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Chapter 1 :Introduction 

    Q: What is a time series? 

A time series is a collection of observations of some phenomenon 

collected sequentially over a period of time.  For example, volume of 

rain over months of the year, number of daily accidents in Saudi Arabia, 

value of quarterly foreign remittances( المالية لتحويلات ), and so on).  This 

means that data have chronological ( زمني تسلسل ) order. 



There are many examples of time series in many fields of knowledge 

it can be found in Agriculture - Medicine - Economics - Engineering - 

Education and others.  Therefore, the methods used in time series 

analysis play an important role in the science of statistics. 

 

 

 



Example 1: Figure 1.1 illustrates the profit gain of a company over a 

period of 50 years. 
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Figure 1.1  The profit gain of a company over a period of 50 years 

 

 



Example 2: Figure 1.2 illustrates the average monthly temperatures 
in a city during a period of 6 years. 
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Figure (1.2): average monthly temperatures in a city during a period of 6 years 

 

 

 

 



 

Example 3: Figure 1.3 illustrates the monthly sales for some 
industrial piece during a period of 15 years 
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Figure (1.3): monthly sales for some industrial piece during a period of 15 years 

 



Researchers might be interested for example in predicting the future 

sales so that proper planning of production can be accomplished, or 

even investigating the relation between sales series and any other 

series such as advertising and others. 

 

1.2 Some used terminology 

A time series is said to be continuous, when observations are taken in a 

continuous manner over time, and to be discrete when observations 



are taken at specific times (usually at equal intervals). In this course we 

will be interested in discrete time series. 

As we know, most of the statistical theory, which we have already 

studied is interested in studying random samples that in which 

observations are independent. But as we have seen from the above 

examples, the nature of time series indicates that the observations 

are not independent. Therefore, statistical analysis to be used for the 



analysis must take into consideration the chronological (or 

spatial(المكانية)) order of the observations. 

When observations are not independent of each other, then it is 

possible to predict future values of the series using the previous values. 

If it is possible to predict the future with complete accuracy, 

then the series is called deterministic.  However, most of the time 

series are stochastic and therefore completely accurate predictions are 

not possible. 



 

Goals of time series analysis 

There are several goals for the analysis of time series, some of which 

are: 

1- Description 

Time series analysis is used to describe and portray (تصوير) the 

available information that shows how the studied phenomenon evolve 

 ,over time. That is, describe the main features of the time series (تتطور)

which will help in determining the best mathematical model that can 



be appropriate to achieve the other goals of the analysis, and get to 

know the upward and downward movements in the time series 

and to identify the major components such as trend and seasonal 

changes. So when analyzing any time series, the first step must be 

carried out is to plot the time series as we have seen in the   previous 

examples and get some descriptive characteristics. 

 



For example, in Figure (1.3), we notice the existence of strong seasonal 

effects, as sales increase in the middle of the year, and decreases in the 

ends.  It also seems that annual sales increase from year to year (i.e. 

there is a growing trend, so for some series, description of the 

observations can be achieved through a simple model that includes 

trend component and seasonal component. However, some series may 

need a more complicated models. 

 



 

 

2- Interpretation 
 
Interpretation means explaining the changes occurring in the 

phenomenon using other time series that are related to it, or by using 

environmental factors affecting the phenomenon, for example, 

one can study how the sea level is affected by temperature, or how 

sales are affected by advertising.  



 

 

3- Control 

In production lines (in the factories), one may get time series that 

designate the product quality in the manufacturing process, and the 

goal here might be to control product quality so that it does not go 

below a specified level. 

4- Forecasting 



Forecasting is considered one of the most important goals of time 

series analysis. As one might want to know or expect the future values 

of a time series. 

 Analysis of time series usually starts by identifying an appropriate 

model that explains the evolution pattern ( تطورال نمط ) of the series, and 

then uses the model to extrapolate this pattern into the future. 

 The main assumption here is that this pattern will continue in the 

near future. It should be noted that any forecasting method will not 



give good forecasting results if the pattern did not continue in the 

future, so it is always advisable to restrict forecasting to the near 

future, and update the forecasts as new observations become 

available. 

 

Measuring forecasting errors 

Usually a time series is studied for the purpose of finding out the 

evolution pattern of the historical values of the phenomenon and then 

use this pattern to forecast the future values. However, any future 



forecast will contain a certain amount of uncertainty, this could be 

reflected by adding an error component in the forecasting model.  

Error component is one representing factors that cannot be explained 

by the typical or regular components in the model. Of course, 

whenever the error component is small, this will increase our ability to 

forecast accurately, and vice versa.  



If we assume that the value of the phenomenon at time 𝑡 is 𝑦𝑡 , and 

that our forecast at time 𝑡 is �̂�𝑡 , then forecast error at time 𝑡 is defined 

as: 

𝜀𝑡 = �̂�𝑡 − 𝑦𝑡 ,   𝑡 = 1,2, … , 𝑛 

Where  𝑛 is the length of the series (i.e. no. of observations in the 

series). 

Examining successive forecasting errors 𝜀𝑡 reveals how good is the 

forecasting model. As we know from regression analysis, a good model 



must produce errors that are random, i.e. errors that are free of any 

systematic changes, as shown in the following figure: 
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If these errors are acceptable, so that the forecasting method is 

considered appropriate then we should measure the size of these 

errors. There are some measures of error size, the most important are: 

a. Mean Absolute Deviation (MAD):  

It is defined as, 

𝑀𝐴𝐷 =
1

𝑘
∑|𝜀𝑡|

𝑘

𝑖=1

 

                 =
1

𝑘
∑|𝑦𝑡− �̂�𝑡|

𝑘

𝑖=1

 



 

MAD measures the deviations in the same units as the original data. 

 

 
b. Mean Absolute Percentage Error (MAPE): 

This measure finds out how accurate is the model fitted to the data, it 

is given as, 
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It gives the forecasting errors as a percentage, this provide us with a 

tool to compare different models, and their forecasting ability. 

 

c. Mean Squared Deviation (MSD): 

𝑀𝑆𝐷 =
1

𝑘
∑(𝜀𝑡)2

𝑘

𝑖=1
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1
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This measure is similar to the usual measure MSE (mean squared 

error), but it is better in comparing the different models, because the 

MSE uses in the denominator (𝑛 − 𝑟) degrees of freedom, where 𝑟 

represent the number of estimated parameters in the models, which 

change with the used model, whereas, MSD uses in the denominator 

(𝑘) degrees of freedom (i.e. the number of  obtained forecasts), which 

does not change with the model. Also note that MSD gives more weight 

for large errors as it squares them. 



In all the measures above, we choose the model that produce the 

lowest values for MAD, MSD, MAPE.  

 

Choosing the appropriate method for forecasting 
 
Choosing the appropriate method of forecasting is one of the most 

important steps in the analysis of time series, which is not an easy task, 

and requires experience, skills, and employing the appropriate 



statistical methods for the data, but generally it depends on many 

factors including:  

A) Minimizing forecasting errors, which is the first criteria analyst  

should pay attention to, these are measured through the three 

criteria mentioned above. 

B) Quality of required forecast. If a point forecast is required, then  

     using simple traditional methods will be enough to achieve the  

    goal. Whereas, if we require to estimate interval forecast and   



   to evaluate it through test of hypothesis, then more sophisticated 

methods should be employed, such as BOX-Jenkins methods. 

C) Cost of used statistical methodology and availability of relevant  

      statistical software. 

D) Extent to which theoretical assumptions upon which forecasting 

model rely are satisfied. This is a very important consideration and 

should be checked. 

 



Which means that the best forecasting method is not necessarily the 

method that achieves the highest accuracy or the smallest forecasting 

errors, but one method may be used because of type of the required 

forecast, another because of only small number of observations are 

available, a third because it has a low cost, and a fourth because its 

theoretical assumptions comply with the data set in hand. 

 

 



Forecasting methods 

It is possible to identify two main forecasting methods: 

1- Regression approach 

This approach is based on identifying the variable(s) that may have a 

causal relationship with the variable under study that we want to 

predict, this variable is called the dependent variable, then determine 

the appropriate statistical model or appropriate functional relationship 

which explains how the dependent variable is associated to the 



independent or explanatory variables. Using this model, we can predict 

the dependent variable under study. The main disadvantages of this 

approach are: 

1- Difficulty of identifying all the explanatory variables that are   

        related to the dependent variable. 

2- Requires the availability of detailed historical information  

        about all the explanatory variables, and the ability of knowing   

         these variables or predicting them. 



 

2- Time series approach 
 
  This approach relies on analyzing historical data of the variable under 

study in order to determine the pattern it follows. Assuming that this 

pattern will continue in the future, we use it to predict future values of 

the variable. Time series models are divided into three major types: 

 

 



a) deterministic models 

b) ad hoc methods 

c) stochastic time series models 

 

 Deterministic models: 

As we know from our study in statistics that the mean model can be 

expressed in the following general form: 

 

𝑦𝑡 = 𝐸(𝑦𝑡) +  𝜀𝑡, 



  where 𝜀𝑡 are uncorrelated  random variables with mean equal to zero 

and a constant variance, this model is called deterministic if we are 

able to express 𝐸(𝑦𝑡) as a direct function of time 𝑡 , and let it be 

𝑓(𝑡, 𝜷), where the vector 𝜷 denote the parameters of this function. In 

this case it is possible to express the observations of the time series 𝑦𝑡 

in the form: 

𝑦𝑡 = 𝑓(𝑡, 𝜷) +  𝜀𝑡 ,       𝑡 = 1,2, … , 𝑛 



which means that future values of the series can be expressed in the 

form: 

𝑦ℎ = 𝑓(ℎ, 𝜷) ,       ℎ = 𝑡 + 1, 𝑡 + 2, … 

  This indicate that future values of the series takes on a deterministic 

form, i.e. a non-random form 𝑓(ℎ, 𝜷).  These models are based on two 

main assumptions: 

1) The function 𝑓(𝑡, 𝜷) is a deterministic nonrandom function. 

2) 𝜀𝑡 are uncorrelated random variables with mean zero and a 

constant variance. 



These assumptions indicate that the variables 𝑦1, 𝑦2, … , 𝑦𝑛 are 

uncorrelated. Examples of mathematical functions used in these 

models are the polynomials, exponential functions, and trigonometric 

functions. 

  The deterministic models have some disadvantages: 

1) These methods focus on mathematical logic in trying to find a 

suitable mathematical function that can be used to fit the data more 

than trying to discover the important statistical features of the series, 



and the most important feature is their correlation structure. So they 

are just models to regenerate the observations 𝑦1, 𝑦2, … , 𝑦𝑛.  

 

2) These models assume that the long-term evolution of the series is 

systematic and regular so that it can be predicted very accurately. 

 

 

3) These models also assume that the observations are not 

correlated, which is rarely true in different application areas. 



Because of all these disadvantages, the deterministic models usually 

produce statistically less accurate forecasts. 

 

 Ad hoc methods 

   These methods rely on expressing the forecast of the series at time 𝑡 

in terms of the current value 𝑦𝑡, and its past values 𝑦1, 𝑦2, … , 𝑦𝑡−1. So 

if we assume that 𝑡 represents a certain origin point, and that we 



want to predict the value of the series after 𝑘 time intervals, then this 

approach indicates using the following functional relationship: 

�̂�𝑡+𝑘 = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑡−1, 𝑦𝑡) 

Many ways exist to carry out such predictions, such as moving 

averages method, and    exponential smoothing methods. 

 

 

a) Simple Moving Average 



This method uses the most recent 𝑘 values of the series to 

predict next value :  

�̂�𝑡+1 =
1

𝑘
[𝑦𝑡 +  𝑦𝑡−1 +  … +  𝑦𝑡−(𝑘−2) + 𝑦𝑡−(𝑘−1)],   𝑡 = 𝑘, 𝑘 + 1, … , 𝑛 

   this means that:   

�̂�𝑡+2 =
1

𝑘
[𝑦𝑡+1 + 𝑦𝑡 +  … + 𝑦𝑡−(𝑘−2)] 

That is, to find a simple moving average �̂�𝑡+2 we use the same values 

used in finding the previous mean �̂�𝑡+1 after replacing the older value 



𝑦𝑡−(𝑘−1) with the most recent one 𝑦𝑡+1 , and this what gave this 

procedure its name, moving average, because always the mean is 

updated by dropping the oldest observation and adding a new one. 

For example for 𝑘 = 3 , we can form a simple moving average as 

follows: 

             �̂�4 =
1

3
[𝑦3 +  𝑦2 + 𝑦1] 

          �̂�5 =
1

3
[𝑦4 + 𝑦3 +  𝑦2] 



          �̂�6 =
1

3
[𝑦5 + 𝑦4 + 𝑦3] 

                 ⋮ 

        �̂�𝑛 =
1

3
[𝑦𝑛−1 +  𝑦𝑛−2 + 𝑦𝑛−3] 

Choosing the right value for 𝑘 depends on the experience of the 

researcher. Indeed, it is one of the difficulties of using simple moving 

average method. Another problem is in assigning equal weights for all 

observations, for example for 𝑘 = 8 , the weight given to the most 

recent value 𝑦𝑡 is equal to the oldest value 𝑦𝑡−7, which contradicts 



with properties of time series, as it is more logical to assign larger 

weights to the most recent observations, that’s why it is preferred to 

use simple moving averages in forecasting when the observed time 

series is random in nature. 

Example:    For the following data, calculate a moving average of            

                     order 𝑘 = 3 : 

355,  451,   435,  558,  556,  573,  565,  608 

 



solution: 

𝑚𝑎1(3) =
𝑦3 + 𝑦2 + 𝑦1 

3
=  

435 + 451 + 355

3
= 419.68 

𝑚𝑎2(3) =
𝑦4 + 𝑦3 + 𝑦2 

3
=  

558 + 435 + 451

3
= 481.33 

In the same manner, we get, 

𝑚𝑎3(3) = 516.33, 𝑚𝑎4(3) = 562.33,   𝑚𝑎5(3) = 582,    

𝑚𝑎6(3) = 626.33 

Example: In MINTAB program, open data file “EMPLOY.MTB”, Use 

data Variable (Metals): 



44.2 44.3 44.4 43.4 42.8 44.3 44.4 
44.8 44.4 43.1 42.6 42.4 42.2 41.8 
40.1 42.0 42.4 43.1 42.4 43.1 43.2 
42.8 43.0 42.8 42.5 42.6 42.3 42.9 
43.6 44.7 44.5 45.0 44.8 44.9 45.2 
45.2 45.0 45.5 46.2 46.8 47.5 48.3 
48.3 49.1 48.9 49.4 50.0 50.0 49.6 
49.9 49.6 50.7 50.7 50.9 50.5 51.2 

50.7 50.3 49.2 48.1 

Plotting the data, we get: 
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And we can apply the moving average with order k = 3 as Follows: 

 



 



 
And get the following: 

Index

M
e

ta
ls

60544842363024181261

52

50

48

46

44

42

40

Moving Average

Length 3

Accuracy Measures

MAPE 1.55036

MAD 0.70292

MSD 0.76433

Variable

Forecasts

95.0% PI

Actual

Fits

Moving Average Plot for Metals

 

 



 single exponential smoothing 

As we have seen, simple moving average assigns the same weight to 

all observations, that is, it gives both old and recent observations the 

same importance in smoothing, but real life applications dictate that 

most recent observations should have more influence on the 

smoothing than older ones.  

AS previously seen, for the time series 𝑦1, 𝑦2, … , 𝑦𝑡, the simple moving 

average (SMA) of order k has the form: 



�̂�𝑡 =
1

𝑘
(𝑦𝑡 + 𝑦𝑡−1 + ⋯ + 𝑦𝑡−𝑘+1)  ,   

 

Or,  

�̂�𝑡 =
1

𝑘
𝑦𝑡 +

1

𝑘
𝑦𝑡−1 + ⋯ +

1

𝑘
𝑦𝑡−𝑘+1 

Or,  

�̂�𝑡 = 𝛼𝑦𝑡 + 𝛼𝑦𝑡−1 + ⋯ + 𝛼𝑦𝑡−𝑘+1 

This means that SMA gives all observations the same weight 𝛼. 



This problem can be avoided by giving the old observations 

weights that decrease exponentially, which is called the simple 

exponential smoothing (SES), 

𝑆𝑡 = 𝛼𝑦𝑡 + 𝛼(1 − 𝛼)𝑦𝑡−1 + 𝛼(1 − 𝛼)2𝑦𝑡−2 …,  

   𝑡 = 1, … 𝑛,   0 < 𝛼 < 1 

the value 𝑆𝑡 is a weighted average that decreases exponentially, it 

can be written in an recursive manner as follows:  

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑆𝑡−1     , 𝑡 = 1, … 𝑛;        𝑆0 = �̅� , 0 < 𝛼 < 1 



Example:  Open data file  "EMPLOY.MTB" , use data variable 

(Metals), smooth the data using single exponential smoothing. 

Solution: 

From Minitab, we have: 



 



we get the following window: 

 

And the result is: 



Index

M
e

ta
ls

635649423528211471

52

50

48

46

44

42

40

Smoothing Constant

Alpha 0.7

Accuracy Measures

MAPE 1.25572

MAD 0.56762

MSD 0.49660

Variable

Forecasts

95.0% PI

Actual

Fits

Single Exponential Smoothing Plot for Metals

 

Where we note that the smoothing is better than that obtained 

from SMA . 



Note also the difference between giving a small value for 𝛼 and 

larger values. If the value is large then we give recent values larger 

effect, while older values has little effect in forecasting.  For small 

values for 𝛼, the resulting series will be smoother, and vice versa 

for large values of 𝛼.  This means that in case the series has lots of 

fluctuations then we use a small value for 𝛼. Usually, we try several 

values for 𝛼 and choose the value that gives the best value of the 

accuracy measures we have seen before.  



  

Note: SES does not provide good forecasts if the series contains 

trend component (see forecasts in the above figure), and therefore 

there are other ways of exponential smoothing that provide better 

forecasts in this case. For example, the so- called double 

exponential smoothing method, which is a generalization to SES, 

where in a first stage the original data is smoothed by single 

exponential smoothing, and in the second stage the smoothed data 



is smoothed again.  Note that in this case we have two smoothing 

parameters, one for the level of the series, and the other for 

trend. The following figure shows the result of using this method 

to data from the previous example: 



 



 

we get the following: 
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