
Lecture 12

geometry of gauge theory

Gauge Fixing

The Yang-Mills Lagrangian density takes the form,

L =
1

4
tr (∂µAν − ∂νAµ + [Aµ, Aν ])

2 .

We can choose a basis {T a} for the Lie algebra of the gauge group G and write

Aµ =
∑

a

Aa
µT

a.

This action does not contain the time derivative of the variable A0, which is the source of fun.
Let us denote spacelike directions by the indix i. The action can then be expressed as,

L = tr

(

1

2
EiȦi −

1

4
(EiEi +BiBi) +

1

2
A0C

)

,

where
Ei = F0i, Bi = ǫijkFjk,

and
C = ∂iEi + [Ai, Ei].

If we view the Yang-Mills theory as a classical mechanical system and apply the standard
Lagrangian formalism, we see that Ei and Ai are canonically conjugate to each otehr with the
Poisson bracket,

{Ea
i (t, ~x), A

b
j(t, ~y)} = δijδ

abδ(~x − ~y),

where a, b refer to gauge group indices and we assumed that the basis of the Lie algebra is
chosen so that trT aT b = δab. The time component A0 does not have its conjugate variable, and
it serves as a Lagrange multiplier to impose the constraint, C = 0. We see that the Poisson
bracket for Ei and Ai imply

{C(~x)a, C(~y)b} = fabcCc(~x)δ(~x − ~y),

where we suppressed the time coordinate t, which are common to all, and fabc is the structure
constant defined by [T a, T b] = ifabcT c. Thus, it is consistent to impose the condition C = 0.

It is important to note that

{Cµ, Ai(~x)} = Diµ = ∂iµ+ [Ai, µ],

where

Cµ =

∫

d~y tr (µa(~y)Ca(~y)) .

Namely, Ca(~x) is the generator of the gauge transformation, Ai → Ai +Diµ. In particular, the
Hamiltonian

H =

∫

d~xtr (EiEi +BiBi) ,
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which is gauge invariant, commutes with C.

If we have constraints that are closed under the Poisson bracket, they are called the first
class.

Symplectic Reduction

To understand the phase space of the Yang-Mills theory, it is useful to review the notion of
the symplectic reduction. A phase space M is an even dimensional space (say 2m dimensional)
with a non-degenerate Poisson bracket. Locally, we can choose canonical coordinates (qi, pi)
(i = 1, ...,m) so that {q i, pj} = δij . Suppose we have a Hamiltonian H and a set of constraints
{ϕa} (a = 1, ..., n), satisfying,

{ϕa, ϕb} =
∑

c

cabcϕ
c, {H,ϕa} =

∑

b

dabϕ
b,

for some functions cabc , d
a
b on M . These are of the first class.

To impose the constraints, the Lagrangian is defined as

L = piq̇
i −H −

∑

a

λaϕ
a,

where λa’s are Lagrange multipliers.

Question 1: Derive the equations of motion for (q, p) with keeping the Lagrange multipliers as
arbitrary functions of t, and show that trajectories stay within the constrainted subspace in M .

Trajectories depend on λ’s, but we would like time evolutions of physical observables be
independent of them. Namely, observable functions f should satisfy

{f, ϕa} = 0 (modϕ).

This means that we should not only evaluate f on the (2m − n)-dimensional subspace with
ϕa = 0, but f should be independent of n more directions generated by ϕ’s.

To paramatrize the additional n directions, let us choose functions χa(q, p) (a = 1, ..., n) so
that

det{χa, ϕ
b} 6= 0.

For simplicity, let us also assume {χa, χb} = 0, though we can relax this condition. Since ϕa’s
do not Poisson commute with the constraints ϕa, they are not physical.

Consider a new subspace M∗ defined by the two sets of constraints, χa = 0, ϕa = 0. They
do not Poisson commute and they are called the second class constraints.

Since χa commute with each other, we can choose canonical coordinates on M such that
the first n momenta are pa = χa (a = 1, ..., n). Their conjugate coordinates are qa. Let us
denote the rest of canonical coordinates by (qs

∗
, p∗s) (s = 1, ...,m − n). Since χa and ϕa have

non-degenerate Poisson bracket,

det

(

∂ϕa

∂qb

)

= det{ϕa, χb} 6= 0.
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This means that we can solve the constraints ϕa = 0 on M∗ by choosing qa appropriately.
Namely, we can characterize M∗ as a subspace of M obeying,

pa = 0, qa = qa(q∗, p∗).

In particular, (q∗, p∗) are natural canonical coordinates on M∗ and we can use them to define
the Poisson bracket on M∗. This procedure, to derive the new phase space M∗ from the old
phase space M subject to the constraints ϕa, is called the symplectic reduction.

This can be done whenever a group G is acting on a phase space G as a canonical transforma-
tion. Then there is a generator (or a set of generators) ϕ for the G action. Define M0 = ϕ−1(0),
namely the subspace of M where ϕ = 0. There is a G action on M0 and that the quotient
M0/G is naturally a phase space (i.e., with non-degenerate symplectic form). This is the same
as M∗ discussed here. The reduced phase is also denoted as M//G. It is also called a symplectic
quotient or a Marsden-Weinstein quotient.

Faddeev-Popov Determinant

When one quantize a system using the path integral, the integral should be over trajectories
on the physical phase space M∗, so that the resulting quantum amplitudes obey the unitarity
conditions. On the other hand, it is often convenient to write the integral using canonical
coordinates on M . The Jacobian for the change of variables is called the Faddeev-Popov
determinant.

Consider the natural measure ω∗ on M∗,

ω∗ =

m−n
∏

s=1

dqs
∗
dp∗s,

and compare it with

ω =
m
∏

i=1

dqidpi.

Since M ∗ is a subspace of M with the conditions, pa = 0, qa = qa(q∗, p∗), the two measures are
related as

ω∗ =

n
∏

a=1

δ(qa = qa(q∗, p∗))δ(pa)ω∗.

Since pa = χa and qa = qa(q∗, p∗) solve ϕ(q, p) = 0, we can write,

∏

a

δ(qa)δ(pa) =
∏

a

δ(χa)δ(ϕ
a)det

(

∂ϕa

∂q b

)

=
∏

a

δ(χa)δ(ϕ
a)det{ϕa, χb}.

If the Lagrange multiplier term λaϕ
a is added to the Lagrangian, we can replace the constraint

ϕa by an integral over λa. Thus, the measure ω∗ on the physical phase space can be replaced
by,

det{ϕa, χb}
∏

a

δ(χa)dλa

∏

i

dqidpi.

The result of the integral is independent of the choice of χa as far as det{χa, ϕ
b} 6= 0.

Going back to the Yang-Mills theory, we see that the constraints are C(~x) = 0 and the
Lagrange multipliers are A0(~x). As the second set of constraints χ, we should choose ones that
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do not Poisson commute with C(~x), namely gauge non-invariant conditions. They are gauge
fixing conditions. For example, in the Coulomb gauge, we choose ∂iAi = 0 as such conditions.
In this case, the Faddeev-Popov determinant is det∂iDi.

Geometry of Gauge Field Configurations

So far, we have looked at local geometry of gauge fixing in the phase space picture. Let
us turn to global structure of the physical phase space of the Yang-Mills theory. Consider the
four-dimensional Yang-Mills theory on S4. Call the gauge field configuration space as A and the
group consisting of gauge transformations by G, which is a subset of Ω4(G) = {g(x) : S4 → G}.
The quotient A/G is a set of physically inequivalent gauge field configrations. One can show
that this is homotope to Ω3(G), i.e. space of maps from S3 to G. This comes from separating S4

into the northern and southern hemispheres and gluing them by gauge transformations across
the equator ∼ S3.

Let us study the topology of this infinite dimensional space, Ω3(G). To do so, we note that
Ωn(Ωm(G)) is homotope to Ωn+m(G). This in particular means that πn(Ω

m(G)) = πn+m(G).
This simplifies our task since we know how to compute the homotopy of the group G itself.

For example, if G = SU(N), π0(Ω
3(G)) = π3(G) = Z if N ≥ 2. This means that the gauge

field configuration space A/G consists of infinitely many disjoint components parametrized by
Z. In fact, this integer parameter is nothing but the second Chern number (instanton number),

C2 =
1

8π2

∫

S4

trF ∧ F.

The index theorem discussed in Lecture 8 tells you that this number is related to the number
of zero modes of the Dirac operator coupled to the gauge field.

We have π1(Ω
3(G)) = π4(G) = 0 for N ≥ 3, so the space of gauge transformations is simply

connected for SU(N ≥ 3). However, π1(Ω
3(SU(2)) = π4(SU(2)) = Z2. Since π0(Ω

4(G)) is
also equal to π4(G), this means that, for G = SU(2), there is topologically nontrivial gauge
transformation on S4 that cannot be continuously deformed to the identity. It was shown by E.
Witten that, if there is an odd number of chiral fermions that are in the doublet representation
of SU(2), its Dirac determinant changes the sign under the Z2 action of the gauge symmetry.
This makes it impossible to quantize such a model consistently with the gauge symmetry. This
is called the Witten anomaly.

For N ≥ 3, we also have π2(Ω
3(G)) = π5(G) = Z (it is Z2 for SU(2)). This is related the

so-called non-abelian anomaly, a violation of the gauge symmetry and non-conservation of the
Noether current for the gauge symmetry.

Question 2: Repeat this analysis in other spacetime dimensions.
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