
Lecture 11

geometry of continuous groups

topological groups

If G is both a group and a topological space, and if the group operators (the multiplication:
G × G → G and the inverse: G → G) are continuous, G is a topological group. If G is a
topological group, for each a ∈ G, the maps, La : g → a · g and Ra : g → g · a for g ∈ G define
homeomorphism, called left and right translations.

For a topological group G and its subgroup H, one can define the left and right quotients
as follows. For each g ∈ G, define gH = {gh : h ∈ H} and call it the left-coset for g. The left
quotient G/H is a set of left-cosets. The right quotient is defined by revesing the order of G and
H. The quotients are topological spaces. In particular, if H is an invariant subgroup (normal
subgroup) of G, namely if, for any h ∈ H and g ∈ G, ghg−1 is also in H, then G/H is also a
topological group.

Lie groups

If G is both a group and a differential manifold, and if the group operations are differentiable
maps, G is called a Lie group.

Consider the unitary grou U(N) as an example of Lie groups. First we note that any element
g of the unitary group can be diagonalized by conjugation by another unitary matrix u as,

g = u · diag(eiθa)a=1,...,N · u−1.

gg† = 1 requires that θa ∈ R. Since the exponential function has the Taylor expansion,

eiθa =

∞
∑

n=0

in

n!
θna ,

we can express g as,

g =
∞
∑

n=0

in

n!
u · diag(θna ) · u

−1

=

∞
∑

n=0

in

n!

(

u · diag(θa) · u
−1

)n

= exp
(

iu · diag(θa) · u
−1

)

. (1)

Note that H = u · diag(θa) · u
−1 is a hermitian matrix. Conversely, if H is a hermitian matrix,

exp(iH) is a unitary matrix. Therefore, any untary matrix can be expressed as an exponential
of i times a hermitian matrix.

One important feature of the set of hermitian matrices is that it is closed by the commutator.
If H1 and H2 are hermitian, then [H1,H2] is equal to i times another hermitian matrix. A set
of matrices that makes a linear space (linear combinations also belong to the set) and is closed
under the commutator in this way is called a Lie algebra.
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The need for the closure under the commutator can be explained as floows. Suppose that
X and Y are matrices and that we want eiX and eiY to be in the Lie group G. The Baker-
Campbell-Hausdorff formula says,

eiXeiY = eiW ,

where

W = X + Y +
i

2
[X,Y ]−

1

12
[X − Y, [X,Y ]] + · · · ,

and · · · in the above is expressed as a sum of commutators of X and Y . Thus, if X and Y are
in the Lie algebra, so is W . If eiX and eiY belong to G, so is eiXeiY .

Pull-back, Push-forward, Lie derivative

These concepts are defined for any differentiable manifold, but they are useful to study
geometry of Lie groups.

Suppose there is a differentiable map, ϕ : M → N , between manifolds M and N . We do not
have to assume ϕ is injective. This map induces the pull-back, ϕ∗ : C∞(N) → C∞(M). For any
function f(q) (q ∈ N), we can defined a function on M as [ϕ∗f ](p) = f(ϕ(p)) (p ∈ M).

We can also define the push-forward tangent vector fields on M and N . Pick a tangent
vector v on M . For any differentiable function f on M , it gives another function v(f)(p). What
we want is a way to find a function on N for each function g on N . This can be done as follows.
First pull-back g to define a function [ϕ∗g](p) = g(ϕ(p)) on M . Now we can evaluate it with
v to define another function v(ϕ∗g)(p) = v(g(ϕ(p))). Thus, the tangent vector v(p) at TpM is
mapped to [ϕ∗v](q) at TqN , where q = ϕ(p).

Question 1: This may sounds a bit abstract, so let us express it in terms of coordinates. Choose
coordinates xµ (µ = 1, ...,m) on M and yi (i = 1, ..., n) on N . Note that M and N may have
different dimensions! Consider the tangent vector field v = vµ(x)∂/∂xµ. For ϕ : xµ → yi(x),
show

ϕ∗v = vµ
∂yi

∂xµ
∂

∂yi
.

In the GR speak, the tangent vector v transforms as a contravariant vector.

We can repeat this for one-forms. Since a one-form is a linear function on tangent vectors,
we can naturally define a pull-back ϕ∗.

Question 2: Define a pull-back for a one-form ω. Show that, in coordinates,

ω = ωidy
i → ϕ∗ω = ωi(ϕ(x))

∂yi

∂xµ
dxµ.

Now we define a Lie derivative for a given tangent vector field v. For a given vector field v
on M , we can define the exponential map, ϕt : M → M , defined by the property that

d

dt
f(ϕt(p)) = [v(f)](ϕt(p)).

We often write it as ϕt(p) = exp(tv)(p). Infinitesimally (which is all we need for now), and in
terms of coordinates xµ,

ϕt(x)
µ = xµ + tvµ(x) + · · · .
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Now, we can define a push-forward map, ϕ−t ∗ : Tϕt(p)M → TpM . Using this, the Lie derivative
Lv is defined as a map from a tangent vector field u on M to another tangent vector field Lvu,

Lvu(p) = limt→0
1

t
(ϕ−t ∗v(ϕt(p))− v(p)) .

Question 3: Writing u and v as differential operators u = uµ∂µ, v = vµ∂µ, show,

Lvu = [v, u].

Using coordinates, show that [v, u] transforms as a tangent vector field.

Lie Algebra as Space of Left-Invariant Vector Fields

Cnsidering the Lie group G as a differential manifold, the left and right translations of a ∈ G,

La : g → ag, Ra : g → ga,

define diffeomorphisms from G to itself. Thus, we can define push-forwards, La∗ and Ra∗. We
say that a tangent vector field v is left (right) invariant iff La∗v = v (Ra∗v = v). Let us
denote the space of left invariant vector fields of G by G. If v is a left invariant vector field,
v(g) = La∗v(a

−1g) = Lg∗v(1). Thus, it is determined by a tangent vector at g = 1. This means
that G as a linear space is isomorphic to Tg=1G. In particular, dim G = dim G.

If u and v are left invariant vector fields, so is [u, v]. This way, the space G of left invariant
vector fields can be identified with the Lie algebra of G.

If we think of the group G as a matrix group, with each element g ∈ G represented by a
matrix gij , left invariant vector fields can also be written as

∑

k

gki
∂

∂gkj
.

For each (i, j), the above vector is invariant under g → ag.

Maurer-Cartan Forms

The Maurer-Cartan forms are left invariant one-forms, defined by

Φ = g−1dg.

It satisfies the Maurer-Cartan equation,

dΦ+ Φ ∧Φ = 0.

The left invariant vector field gT ∂/∂g is dual to the Maurer-Cartan forms. In fact, the Maurer-
Cartan form is locally determined by this equation since we can think of the equation as saying
that the gauge connection one-form given by Φ has vanishing curvature and is locally gauge
equivalent to the trivial configuration.

Connected and Simpy Connected

Two elements of a Lie Group G are called connected if there is a continuous path in the
group connecting them. Being connected is an equivalence relation, and thus the group can

3



be divided into its equivalence classes, called connected components. Let us call the connected
component containing the identity e as G0. Since any element of the unitary group U(N) can
be expressed as exp(iX) by some hermitian matrix X, the unitary group is connected.

It is easy to see that G0 is a sugroup of G. It important to note that G0 is an invariant
subgroup (normal subgroup). Namely, for any g ∈ G and h ∈ G0, ghg

−1 is also in G0. To see
this, suppose h(t) is a continuous path connecting e to h as h(0) = e, h(1) = h. It then follows
that gh(t)g−1 gives a path connecting e to ghg−1.

If π1(G0) is trivial, G0 is called simply connected.

examples

O(3) is not connected. To see that, we note that any g ∈ O(3) satisfies ggT = 1 and thus
(det g)2 = 1. Thus, elements of O(3) are divided into those with det g = 1 and −1, and these
two classes of elements are not continuously connected. On the other hand, SO(3) is connected.
However, it is not simply conneced. As explained below, SU(2) is locally the same as SO(3),
but it is both connected and simply connected.

Universal Covering Group

The fundamental theorem of the Lie group (initiated by S. Lie and completed by E. Cartan)
states that, for any n-dimensional Lie algebra, there is a unique simply connected Lie group.
This simply connected group is called the universal coversing group and is denoted by UG. Any
other Lie group with the same Lie algebra is of the form UG/Γ, where Γ is a discrete invariant
subgroup.

In fact, if Γ is a discrete invariant subgroup, each of its elements must commutes with
elements of UG. To see this, note that Γ being invariant means that, for any h ∈ Γ and for any
g ∈ UG, there is h′ ∈ Γ such that ghg−1 = h′. However, g can be continuously connected to the
identity e in UG. Since Γ is discrete, h and h′ cannot change continuously as we change g to e.
Thus, ehe−1 = h = h′, and gh = hg.

If we regard G as a matrix group, then by Shur’s lemma, any group element that commutes
with all the elements of G must be proportional to the identity. Therefore, Γ should consist of
elements of the form λ · id for some λ ∈ C.

examples

Let us enumerate all discrete invariant subroups of SU(2). The group SU(2) consists of
matrices of the form,

g =

(

α −β∗

β α∗

)

.

The condition that det g = 1 means

|α|2 + |β|2 = 1.

Namely, the group SU(2) is diffeomorphic to the 3-sphere in R4. If Γ is an invariant subgroup,
its element must be of the form λ · id. For this to belong to SU(2), λ = ±1.

Thus, there are two possibilities: Γ = {id} or = {±id}. In the former case, we have SU(2)
itself. In the latter case, we have SU(2)/Z2. The Z2 action identifies α ∼ −α, β ∼ −β. This
gives the group SO(3). To see that, we note that any rotation in three dimensions can be
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parametrized by the vector ~Ω = θ~n, where ~n is a unit vector representing the axis of rotation
and θ is the amount of rotation. We can choose, for example, 0 ≤ θ ≤ π. Thus, the space of
(θ, ~n) is the disk, with θ = π representating the boundary of the disk. However, we need to
identify (π, ~n) with (π,−~n). Namely, we make the antipodal identification of the boundary of
the disk. If we view the disk as the upper hemisphere of the S3, it is the same as SU(2)/Z2.

In general, the universal covering group of SO(N) is called spin(N). For example, spin(3) ∼
SU(2), spin(4) ∼ SU(2) × SU(2), spin(5) ∼ USp(4), spin(6) ∼ SU(4).

Homotopy of Lie Groups

If π1(G) trivial, π1(G/H) = π0(H)/π0(G). Thus, for example, we see that π1(SO(3)) =
π1(SU(2)/Z2) = π0(Z2) = Z2.

If π2(G) is trivial, π2(G/H) = π1(H)/π1(G). For example, for any compact connected Lie
group, π2(G) is trivial. In a gauge theory with the Higgs mechanism to break the gauge symmetry
G → H, in the symmetry breaking phase, the Higgs field Ψ takes value in G/H. Suppose we
are in R3 and there is a point in the space where the gauge symmetry is restored. There, the
Higgs field must vanish. So, we remove the neighborhood of the point from R3. The resulting
space is homotopic to S2. Thus, the Higgs field configuration is classified by S2 → G/H. This
gives the classification of the ’t Hooft-Polyakov magnetic monopole.

In the Standard Model of Particle Physics , the gauge group SU(3) × SU(2) × U(1) is
spontaneously broken to SU(3) × U(1)EM, where U(1)EM is a combination of the U(1) and an
U(1) subgroup of the SU(2) in the original gauge group. Thus, we should consider π2(SU(2)×
U(1)/U(1)EM) = π1(U(1)EM)/π1(U(1)) and it is trivial, where we used the fact that the SU(2)
is simply connected. This shows that there is no magnetic monopole with the Standard Model.

However, in the grand unified theory with gauge groups SU(5) or SO(10), we can have Z

valued magnetic monopoles since π1(SU(5)) is trivial and π1(SO(n)) = Z2 (n ≥ 3). This is a
prediction of these grand unified theories.

To prove these relations, we can use the exact sequence,

→ π3(G) → π3(G/H) → π2(H) → π2(G) → π2(G/H) → π1(H) →

→ π1(G) → π1(G/H) → π0(G) → π0(G) → π0(G/H) → 0. (2)

That this is the exact sequence means that the image of each map is the kernel of the next-right
map. For example, the image of π1(G) in π1(G/H) is the kernel of the map from π1(G/H)
into π0(G). Thus, if π1(G) is trivial, there is no kernel for the map from π1(G/H) to π0(G),
i.e., it is injective. Thus, π1(G/H) must be the same as its image in π0(G). But, by the exact
sequence, the image must be the same as the kernel of the map from π0(G) to π0(H). The latter
is the same as the quotient π0(H)/π0(G). This shows that π1(G/H) = π0(H)/π0(G). Similar
relations can be derived for πn(G/H).
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