AVL Trees

CS212:Data Structure

AVL Trees

Consider a situation when data elements are inserted in a BST in sorted order: 1, 2, 3, ...

- BST becomes a degenerate tree.
- Search operation FindKey takes O(n), which is as inefficient as in a list.

AVL Trees

- It is possible that after a number of insert and delete operations a binary tree may become imbalanced and increase in height.
- Can we insert and delete elements from BST so that its height is guaranteed to be $\mathbf{O}(\log n)$? - Yes, AVL Tree ensures this.
- Named after its two inventors: AdelsonVelski and Landis.

Imbalanced/Balanced Trees

An Imbalanced Tree

A Balanced Tree

AVL Tree: Definition

- We cannot always guarantee perfectly balanced trees, since this depends on the currently inserted nodes.
- But some nodes arrangements make a tree more balanced than other nodes arrangements.

Imbalanced/Balanced Trees

Imbalanced/Balanced Trees

Imbalanced/Balanced Trees

AVL Tree: Definition

- Height: the longest path from a node to a leaf node.
- Height-balanced tree: A binary tree is a height-balanced-p-tree if for each node in the tree, the absolute difference in height of its two subtrees is at most p .
- AVL tree is a BST that is height-balanced-1-tree.
- For each node in the tree, the absolute difference in height of its two subtrees must be at most 1 .
- Balance $=$ Right Subtree Height - Left Subtree Height
- Therefore, it must be either $\mathbf{+ 1}$ (longer right), $\mathbf{0}$ (equal), $\mathbf{- 1}$ (longer left).

AVL Trees

It is balanced tree but not AVL
because it is not BST!

Remember:

AVL tree is a BST that is height-balanced-1-tree.

BSTs vs. AVL Trees

Inserting 1, 2, 3, 4 and 5

ADT AVL Tree: Specification

Elements: The elements are nodes, each node contains the following data type: Type.

Structure: Same as for the BST; in addition the height difference of the two subtrees of any node is at the most one.

Domain: the number of nodes in a AVL is bounded; type AVLTree.

ADT AVL Tree: Specification

Operations:

1. Method FindKey (int tkey, boolean found).
2. Method Insert (int k, Type e, boolean inserted).
3. Method Remove_Key (int tkey, boolean deleted)
4. Method Update(Type e)
5. Method Traverse (Order ord)
6. Method DeleteSub ()
7. Method Retrieve (Type e)
8. Method Empty (boolean empty).
9. Method Full (boolean full)

ADT AVL Tree: Element

```
public class AVLNode<T> {
        public int key
        public T data;
        public Balance bal; // Balance is enum (+1, 0, -1)
        public AVLNode<T> left, right;
    public AVLNode(int key, T data) {
        this. key = key;
        this. data = data;
        bal = Balance.Zero;
        left = right = null;
    }
```

\}

ADT AVL Tree: Implementation

- The implementation of: FindKey, Update data, Traverse, Retrieve, Empty, Full, and any other method that doesn't change the tree are exactly like the implementation of BST.
- The only difference in implementation is when we change the nodes of the tree, i.e. Insert/Remove from the tree.

AVL Tree: Insert

- Step 1:

A node is first inserted into the tree as in a BST.

- Step 2:

Nodes in the search path are examined to see if there is a pivot node. Three cases arise.

- search path is a unique path from the root to the new node.
- pivot node is a node closest to the new node on the search path, whose balance is either -1 or +1 .

AVL Tree: Insert

- Case 1:

There is no pivot node in the search path. No adjustment required.

- Case 2:

The pivot node exists and the subtree to which the new node is added has smaller height. No adjustment required.
Case 3:
The pivot node exists and the subtree to which the new node is added has the larger height. Adjustment required.

AVL Tree: Insert (Case 1)

AVL Tree: Insert (Case 2)

AVL Tree: Insert (Case 3)

AVL Tree: Insert (Case 3)

AVL Tree: Insert (Case 3)

AVL Tree: Insert (Case 3)

- When after an insertion or a deletion an AVL tree becomes imbalanced, adjustments must be made to the tree to change it back into an AVL tree.
, These adjustments are called rotations. Rotations can be in the left or right direction.
- Rotations are either single or double rotations.

AVL Tree: Insert (Case 3)

Therefore, there are four different rotations:

- Left Rotation (Single)
- Right Rotation (Single)
- Left-Right Rotations (Double)
- Right-Left Rotations (Double)

AVL Tree: Insert (Case 3)

Right Rotation (Single) Insert 30

AVL Tree: Insert (Case 3)

Right Rotation (Single) Insert 30

AVL Tree: Insert (Case 3)

AVL Tree: Insert (Case 3)

Right-Left Rotation (Double)

AVL Tree: Insert (Case 3)

Right-Left Rotation (Double) Insert 70

AVL Tree: Insert (Case 3)

AVL Tree: Delete

- Step 1:

Delete the node as in BSTs. Remember there are three cases for BST deletion.

- Step 2:

For each node on the path from the root to deleted node, check if the node has become imbalanced; if yes perform rotation operations otherwise update balance factors and exit. Three cases can arise for each node p , in the path.

AVL Tree: Delete

- Case 1:

Node p has balance factor 0 . No adjustment required.

- Case 2:

Node p has balance factor of +1 or -1 and a node was deleted from the taller sub-trees. No adjustment required.
Case 3:
Node p has balance factor of +1 or -1 and a node was deleted from the shorter sub-trees. Adjustment required.

AVL Tree: Delete (Case 1)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 2)

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3)

- Like insertion, when the tree become unbalanced after deletion, rotation need to be done.
- Like before, there are four cases:
- Left Rotation (Single)
- Right Rotation (Single)
- Left-Right Rotations (Double)
- Right-Left Rotations (Double)
- Rotation need to be done at every unbalanced nodes in the search path.

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting in this example (instead of min in right subtree).

AVL Tree: Delete (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting in this example (instead of min in right subtree).

AVL Tree: Delete (Case 3)

IMPORTANT: we decided to use max in left subtree when deleting in this example (instead of min in right subtree).

AVL Tree: Delete (Case 3)

AVL Tree: Delete (Case 3: Sub-Case 1)

Single Rotation

Deleted Node

AVL Tree: Delete (Case 3: Sub-Case 2)

Single Rotation

Deleted Node

AVL Tree: Delete (Case 3: Sub-Case 3)

AVL Tree: Delete (Case 3: Sub-Case 4)

AVL Tree: Delete (Case 3: Other Sub-Cases)

- Sub-Case 5: mirror image of Sub-Case 1.
- Sub-Case 6: mirror image of Sub-Case 2.
- Sub-Case 7: mirror image of Sub-Case 3.
- Sub-Case 8: mirror image of Sub-Case 4.

