̂, Â], Â] = 0

Another important formula to learn is the Hadamard Lemma:

eÂ B̂e−Â = B̂ + [Â, B̂] +
1
2!
[Â, [Â, B̂]] + . . . (24)

commuting operators

For two commuting operators,

[Â, B̂] = 0 (25)

one can find a common set of eigenbasis :

Â|i〉 = ai|i〉 (26)

B̂|i〉 = bi|i〉 (27)

The eigenkets form a mutual eigenbasis for the states Â|ψ〉 and B̂|ψ〉. Hence
one can simultaneously diagonalise both operators.
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