
1

 Several ADTs for storing and retrieving data
were discussed – Linear Lists, Binary Trees,
BSTs, AVL Trees.

 An important operation Findkey() has a time
complexity: O(n) in Lists, O(n) in Binary
Trees, O(log n) in BSTs, O(log n) in AVL
trees.

 Can Findkey() be implemented with a time
complexity better than O(log n)? – With
Hash Tables it is possible to implement
Findkey() with O(1) time complexity.

2

 A hash table for a given key type consists of
◦ Hash function

◦ Array (called table) of size N

 Hash function maps a key to a location in
the table.

 Hash functions can be of two types:
◦ Perfect hash functions

◦ Imperfect hash functions

3

 Perfect hash functions map a key to the
„exact address‟ in the hash table. The key
can be found at the address without
additional search. Perfect hash functions
are hard to determine and compute.

 exact address  f (key)
 Imperfect hash functions map a key to a

„home address‟ in the hash table. The key
may not be at the address and finding it
may require additional search. Imperfect
hash functions are easy to determine and
compute.

 home address  H(key)

4

 In the hash table the data elements are
scattered randomly throughout the hash table
– there is no first, root or last element.

 Hash tables are suitable for implementing
sets but not linear or hierarchical structures.

5

Table Size, N = 7.
Hash Function: H(key) = key

mod 7.

6

…

0
1
2
3

6
empty

empty

empty

empty

empty

4
5

empty

empty

Initially Hash Table is empty

7

Insertions: keys 374, 1091,

911are inserted.

H(374) = 374 mod 7 = 3

H(1091) = 1091 mod 7 = 6

H (911) = 911 mod 7 = 1

0
1
2
3

6
empty

empty

1091

911

empty

4
5

374

empty

8

Retrievals: keys 374 and

740 are retrieved

H(374) = 374 mod 7 = 3

Table address 3 contains

the key.

H(740) = 740 mod 7 = 5

Table address 5 is empty.

0
1
2
3

6
empty

empty

1091

911

empty

4
5

374

empty

9

• Insertions: key 227 is to be inserted.

• H(227) = 227 mod 7 = 3

• Hash functions tells us store it in home

address 3 but there is already a key stored in

home address 3. This called a collision.

• Since table is not empty the collided key 227

must be stored somewhere in the table.

• Rehashing or Collision Resolution Strategies

 Performance of a hash table depends on its
hash function.

 For a data set with a certain type of keys hash
function formulated should minimize the
number of collisions.

 The following slides deal with techniques of
formulating various types of hash functions.

10

 Keys may be student id. numbers (e.g.
427102345) or social security numbers (e.g.
981-101-0002)

 Hash function based on digit selection selects
a subset of digits from the key e.g. last 3
digits may be selected.

 345  H(427102345)

11

 Which digits to select? .. The ones that are
random in the data. First 3 digits from the
left, in student ids are the same for many
students… not a good choice… last 3 digits
are random.

 How many digits to select? Depends on the
table size we want. Select 3 digits – table size
1000, 4 digits – table size 10000.

12

 How to select the digits? Last 3 digits from
the left can be selected using mod 1000. The
middle 3 digits can be selected through:

 (key / 1000) mod 1000

13

 Hash function based on division is of the
following form: H(key) = key mod m

 0 <= H(key) < m.

 These functions lead to a number of
collisions for certain values of m. E.g. if m =
25 all keys divisible by 5 map to positions 0,
5, 10, 15 and 20.

14

 Ideally m must have no common factors with
the keys … an easy way to ensure this is to
chose m a prime number -prime number (or
a prime) is a natural number greater than 1
that has no positive divisors other than 1 and
itself-.

 Example:

 2 ,3 ,5 ,7 ,11 ,13 ,17 ,19 ,23 ,29 ,31 ,37 ,41 ,43 ,
47 ,53 ,59 ,61 ,67 ,71 ,73 ,79 ,83 ,89 ,97 ,101

15

 A hash function based on multiplication first
squares the key and then chooses a certain
subset of the digits of the product.

 Suppose key = 54321. Hash function finds
the square: (54321)2 = 2950771041 and then
middle 3 digits are chosen i.e. 077.

16

 A hash function based on folding adds the
digits of the key.

 Suppose key = d1d2d3d4d5.

 The key can be folded at single digits, as
follows: H(key) = d1 + d2 + d3 + d4 + d5.
Table size will be 45 since 0 <= H(key) <=
45.

17

 If a larger table size is needed, the key can be
folded at 2 digits, as follows: H(key) = 0d1 +
d2d3 + d4d5‟ Table size will be 207 since 0 <=
H(key) <= 207.

 Folding can be used with other operations
e.g. H(key) = fold (key) mod m

18

 Keys can be characters or strings e.g. key =
xyz.

 In such keys the characters are replaced by
their binary ASCII codes and the binary
number is converted to decimal integer and
treated as any other integer key.

19

 Also known as rehashing techniques.
 Strategies determine where to store a collided

key in the event of a collision.
 Strategies can be grouped into the following

three categories:
◦ Open address methods
◦ External or separate chaining
◦ Coalesced chaining

20

 The strategy finds an empty position in the
table after the collision and stores the
collided key at the empty position.

 Linear rehashing, quadratic rehashing,
random rehashing and double rehashing fall
in this category.

21

Also called linear probing.
Each table location inspected is referred to as a

“probe”
Linear rehashing starts a (circular) sequential

search through the table until an empty location
is found or all the table has been examined.

Rehash address (i.e. address of the next location
to be inspected) is computed by

 rehash address = (p + c) mod TableSize
 p = previous collision address; c = a constant

(we take c = 1)
If an empty location is found at the rehash

address the collided key is stored at the location.

22

 Consider the hash table in the
state shown. Attempt to insert
227 leads to a collision with 374
… H(227) = 227 mod 7 = 3.

 According to linear rehashing
the collided key 227 will be
stored in the circularly next
empty location, which is at table
address 4. (See the next slide)

23

0
1
2
3

6
empty

empty

1091

911

empty

4
5

374

empty

24

0
1
2
3

6
empty

empty

1091

911

empty

4
5

374

227

After Insert 227

0
1
2
3

6
empty

421

1091

911

empty

4
5

374

227

Insert 421

H(421) = 421 mod 7 = 1

0
1
2
3

6
624

421

1091

911

empty

4
5

374

227

Insert 624

H(624) = 624 mod 7 = 1
Probes Probes Probes

0

1

0

1

2

0

0

0

1

2

1

2

0

0

0

1

2

1

2

5

0

One probe is an access into the hash-table.

Number of probes required to insert a key

indicates the cost of inserting the key.

 Suppose key 624 is to be
retrieved. H(624) = 1. After
rehashing and 5 probes the key is
found at address 5.

 Suppose key 631 is to be
retrieved. H(631) = 1. After
rehashing and 7 probes the
„empty‟ location 0 is found – if the
key was present it would have
been at 0. Therefore, retrieval
algorithm returns „not found‟

25

0
1
2
3

6
624

421

1091

911

empty

4
5

374

227

 Suppose one of the keys 421,
374 or 227 are removed – e.g.
374 is removed – address 3 is
marked „empty‟.

 Now attempt to find key 624
will incorrectly result in a
failure – search will stop at
address 3.

 This problem can be solved by
having three different status
for a table location.

26

0
1
2
3

6
624

421

1091

911

empty

4
5

empty

227

 status = {empty, occupied,
deleted}

 During search for a key the
search does not stop at locations
with status deleted or occupied.
So the key 624 is found at
address 5.

27

624

421

1091

911

empty 0
1
2
3

6

4
5

deleted

227

 The performance of a hash table employing
linear rehashing as collision resolution
strategy is measured in terms of the average
number of probes required to insert a set of
keys.

28

 Also called separate chaining

 According to this strategy the collided keys
are stored in a list associated with the home
address.

 Hash table is an array of lists.

 Insertions and deletions are easy to
implement.

29

30

Insertions

Key = 374 374 mod 7 = 3

Key = 1091 1091 mod 7 = 6

Key = 911 911 mod 7 = 1

Collisions

Key = 227 227 mod 7 = 3

Key = 421 421 mod 7 = 1

Key = 624 624 mod 7 = 1

0
1
2
3

6

4
5

null

null

null

null

911

374

1091 624

227

421

0
1
2
3

6

4
5

null

null

null

null

911

374

1091

 Advantages (compared to Linear Rehashing)
◦ Deletions are easily possible.

◦ Number of elements can be greater than the table
size.

◦ Retrieval operations are efficient since hash
function is computed only once during retrieval.

31

 Similar to external chaining – collided
elements are stored in lists.

 Similar to linear rehashing – lists are stored
within the hash table.

 Hash table is divided into two regions: an
address region – stores normal keys and a
cellar – stores collided keys.

 epla – empty position with largest address.

32

33

0
1
2
3

6
empty

empty

epla

empty

empty

4
5

empty

empty

Address Region

Cellar

H(key) = key mod 5

0
1
2
3

6
empty

27

epla

empty

empty

4
5

empty

29

Insertions

Key = 27 27 mod 5 = 2

Key = 29 29 mod 5 = 4

34

Insertion with Collision

Key = 32 32 mod 5 = 2

Stored at epla & linked to

link list at address 2

0
1
2
3

6
epla

27

32

empty

empty

4
5

empty

29

Insertion with Collision

Key = 34 34 mod 5 = 4

Stored at epla & linked to

link list at address 4

0
1
2
3

6
34

27

32

empty

empty

4
5

epla

29

35

Insertions with Collision

Key = 37 37 mod 5 = 2

Stored at epla & linked to

link list at address 2

0
1
2
3

6
34

27

32

epla

empty

4
5

37

29

Insertions with Collision

Key = 47 47 mod 5 = 2

Stored at epla & linked to

link list at address 2

0
1
2
3

6
34

27

32

47

epla

4
5

37

29

