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1.6.2.3 Stochastic time series models 

The techniques discussed in the previous lecture are simple and 

traditional, and none of them can be considered to be statistically 

structured methodology for the analysis of time series. The 

Stochastic time series analysis provide more sophisticated methods 

of forecasting. The random model always assumes the existence of a 

theoretical stochastic process able to generate the time series at our 
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hands. If it is assumed theoretically that such a process is used to 

produce large group of series on the same time interval under study, 

then every series will be different from the others, however, all group 

of series will follow same probability rules. This is exactly the same 

case as the population and the sample, where we can select many 

different samples from the same population, however these samples 

will follow same probability rules as the population. 
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Therefore, the proposed method suggested here, assumes that the 

observations of the time series (𝑦1, 𝑦2, … , 𝑦𝑛) that are observed in 

the time interval (1,2,… , 𝑛) is a realization drawn from multivariate 

random vector (𝑌1, 𝑌2, … , 𝑌𝑛) that have cumulative distribution 

function 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) which is used to make inferences about the 

future of the stochastic process.  It is well known in statistical science, 

that knowing or determining such a cumulative distribution function 

is a very difficult task, but it is the norm to create a model to describe 
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the behavior of the series efficiently, this efficiency depend on how 

such model can reflect properties of the true probability distribution.  

We will present in this course a modern statistical methodology 

for the analysis of time series called Box-Jenkins methodology 

denoted shortly as ARIMA models. 
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1.7 Types of change in time series  

Traditional methods of time series analysis rely on dismantling the 

change in a time series into four different components: 

 trend component 

 seasonal component 

 cyclical component 

 random component 
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1.7.1 trend component  

If there exist a long term increase (or decrease) in the level of the 

series, then we say there exist a trend component in the series, see 

figure 1.3 for an example. 

 So when examining the time series plot, often we notice the 

presence of a slow and gradual changes in the short term (increase 

or decrease), and a general tendency to increase in the 
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long term, as it happens, for example, in time series of 

the number of births, or the number of pilgrims, or prices of goods 

annually. On the other hand, we may find a general tendency to 

decrease in the long term, as for example, in the series of the 

number of deaths, or oil stocks, or for a particular disease. 
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1.7.2 seasonal component  

     Many time series in practice can be affected by what is called 

seasonal pattern changes, for example, the electric power 

consumption reaches its peak in summer and fall in winter, see figure 

(1.2) for the time series of daily temperature as an example. Seasonal 

changes occur at periods less than a year, such as hour, day, week, 

month, quarter, etc.  
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1.7.3 cyclical variation 

These changes are similar to seasonal variation, but they appear 

in long periods of time (more than one year), and to discover the 

cyclical variation one need a very long annual series, for example, 

climate changes needs data of fifty years or more to discover its 

cycle. Also, economic cycles need a long periods of time, for 

example five or ten Years, to appear. 



P a g e  | 10 

 

1.7.4 Random variation 

After getting rid of seasonal, trend, or cyclical components from the 

data, we are left with a residual series, which represent the irregular 

changes. These changes differ from the other components, as they 

can’t be predicted, and they do not occur according to any law or 

system. 
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Chapter 2:  Basic Concepts 

As we mentioned earlier, the modern time series analysis presented 

by Box and Jenkins in the year (1971), is based on examining the 

random nature of the time series. This methodology assumes that 

there is always a theoretical random process (Stochastic process) 

capable of generating infinite number of time series of a certain 

length 𝑛, and that the observed series we are studying (called 
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sometimes  a sample) is just one of them.  We study this sample for 

the purpose of understanding and describing the nature of the 

random stochastic process that generated it.              

Box-Jenkins methodology is popularly used in the scientific 

community of theoretical and applied sciences. It has proven to be 

highly efficient in modeling and forecasting time series that arise in 

various fields of knowledge such as economics, business 
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administration, environment, chemistry and   engineering,          

among others. The method of Box-Jenkins has several advantages 

including: 

1- It is a comprehensive approach, in the sense that it offers good 

solutions for all stages of analysis in the form of a more scientific 

and rational scheme than other methods through building 
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models, diagnosis and estimating the parameters and forecasting 

future values. 

2 - Richness of the stochastic models that this methodology is 

capable of dealing with, enables Box-Jenkins methodology to 

reflect the probabilistic mechanism for a lot of stochastic 

processes that appear in various areas of application. These 

models are known as Autoregressive Moving Average models 

or ARMA models in short. 
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3 - It does not assume independence between the observations of 

the time Series but, in fact, it takes advantage of the dependence 

structure between the observations in the modeling and 

forecasting process, which usually lead to a more accurate and 

credible forecasts than the ones we get through the conventional 

methods. 
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4 - It gives more credible confidence intervals for future values 

when compared to other conventional methods such as 

exponential smoothing. 

However, the method of Box-Jenkins has some disadvantage, 

the most important one is that it requires availability of a large 

number of observations (at least 50 observations), to be able to get 

a good model. 
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2.1 Stationarity 

Modern time series analysis assumes that any observation  𝑦𝑡1  at 

certain point of time 𝑡1 is just a single observation randomly chosen 

from a random variable 𝑌𝑡1  (which represents all observations that 

can be observed at time 𝑡1)  and has a cumulative distribution 

function 𝐹𝑌𝑡1(𝑦𝑡1). 
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Similarly, it assumes that any two observations (𝑦𝑡1,𝑦𝑡2) at any two 

different time points (𝑡1, 𝑡2) represents a single point   drawn from 

bivariate random variable (𝑌𝑡1 , 𝑌𝑡2) (which represents all 

observations that can be observed at the two time points (𝑡1, 𝑡2)  

and has a cumulative distribution function 𝐹𝑌𝑡1 ,𝑌𝑡2(𝑦𝑡1 , 𝑦𝑡2). 

 In   general   modern time series analysis assumes the existence of a 

(theoretical) stochastic process capable of generating an infinite 
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number of time series, and that the observed time series at hand is 

just one of them, and that there is a probabilistic distribution for the 

random variables (Y1, Y2, … , Yn) . 

 

 

2.1.1 Strict Stationarity 
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We say that a time series is strictly stationary if the joint cumulative 

probability distribution of any subset of the variables that make up 

the series is not affected by displacing the time forward or backward 

any number of time units. So, if  (𝑡1, 𝑡2, … , 𝑡𝑚) is any subset of time 

units, where  𝑚 = 1,2,3, … and 𝑘 = ±1,±2,… , then we say the 

series is strictly stationary if the joint cumulative probability 

distribution for the variables (𝑌𝑡1 , 𝑌𝑡2 , … , 𝑌𝑡𝑚) is the same as  the joint 

cumulative probability distribution for the variables 
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(𝑌𝑡1+𝑘, 𝑌𝑡2+𝑘, … , 𝑌𝑡𝑚+𝑘) for any time point 𝑡 and any time shift k .  

Mathematically we can write the condition of strict stationarity as:  

(𝑌𝑡1 , 𝑌𝑡2 , … , 𝑌𝑡𝑚) =
𝑑 (𝑌𝑡1+𝑘 , 𝑌𝑡2+𝑘, … , 𝑌𝑡𝑚+𝑘) 

⇒ 𝑃(𝑌𝑡1 ≤ 𝑐1, 𝑌𝑡2 ≤ 𝑐2, … , 𝑌𝑡𝑚 ≤ 𝑐𝑚) 

                             = 𝑃(𝑌𝑡1+𝑘 ≤ 𝑐1, 𝑌𝑡2+𝑘 ≤ 𝑐2, … , 𝑌𝑡𝑚+𝑘 ≤ 𝑐𝑚) 

Strict stationarity simply means that the mechanism of generating the 

observations for the stochastic process under consideration is constant 
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through time, so that the shape of the model and the parameter 

estimates do not change with time shift.  
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 From this definition we can see that strict stationarity necessarily 

leads to the fact that the mean and the variance of the stochastic 

process are constant (of course provided they exist). Also the 

covariance between any two variables 𝑌𝑡 and 𝑌𝑠 depend only on time 

lag (or the time distance between them). 

So strict stationarity leads to the following: 

i) 𝜇𝑡 = 𝐸(𝑌𝑡) =  𝜇 , 𝑡 = 0,±1,±2,… 
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ii) 𝜎𝑡
2 = 𝑉𝑎𝑟(𝑌𝑡) =  𝜎

2 , 𝑡 = 0,±1,±2,… 

iii) 𝛾(𝑠, 𝑡) = 𝐶𝑜𝑣(𝑌𝑠, 𝑌𝑡) = 𝐸[(𝑌𝑠 − 𝜇)(𝑌𝑡 − 𝜇)] = 𝛾(𝑠 − 𝑡) 

that is the covariance between (𝑌𝑠, 𝑌𝑡) will be a function in the time 

lag (𝑠 − 𝑡) only, so: 

𝛾(𝑡, 𝑡 − 𝑘) = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝛾(𝑘) 

 As we know, the variance could be considered as a special case of the 

covariance function 𝛾(𝑠, 𝑡) if  𝑠 = 𝑡 , i.e.  
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𝑉𝑎𝑟(𝑌𝑡) = 𝛾(𝑡, 𝑡) 

and if the series is stationary then,  

𝑉𝑎𝑟(𝑌𝑡) = 𝛾(𝑡, 𝑡) = 𝛾(0),     𝑡 = 0,±1, ±2,… 

2.1.2 Weak Stationarity 

We say that a series is weakly stationary if the moments up to second 

order exist, and: 
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1- The expected value or the mean of the process 𝜇𝑡 does not 

depend on time t , i.e. : 

𝜇𝑡 = 𝐸(𝑌𝑡) =  𝜇 , 𝑡 = 0,±1,±2,… 

2- The variance  𝜎𝑡
2 does not depend on time t , i.e. 

𝜎𝑡
2 = 𝑉𝑎𝑟(𝑌𝑡) =  𝜎

2 , 𝑡 = 0,±1,±2,… 

3- Covariance between any two variables depend only on the 

time lag between them, i.e.,  
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𝐶𝑜𝑣(𝑌𝑡−𝑘 , 𝑌𝑡) = 𝛾(𝑘),   𝑡 = 0,±1,±2,… ; 𝑘 = ±1,±2,… 

 

From the above we can see that strict stationarity always leads to weak 

stationarity, the vice versa is only correct in the case that the joint 

cumulative distribution of the variables (𝑌𝑡1 , 𝑌𝑡2 , … , 𝑌𝑡𝑚) is the 

multivariate normal distribution since this distribution is completely 

defined by its first two moments, in this case only if the stochastic 

process is weakly stationary then it is strictly stationary. 
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From now, if we mention stationarity from now on, then we mean 

weak stationarity. 

2.1.3 The importance of stationarity 

If the statistical characteristics of the stochastic process that generated 

the time series is nonstationarity, we will face many difficulties. The 

most important is the large number of parameters, such as 

expectations, variances and covariances and the difficulty of 

interpreting these parameters. 
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 Reducing the number of parameters: 

If we assume that the process 𝑦𝑡 is stationary and that one 

observation is available at every time point, which is the case in 

most real life time series, so that we have the following observed 

series  (𝑦1 ,𝑦2, … , 𝑦𝑛), then the major parameters of the theoretical 

process are :  

𝐸(𝒀) = ((𝑌1), 𝐸(𝑌2), … , 𝐸(𝑌𝑛))
` = [𝜇1 , 𝜇2, … , 𝜇𝑛]

` 
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𝑉𝑎𝑟(𝒀) = 𝛾(𝑠, 𝑡) = [

𝛾(1,1) 𝛾(1,2)… 𝛾(1, 𝑛)

𝛾(2,1) 𝛾(2,2)… 𝛾(2, 𝑛)
⋮ ⋮ ⋮

𝛾(𝑛, 1) 𝛾(𝑛, 2)… 𝛾(𝑛, 𝑛)

] 

 

Where we interpret the mean of the stochastic process at time 𝑡 , i.e. 

𝜇𝑡 as the mean for all values that this process can generate at time 𝑡, 

also, we interpret the variance of the stochastic process at time 𝑡 , i.e. 
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𝛾(𝑡, 𝑡) as the variance for all these values. Whereas, the covariance 

𝛾(𝑠, 𝑡) measures the linear dependence between all values that this 

process can generate at time s and time 𝑡.  

Now notice that number of expectations is n, and the number of 

parameters of the variance and covariance matrix is 

𝑛(𝑛 + 1) 2⁄  . Thus, the total number of main parameters to be 

estimated if the process is not stationary are 𝑛(𝑛 + 1) 2⁄ + 𝑛 =

  𝑛(𝑛 + 3) 2⁄  which is a large number especially if the number of 
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observations n is large. However, in the case of stationarity, number 

of parameters will be (𝑛 + 2) which are: 

𝜇, 𝛾(0), 𝛾(1), … , 𝛾(𝑛)   

Where in case of stationarity, 𝜇 represent level of the series. Also the 

variance 𝛾(0) measures variability of the process around 𝜇. In the 

same manner we can interpret the auto-covariance at time lag k (i.e. 

𝛾(𝑘)), so 𝛾(1) represent the auto-covariance (linear dependence) 
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between variables one period of time apart, 𝛾(2) represent the auto-

covariance between variables two period of times apart, etc. 

 

Preliminary Stationarity tests 

There are several ways to test the stationarity of the series, some 

of these methods are accurate others are approximate. If the series 

follows a known theoretical model then we can test its stationarity by 
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calculating its expectation, variance and covariance functions. If both 

the expectation and variance does not depend on time, and the auto-

covariance function depend only on time lag between any two 

variables, then stationarity of the series can be decided. 

Example:  If the series follow the following model: 

𝑌𝑡 = 𝛽0 + 𝜀𝑡 ,     𝑡 = 1,2, … , 𝑛 
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Where 𝛽0 is a fixed constant, and the variables 𝜀1, 𝜀2, … are 

uncorrelated random variables with mean zero and contstant variance 

𝜎2. Is the series stationary? 

solution: 

Calculate the expectation, variance and covariance of the process: 

𝐸(𝑌𝑡) = 𝛽0  ,   𝑡 = 0,±1,±2,… 

𝑉(𝑌𝑡) =  𝑉(𝛽0 + 𝜀𝑡) = 𝑉(𝜀𝑡) = 𝜎
2 

𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐶𝑜𝑣(𝛽0 + 𝜀𝑡 , 𝛽0 + 𝜀𝑡−𝑘) = 0 ,   𝑘 = ±1,±2,… 
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Therefore, we note that all the weak stationarity conditions are 

fulfilled here. 

Example:   If the series follow the following model: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡 ,     𝑡 = 1,2,… , 𝑛 

Where 𝛽0, 𝛽1 are  fixed constants, and the variables 𝜀1, 𝜀2, … are 

uncorrelated random variables with mean zero and contrast variance 

𝜎2. Is the series stationary? 
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solution: 

We calculate the expectation of the process: 

𝐸(𝑌𝑡) = 𝛽0 + 𝛽1𝑡  ,   𝑡 = 1,2, … 

This means that the expected value of the series is not constant but 

increasing (decreasing) by a constant value if 𝛽1 > 0,  (𝛽1 < 0) i.e. 

the series has a trend component in case 𝛽1 ≠ 0, and hence it is not 

stationary. 
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Example: If the series {𝑦𝑡} follow the following model: 

𝑌𝑡 = 𝑌𝑡−1 + 𝜀𝑡,     𝑡 = 1,2, … , 𝑛 

where {𝜀𝑡}  is a random process as defined in the previous 

example. Is the process stationary?  

 

solution: 

𝐸(𝑌𝑡) = 𝐸(𝑌𝑡−1) + 𝐸(𝜀𝑡) = 𝐸(𝑌𝑡−1) ,   𝑡 = 1,2, … 𝑛 
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Which means that the expected value of the series is constant, and 

does not depend on time 𝑡. Now we look at the variance,  

Var(𝑌𝑡) = Var(𝑌𝑡−1) + 𝜎
2 + 2𝐶𝑜𝑣(𝑌𝑡−1, 𝜀𝑡) 

                                      = Var(𝑌𝑡−1) + 𝜎
2 

So that Var(𝑌𝑡) ≠ Var(𝑌𝑡−1), i.e. the variance is not constant , and 

hence the process is not stationary. 
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 Previous examples have shown how to check stationarity of a time 

series if the mathematical model that explains the behavior of the 

random process generated it is known. But in practical applications 

often this is not the case, and we will mention later some methods 

for testing stationarity of the series. But as a general guideline is to 

check the plot of time series, and if we notice the observations to 

oscillate around a constant line that pass through the middle of the 

series, then we might be able to believe that the series is stationary.  
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However, if we notice existence of a trend component and/or that the 

dispersion of the data change over time then we find this an indication 

of non-stationarity of the series, see figure bellow:  

 

 

not Stationary in variance 

 

Stationary series 
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not Stationary in mean (of 

second order) 

 

Series not Stationary in 

mean 

If the series is not stationary, then sometimes some mathematical 

transformations might be able to transform it to stationarity, we will 

see this in section 2.5. 
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2.2 Auto-Correlation function (ACF) 

For any stationary process {𝑌𝑡}, the auto-covariance function 

between 𝑌𝑡 and 𝑌𝑡−𝑘 is defined as: 

𝛾𝑘 = 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)] 

This function measure the degree of linear association 

between any two variables of the same time series, for 
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example,  𝛾(1,2) measures linear association between all values that 

could be generated by the stochastic process at time point 1, and 

those at time point 2. 

Notes: 

1 - If 𝛾(𝑠, 𝑡) = 0, this means that the two variables 𝑌𝑡 and 𝑌𝑠 are 

linearly uncorrelated, however, they might still be nonlinearly 

correlated. 
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2 - If 𝛾(𝑠, 𝑡) = 0, and the two variables 𝑌𝑡 , 𝑌𝑠 have bivariate normal 

distribution then this lead to the fact that they are independent. 

3 - Sample variance can be regarded as a special case of auto-

covariance function 𝛾(𝑠, 𝑡),  by letting 𝑠 = 𝑡, this means that 

𝑣𝑎𝑟(𝑌𝑡) = 𝛾(𝑡, 𝑡). 

4 - If the series is stationary, then auto-covariance function 𝛾(𝑠, 𝑡) 

is a function of the time lag 𝑘 = |𝑠 − 𝑡| only, and usually we 

denote it as 𝛾(|𝑠 − 𝑡|), or 𝛾(𝑘). 
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2.2.1 What is Autocorrelation 

It is known that the use of covariance function to measure the degree 

of linear dependence between two variables raises some practical 

problems. The first being the lack of reference boundaries (low, high) 

that can be referenced to determine the strength or weakness of the 

linear relationship. Secondly, the covariance depends on the 
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measurement units of the data, so it always preferable to calibrate 

the covariance by dividing by the product of standard deviation of 

the variables 𝑌𝑡 and 𝑌𝑠 to get what is known as auto-correlation 

function. 

Definition: 

The correlation coefficient 𝜌(𝑠, 𝑡) is defined as the correlation 

coefficient between the variables 𝑌𝑡 and 𝑌𝑠 and is given by the form: 
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𝜌(𝑠, 𝑡) =
 𝛾(𝑠, 𝑡)

√𝑉𝑎𝑟(𝑌𝑠) 𝑉𝑎𝑟(𝑌𝑡)
 

    =
 𝐸[(𝑌𝑠 − 𝜇𝑠)(𝑌𝑡 − 𝜇𝑡)]

√𝐸(𝑌𝑠 − 𝜇𝑠)
2 𝐸(𝑌𝑡 − 𝜇𝑡)

2
  ;   𝑠, 𝑡 = 0,±1,±2,… 

Since it measure the linear correlation between the same random 

variable data but at different time points, so usually the term 

"autocorrelation function" is used, and in short written as ACF. 
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2.2.2 Characteristics of the Autocorrelation function 

1 - Autocorrelation between the variable 𝑌𝑡 and itself equal 

one, that is 𝜌(𝑡, 𝑡) = 1. 

2 - 𝜌(𝑡, 𝑠) = 𝜌(𝑠, 𝑡) because  𝛾(𝑡, 𝑠) =  𝛾(𝑠, 𝑡). 

3 - Value of 𝜌(𝑡, 𝑠) always lies in the interval [−1,1]. 
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4- If 𝛾(𝑠, 𝑡) = 0 , then this indicate that the variables 𝑌𝑡 and 𝑌𝑠 are 

linearly uncorrelated, however, they might still be nonlinearly 

correlated. 

 

If the stochastic process that generated the time series is 

stationary, then we redefine the auto-correlation coefficient as: 

𝜌(𝑘) =
𝐸[(𝑌𝑡 − 𝜇)(𝑌𝑡−𝑘 − 𝜇)]

√𝐸(𝑌𝑡 − 𝜇 )
2
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                   =
𝛾(𝑘)

𝛾(0)
;   𝑘 = 0,±1,±2, .. 

Where 𝛾(0) denote the variance of the stationary process, and 

𝛾(𝑘) denote its auto-covariance  at time lag k. For example, 𝜌(1) 

measures degree of linear correlation between any two variables 

that are one time period apart, i.e. between 𝑌1 and 𝑌2, or 𝑌99 and 

𝑌100, in general between 𝑌𝑡 and 𝑌𝑡−1. In the same manner,  𝜌(3) 

measures degree of linear correlation between any two variables 
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that are 3 time periods apart, i.e. between 𝑌1 and 𝑌4, or 𝑌10 and 𝑌13, 

in general between 𝑌𝑡 and 𝑌𝑡−3. 

2.2.3 The importance of the autocorrelation function 

When analyzing time series, we might face many forms 

of autocorrelation functions, for example: 

 we might find it decaying slowly. 

 or, decaying very quickly in an exponential form. 
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 or, decaying in sine function form. 

 Sometimes it cut off suddenly (i.e. equal zero) after a certain 

number of time lags. 

Autocorrelation function ρ(k), plays an   important and  essential 

role  when using Box - Jenkins  methodology for analyzing time 

series.  As the form of the ACF can determine the initial appropriate 
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model for the data. It is also one of the important tools in diagnostic 

tests of the residuals of the initial model in order to improve it. 

Example:    Let the random process {𝜀𝑡} be uncorrelated random 

variables with mean zero and constant variance 𝜎2, find 

autocorrelation function of the process {𝜀𝑡} .  

Note: {εt} is called the “white noise process” , and it will be used 

frequently in this course. 
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solution: 

According to the definition of the process, then: 

𝐸(𝜀𝑡) = 0,   𝑡 = 0,±1,±2,… 

𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2,   𝑡 = 0,±1,±2,… 

𝛾(𝑘) = 𝐶𝑜𝑣(𝜀𝑡 , 𝜀𝑡−𝑘) = 0, 𝑘 ≠ 0;   𝑡 = 0,±1,±2,… 

𝜌(𝑘) =
𝛾(𝑘)

𝛾(0)
= 0, 𝑘 ≠ 0 
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This means that: 

𝜌(𝑘) = {
1, 𝑘 = 0
0, 𝑘 ≠ 0

 

Example: 

If the series  𝑦𝑡 have the following model: 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜀𝑡 ,     𝑡 = 1,2, … , 𝑛 
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Where {𝜀𝑡} is the white noise process as defined in the previous 

example. Find autocorrelation function of the series  𝑌𝑡. 

solution: 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟(𝛽0 + 𝛽1𝑡 + 𝜀𝑡) = 𝑉𝑎𝑟(𝜀𝑡) = 𝜎
2 

This is because (𝛽0 + 𝛽1𝑡) is not a random variable, but it is a 

deterministic function.  

and,  
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𝛾(𝑠, 𝑡) = 𝐶𝑜𝑣(𝛽0 + 𝛽1𝑠 + 𝜀𝑠,   𝛽0 + 𝛽1𝑡 + 𝜀𝑡),   

                        = 𝐶𝑜𝑣(𝜀𝑠,   𝜀𝑡) = 0,                𝑠 ≠ 𝑡 

So that, 

𝜌(𝑘) = {
1, 𝑘 = 0
0, 𝑘 ≠ 0

 

Example: 

If the process  {𝑌𝑡} have the following model: 
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𝑌𝑡 = 𝜀𝑡 − 𝜃𝜀𝑡−1,     𝑡 = 1,2, … , 𝑛 

Where {𝜀𝑡} is the white noise process as defined in the previous 

example. Find the autocorrelation function of the process  {𝑌𝑡}. 

solution: 

𝐸(𝑌𝑡) = 0,   𝑡 = 1,2,… , 𝑛 

𝑉𝑎𝑟(𝑌𝑡) = 𝑉𝑎𝑟(𝜀𝑡 − 𝜃𝜀𝑡−1) 

                 = 𝑉𝑎𝑟(𝜀𝑡) + 𝜃
2𝑉𝑎𝑟(𝜀𝑡−1) − 2𝐶𝑜𝑣(𝜀𝑡 , 𝜀𝑡−1) 
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                 = 𝜎2 + 𝜃2𝜎2 = 𝜎2(1 + 𝜃2) ; 𝑡 = 1,2, … 

Now, we find the auto-covariance function for observations that are 

one time lag apart i.e. 𝛾(1): 

𝛾(𝑡, 𝑡 + 1) = 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡+1) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1,   𝜀𝑡+1 − 𝜃𝜀𝑡) = −𝜃𝜎
2 

In the same manner, we find the auto-covariance function for 

observations that are two time lags apart i.e. 𝛾(2): 
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𝛾(𝑡, 𝑡 + 2) = 𝐶𝑜𝑣(𝑌𝑡 , 𝑌𝑡+2) 

                      = 𝐶𝑜𝑣(𝜀𝑡 − 𝜃𝜀𝑡−1,   𝜀𝑡+2 − 𝜃𝜀𝑡+1) = 0 

in the same manner, it can also be shown that 𝛾(3) = 𝛾(4) = ⋯ = 0 

So the auto-covariance function has the form: 

𝛾(𝑘) = {
𝜎2(1 + 𝜃2) 𝑘 = 0

−𝜃𝜎2 𝑘 = 1
0, 𝑘 ≥ 2
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thus the auto-correlation function for this process is: 

𝜌(𝑘) = {

1, 𝑘 = 0
−𝜃

1 + 𝜃2
, 𝑘 = 1

0 𝑘 ≥ 2

 

2.2.4 Estimating the Autocorrelation Function 

As stated previously the importance of imposing stationarity 

conditions on the stochastic process that generated the observed 

time series. The most important was, reduction of the number of 



P a g e  | 64 

 

major parameters of the process (first and second moments), and 

easiness of their interpretation,  and the possibility of estimating 

these parameters using the available observations 𝑦1, 𝑦2, … , 𝑦𝑛 of 

the time series.  Based on these estimates, we can estimate the auto-

correlation function for the stationary process as follows:  

𝑟𝑘 = �̂�(𝑘) =
∑ (𝑦𝑡
𝑛−𝑘
𝑡=1 − �̅�)(𝑦𝑡+𝑘 − �̅�)

∑ (𝑦𝑡
𝑛
𝑡=1 − �̅�)2
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It can be shown that if the random  process {𝑌t} is  stationary and 

linear, and the  fourth moment 𝐸(Yt
4) is bounded, then the 

estimate 𝑟𝑘 of the auto-correlation function follow asymptotically 

a normal distribution with mean 𝜌𝑘 and a known variance that 

also depend on 𝜌𝑘. Then it is possible to perform testing of 

hypothesis for the significance of various auto-correlation 

coefficients at different time lags. 
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 Bartlett 1946, has proven that if observations q time lags 

apart are not correlated, that is,  

𝜌𝑘 = 0,    𝑘 > 𝑞 

then the sample variance of the statistic 𝑟𝑘 can be 

approximated by: 

𝑉(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝜌𝑗

2),     𝑘 > 𝑞

𝑞

𝑗=1
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Then one can get approximate estimates of standard errors (SE) 

of the estimators 𝑟𝑘 by  replacing 𝜌𝑘 by 𝑟𝑘 and taking the square 

root in the previous form: 

𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 (1 + 2 ∑𝑟𝑗

2)     

𝑞

𝑗=1

, 𝑘 > 𝑞 

 In the special case when all observations are uncorrelated, 

that is 𝜌𝑘 = 0,  for 𝑘 > 0  then this equation simplifies to: 
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𝑆𝐸(𝑟𝑘) ≅  √
1

𝑛
 , 𝑘 > 𝑞 

 So if we assume that the process {𝑌t} is completely random, that 

is a white noise process  then, for large sample size the 

distribution of the estimator 𝑟𝑘 (according to central limit 

theorem) is normal distribution with mean 𝜌𝑘 and variance 
1

𝑛
  

i.e., 
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𝑟𝑘~ 𝑁 (𝜌𝑘,
1

𝑛
) 

This means that if the series at hand is completely random, then 

we can find a 95% Confidence interval for 𝜌𝑘, which is: 

𝑟𝑘 − 1.96 √𝑣𝑎𝑟(𝑟𝑘) < 𝜌𝑘 < 𝑟𝑘 + 1.96 √𝑣𝑎𝑟(𝑟𝑘) 

That is: 

𝑟𝑘 − 1.96 √
1
𝑛⁄ < 𝜌𝑘 < 𝑟𝑘 + 1.96 √

1
𝑛⁄  
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 Anderson in 1942 have shown that for a sample of moderate 

size and assuming that the estimator 𝜌𝑘 = 0,  then the 

sample estimator 𝑟𝑘 follows approximately the normal 

distribution, and thus the statistic: 

𝑧 =
𝑟𝑘 − 0

𝑆𝐸(𝑟𝑘)
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follows approximately standard normal distribution under 

the hypothesis 𝜌𝑘 = 0, thus it can be used to test the 

hypothesis: 

𝐻0: 𝜌𝑘 = 0   vs   𝐻1: 𝜌𝑘 ≠ 0   for 𝑘 > 𝑞 

We reject the null hypothesis, at significance level 𝛼 if |𝑧| >

𝑧𝛼 2⁄ . 
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Note: 

It has been the norm in practical applications to reject the null 

hypothesis 𝜌𝑘 = 0, if |𝑧| > 2 assuming that 𝛼 = 0.05, but it 

should be noted that it is not always preferable to fix 𝛼 at 

a certain value to test the significance of the autocorrelation 

coefficients for all time lags.  Some recent studies have 

concluded that it is preferable to use larger values for 𝛼 at 

lower time lags, and then use smaller values for 𝛼 at larger 
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time lags. Choosing the right value of 𝛼, depends actually more 

on the expertize of the researcher, and how he reads the 

different graphs of the data.  

Example: 

The following data represents the number of sold units 

(percentage) yearly at a large department stores: 
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 Year 1992 1993 1994 1995 1996 1997 1998 1999 

Number of sold units 𝑦𝑡 

(in thousands) 
1 3 2 4 3 2 3 2 

 

Calculate the autocorrelation coefficients, and draw the 

estimated autocorrelation function. 

solution: 

One can easily calculate: 
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�̅� =
20

8
= 2.5    ;      ∑ (𝑦𝑡

8

𝑡=1
− 2.5)2 = 6 

Also we can find the pairs (𝑦𝑡 − 2.5) : 

Year 1992 1993 1994 1995 1996 1997 1998 1999 

(𝑦𝑡 − 2.5) -1.5 0.5 -0.5 1.5 0.5 -0.5 0.5 -0.5 

 

According to the definition of autocorrelation function 𝑟𝑘 , then: 
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𝑟1 = �̂�(1) =
∑ (𝑦𝑡
7
𝑡=1 − 2.5)(𝑦𝑡+1 − 2.5)

6
 

𝑟1 =
1

6
[(−1.5)(0.5) + (0.5)(−0.5) + (−0.5)(1.5) + (1.5)(0.5)

+ (0.5)(−0.5) + (−0.5)(0.5) + (0.5)(−0.5)] = −0.29 

Also,  

𝑟2 = �̂�(2) =
∑ (𝑦𝑡
6
𝑡=1 − 2.5)(𝑦𝑡+2 − 2.5)

6
= 0.17 

Similarly, the rest of the values are calculated: 
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𝑟3 = −0.21, 𝑟4 = −0.33,   𝑟5 = 0.21,   𝑟6 = −0.17,   𝑟7 = 0.13 

The auto-correlation function can be drawn such that, on 

the horizontal axis the time lags, 𝑘, and on the vertical axis auto-

correlation coefficients, this figure is called the correlogram. 
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2.3 Partial autocorrelation function 

The idea of this correlation arise as follows: 
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 If  two variables, say,   𝑌1 and 𝑌3 are found to be correlated , then 

this might be because of correlation between them and a  

 

third variable, 𝑌2 , so if we can calculate correlation between  𝑌1 

and 𝑌2 , and correlation between 𝑌3 and  𝑌2, and 

𝑌2 𝑌3 𝑌1 
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remove or control this correlation, then the resulting correlation 

is  called partial auto-correlation  

The autocorrelation between   𝑌1 and 𝑌3 where the effect of  𝑌2 

has been removed  or controlled is called the partial auto-

correlation  between 𝑌1 and 𝑌3 . 

This idea can be applied to any number of variables, such that 

the correlation between any two variables with the removal of 
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the effect of variables that falls between them. One can calculate 

the auto-correlation between the two variables 𝑌𝑡 and 𝑌𝑡−𝑘 , and 

removing or controlling the effect of all the variables that fall 

between them, i.e. (𝑌𝑡−𝑘+1, … , 𝑌𝑡−1), this is called the partial 

auto-correlation  between 𝑌𝑡 and 𝑌𝑡−𝑘 . 

 

 

........... 𝑌t−k 𝑌t−k+1 𝑌t−1 
𝑌t 
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   The basic idea behind the partial auto-correlation is 

calculating the linear correlation coefficient between [𝑌𝑡 −

𝐸(𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1)] and [𝑌𝑡−𝑘 − 𝐸(𝑌𝑡−𝑘|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1)]  

Where 𝐸(𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1) and 𝐸(𝑌𝑡−𝑘|𝑌𝑡−1, … , 𝑌𝑡−𝑘+1) are 

calculated from the corresponding  conditional probability 

distributions . 

2.3.1  Yule-Walker system of equations  
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Assuming that we have a stationary process with mean equal 

to zero, we can write a multiple regression model of order 

𝑝 as Follows: 

𝑌𝑡 = 𝜙11𝑌𝑡−1 + 𝜙22𝑌𝑡−2 +⋯+𝜙𝑘𝑘𝑌𝑡−𝑝 + 𝜀𝑡 

where  𝜀𝑡 is the white noise process, multiplying both sides by 

𝑌𝑡−𝑘 , and taking expectations, we find: 
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𝐸(𝑌𝑡𝑌𝑡−𝑘)

= 𝜙11𝐸(𝑌𝑡−1𝑌𝑡−𝑘) + 𝜙22𝐸(𝑌𝑡−2𝑌𝑡−𝑘)

+ ⋯+𝜙𝑘𝑘𝐸(𝑌𝑡−𝑝𝑌𝑡−𝑘) + 𝐸(𝜀𝑡𝑌𝑡−𝑘) 

So, 

𝛾𝑘 = 𝜙11𝛾𝑘−1 + 𝜙22𝛾𝑘−2 +⋯+𝜙𝑘𝑘𝛾𝑘−𝑝 

And dividing both sides by 𝛾0 , we find: 

𝜌𝑘 = 𝜙11𝜌𝑘−1 + 𝜙22𝜌𝑘−2 +⋯+𝜙𝑘𝑘𝜌𝑘−𝑝  , 𝑘 ≥ 1 
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This is called the Yule-Walker system of equations, and consists 

of a 𝑘 linear equation in the unknowns 𝜙11, 𝜙22, … , 𝜙𝑘𝑘.  We 

can solve this system by the determinants to get 𝜙𝑘𝑘 ( The 

mathematical derivation details for this is not the concern of this 

course) : 
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𝜙𝑘𝑘 =

{
 
 
 
 

 
 
 
 

1 , 𝑘 = 0
𝜌1 , 𝑘 = 1

|

1 𝜌1 ⋯ 𝜌𝑘−2  𝜌1
𝜌1 1 ⋯ 𝜌𝑘−3   𝜌2
⋮     ⋮         ⋮    ⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2 … 𝜌1 𝜌𝑘

|

|

1   𝜌1 ⋯ 𝜌𝑘−2 𝜌𝑘−1
𝜌1 1 ⋯ 𝜌𝑘−3 𝜌𝑘−2
⋮              ⋮     ⋮    ⋮ ⋮
𝜌𝑘−1 𝜌𝑘−2 … 𝜌1 1   

|

, 𝑘 = 2,3, …

}
 
 
 
 

 
 
 
 

 

Where |. | denote the determinant. 
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We note that for large values of 𝑘, the above solution is difficult 

to find, thus another approach that uses recurrence relations is 

proposed in the literature, as follow: 

𝜙00 = 1 

𝜙11 = 𝜌1 

  

𝜙𝑘𝑘 =
𝜌𝑘 − ∑ 𝜙𝑘−1,𝑗𝜌𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝜙𝑘−1,𝑗𝜌𝑗
𝑘−1
𝑗=1
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Where,  

𝜙𝑘𝑗 = 𝜙𝑘−1,𝑗 − 𝜙𝑘𝑘𝜙𝑘−1,𝑘−𝑗     ,𝑗=1,2,…,𝑘−1 

2.3.2  Properties of partial autocorrelation function (PACF) 

This function has several properties, including: 

1- partial autocorrelation coefficient at time lag zero is equal 

to one, that is, 𝜙00 = 1. 

2- The value of 𝜙𝑘𝑘 always fall in the closed interval [−1,1]. 



P a g e  | 89 

 

3-  𝜙11 = 𝜌1 , this is because there are no observations fall 

between 𝑌𝑡−1 and 𝑌𝑡 . 

4- If 𝜙𝑘𝑘 = 0, then this means there is no linear 

autocorrelation between 𝑌𝑡−𝑘 and 𝑌𝑡 , however, there might 

be a nonlinear autocorrelation between them. 

2.3.3 Estimating the partial autocorrelation function 
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One can get the sample partial autocorrelation function from 

the previous equations by replacing 𝜙𝑘𝑘 by 𝑟𝑘𝑘 , and 𝜌𝑘  by  𝑟𝑘 . 

The statistic 𝑟𝑘𝑘 is an estimator for 𝜙𝑘𝑘 i.e.: 

�̂�𝑘𝑘 = 𝑟𝑘𝑘   , 𝑘 = 0,1, … 

To function 𝑟𝑘𝑘 has the following properties: 

1- Anderson and Quenouille  (1949) have found that if the 

partial correlation coefficient 𝜙𝑘𝑘 = 0, and for a large sample 
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size, then the estimated sample partial autocorrelation 

coefficients 𝑟𝑘𝑘 follow the normal distribution with estimated 

standard error:  

𝑠𝑒(𝑟𝑘𝑘) ≅ √
1

𝑛  
,     𝑘>0 

2- For large sample size n, we can carry out the following 

test: 

𝐻0: 𝜙𝑘𝑘 = 0 
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𝐻1: 𝜙𝑘𝑘 ≠ 0 

Where we use the statistic: 

𝑍 =
|𝑟𝑘𝑘| − 0

√1
𝑛
 

= √𝑛  |𝑟𝑘𝑘| 

and reject 𝐻0 at significance level 𝛼, if  |𝑍| > 𝑧𝛼 2⁄  

Example:  
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The following data represent the daily demand of a particular 

product: 

158 222 248 216 226 239 206 178 169 

Calculate the autocorrelation function and partial 

autocorrelation function and draw them. 

solution: 

1- Finding the autocorrelation function 𝑟𝑘: 
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First we calculate the mean of the series:  

 

�̅� =
1

9
∑𝑍𝑖 =

1

9
[158 +⋯+ 169] = 206.89 

 

sample partial autocorrelation function has the form: 

𝑟𝑘 =
∑ (𝑦𝑡 − �̅�)(𝑦𝑡−𝑘 − �̅�)
9
𝑡=𝑘+1

∑ (𝑦𝑡 − �̅�)
29

𝑡=1

, 𝑘 = 0,1, …, 
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We need to find the quantities: 

 

𝑟1 =
∑ (𝑦𝑡−�̅�)(𝑦𝑡−1−�̅�)
9
𝑡=2

∑ (𝑦𝑡−�̅�)
29

𝑡=1
,  ………………..….,   𝑟8 =

∑ (𝑦𝑡−�̅�)(𝑦𝑡−8−�̅�)
9
𝑡=9

∑ (𝑦𝑡−�̅�)
29

𝑡=1
 

Which means that if we have 𝑛 observations, then we need to 

calculate (𝑛 − 1) coefficients of 𝑟𝑘 . To simplify calculations, we 

will find first the following pairs, (𝑦𝑡 − �̅�) = (𝑦𝑡 − 206.89) as 

follow: 
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(158 − 206.89), (222 − 206.89),… , (169 − 206.89) 

⟹ (−48.89), (15.11), (41.11), (9.11) … , (−37.89) 

Then we get the required 𝑟𝑘 coefficients as follow: 

𝑟1

=
(−48.89 × 15.11) + (15.11 × 41.11) +⋯+ (−28.89 × −37.88)

(−48.89)2 + (15.11)2 +⋯+ (−37.89)2

= 0.2651 
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𝑟2

=
(−48.89 × 41.11) + (15.11 × 9.11) + ⋯+ (−0.89 × −37.88)

(−48.89)2 + (15.11)2 +⋯+ (−37.89)2

= −0.212 

And the same for other coefficients, 

𝑟3 = −0.076,   𝑟4 = −0.183,  𝑟5 = −0.387, 𝑟6 = −0.242, 

𝑟7 = 0.104, 𝑟8 = 0.230 

Drawing the correlogram , we have: 
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The following table shows the result of calculations in the 

Minitab : 

Autocorrelation Function: C2 

Lag  ACF       T    

1  0.265116  0.80  
2 -0.211557 -0.59   
3 -0.076111 -0.21   
4 -0.182772 -0.49   
5 -0.386675 -1.01   
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6 -0.242061 -0.57   
7  0.104208  0.24   
8  0.229851  0.52  

 

We can also estimate the variance of 𝑟𝑘 from relationship: 

�̂�(𝑟𝑘) ≅  
1

𝑛
 (1 + 2 ∑𝑟𝑗

2),     𝑞 < 𝑘

𝑞

𝑗=1

 

Then: 
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�̂�(𝑟1) ≅  
1

9
 (1 + 2 ∑𝑟𝑗

2),     𝑞 < 1

0

𝑗=1

 

   ≅  
1

9
(1 + 2(0)) =

1

9
  

�̂�(𝑟2) ≅  
1

9
 (1 + 2 ∑𝑟𝑗

2),     𝑞 < 2

1

𝑗=1

 

            ≅  
1

9
(1 + 2𝑟1

2) =
1

9
(1 + 2(0.2651)2) = 0.12 

and the same for the rest of the values we get: 
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�̂�(𝑟3) ≅  
1

9
(1 + 2𝑟1

2 + 2𝑟2
2) ≅ 0.1367 

�̂�(𝑟4) ≅ 0.138 ,  �̂�(𝑟5) ≅ 0.1454 ,  �̂�(𝑟6) ≅ 0.1787, 

�̂�(𝑟7) ≅ 0.1931, �̂�(𝑟8) ≅ 0.2013. 

We note that the as time lag between the variables increase, then 

the variance of the estimated correlation coefficients increases. 

 

2- Finding the partial autocorrelation 𝑟𝑘𝑘: 
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𝑟00 = 1 

𝑟11 = 𝑟1 = 0.265, 

And the rest of the coefficients are found through the 

recurrence relation: 

𝑟𝑘𝑘 =
𝑟𝑘 − ∑ 𝑟𝑘−1,𝑗𝑟𝑘−𝑗

𝑘−1
𝑗=1

1 − ∑ 𝑟𝑘−1,𝑗𝑟𝑗
𝑘−1
𝑗=1

,   𝑘 = 2,3, … 

 

Where, 
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𝑟𝑘𝑗 = 𝑟𝑘−1,𝑗 − 𝑟𝑘𝑘𝑟𝑘−1,𝑘−𝑗     , 𝑗 = 1,2, … , 𝑘 − 1 

So,  

𝑟22 =
𝑟2 − ∑ 𝑟1,𝑗  𝑟2−𝑗

1
𝑗=1

1 − ∑ 𝑟1,𝑗  𝑟𝑗
1
𝑗=1

=
𝑟2 − 𝑟11𝑟1
1 − 𝑟11𝑟1

 

 

= 
(−0.212) − (−0.265)(0.265)

1 − (−0.265)(0.265)
= −0.304 

𝑟33 =
𝑟3 − ∑ 𝑟2,𝑗  𝑟3−𝑗

2
𝑗=1

1 − ∑ 𝑟2,𝑗  𝑟𝑗
2
𝑗=1

=
𝑟3−[𝑟21𝑟2 + 𝑟22𝑟1]

1 − [𝑟21𝑟1 + 𝑟22𝑟2]
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So we need the value of 𝑟21: 

     𝑟21 = 𝑟11 − 𝑟22𝑟11  =0.345  

Thus, 

𝑟33 =
−0.076 − [(0.345)(−0.212) + (−0.304)(0.265)]

1 − [(0.345)(0.265) + (−0.304)(−0.212)]
= 0.092 

The same calculations for the other values: 

𝑟44 = −0.298 



P a g e  | 105 

 

𝑟55 = −0.294 

𝑟66 = −0.207 

𝑟77 = 0.013 

𝑟88 = 0.042 

The variance of these coefficients is estimated by: 

�̂�(𝑟𝑘𝑘) ≅  
1

𝑛
=
1

9
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The following table shows the result of calculations in 

the Minitab: 

 

 

 

 

Partial Autocorrelation Function: C2 

                                       Lag     ACF        T 

1   0.265116   0.80 

2  -0.303151  -0.91 
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3   0.091617   0.27 

4  -0.298000  -0.89 

5  -0.294454  -0.88 

6  -0.206605  -0.62 

7   0.013411   0.04 

8   0.042363   0.13 
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