
Lecture 10

homotopy

Consider continuous maps from a topological space X to another topological space Y . Two
such maps are called homotopic if one can continuously deform one to another. This provides a
useful way to define topological invariants. In particular, when X is the n-sphere Sn, the space
of maps (modulo homotopy equivalence) becomes a group — the homotopy group — of Y , and
the group is denoted by πn(Y ).

Homotopy group should be contrasted with homology groups we studied earlier. For one
thing, homotopy groups can be non-abelian, while homology groups are always abelian. In fact,
H1(Y ) is an abelian reduction of π1(Y ). Thus, π1(Y ) can contain more informaion on Y than
H1(Y ) does.

Fundamental Group

Pick a point x0 in a topological space M . A continous map α : [0, 1] → M such that
α(0) = α(1) = x0 is called a loop or a closed path with x0 as its base point. Suppose there
are two such loops, α and β. They are called homotope, α ∼ β if there is a continuous map
H : [0, 1] × [0, 1] → M such that,

H(t, 0) = α(t), H(t, 1) = β(t)

H(0, s) = H(0, t) = x0 (1)

Namely, for each s ∈ [0, 1], H(t, s) defines a loop with x0 as its base point. As we vary s, H
interpolates between α and β continuously.

Question 1: Show that α ∼ β defines an equivalence relation, namely (1) α ∼ α, (2) α ∼ β
implies β ∼ α, (3) α ∼ β, β ∼ γ implies α ∼ β.

The set of homotopy classes [α] of loops at x0 is denoted by π1(M,x0). It naturally is a
group since we can combine two loops α and β to make another loop α∗β. The class containing
the constant map c : [0, 1] → x0 gives the identity. The group is called the fundamental group
or the first homotopy group. For example, if we view S1 as R/Z, we can choose representatives
of the fundamental group as

αn : θ ∈ [0, 1] → x0 + nθ ∈ R.

Question 2: Show that [αn] ∗ [αm] = [αn+m] and that π1(S
1, x0) = Z.

On the other hand, π1(S
2, x0) is trivial since any loop on S2 can be contractible to a point.

A topological space is called arcwise connected if any pair of points x0 and y0 in M can be
connected by a continuous path, namely there is a continuous map γ : [0, 1] → M such that
γ(0) = x0 and γ(1) = y0.

Question 3: Show that π1(M,x0) ≃ π(M,y0) for any x0, y0 in M if M is archwise connected.

When M is archwisely connected, we can denote the fundamental group as π1(M) without
refering to the base point.
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Free Group and Relations

Homology groups are always abelian, but the fundamental group can be non-abelian.

It is a good place to introduce the notion of free group. Start with a finite set of letters, X =
{a, b, c, ...}. Words are ordered lists of letters of the form, ω = xn1

1
xn2

2
· · · xnN

N with n1, ..., nN ∈ Z

and x1, ..., xN ∈ X. If we have xnxm, we can replace it with xn+m. For example, a−2bc3c−2ae =
a−2bcae. This is called reduction. In a reduced word, xi 6= xi+1 and n1, ..., nN 6= 0. The emply
word gives the identity. We can take a produce of words, buy multiplying them together and
then reducing the result. This defines the free group F [X] finitely generated by X.

Consider the space M = R2 − {z1, z2}. The fundamental group π1(M) has two generators,
one going around z1, call a, and another going around z2, call b. In fact, the fundamental
group is a free group generated by a and b. Note that aba−1b−1 is not trivial. In general,
π1(R

2 − {z1, ..., zN}) is a free group generated by n letters.

We can impose relations on a free group to construct another group. For example, ZN =
Z/nZ is x (regard Z = {1, x±1, x±2, ...}) with the relation xN = 1. The fundamental group of
T 2 is generated by a and b with the relation aba−1b−1 = 1. Thus, π1(T

2) = Z⊕ Z.

Suppose G is an arbitrary finite group generated by a1, ..., aN . Consider the free group
with the same number of generators, F = F [{A1, ..., AN}]. We can define a homomorphism,
ϕ : F → G by ϕ(An1

i1
· · ·AnN

iN
) = an1

i1
· · · anN

iN
. By construction, G is surjective, G = Imϕ. By the

homomorphism theorem,
G = Imϕ = F/kerϕ.

We see that kerϕ gives a set of relations to define G from the free group F . This shows that any
finitely generated discrete group can be constructed as a free group with relations. In particular,
the fundamental group can also been seen in this way.

The first homology group of a genus-g Riemann surface Σg isH1(Σg;Z) = Z⊕2g. On the other
hand, the fundamental group π1(Σg) is isomorphic to the quotient group of the free group on the
generators a1, b1, a2, b2, ..., ag , bg by the normal subgroup generated by a1b1a

−1
1

b−1
1

· · · agbga
−1
g b−1

g .
Except for π1(Σg=0) = 0 and π1(Σg=1) = Z⊕ Z, the group is non-abelian.

For a group G, its commutator subgroup F is generated by elements of the form aba−1b−1.
It is a normal subgroup of G and the quotient group G/F is abelian. In fact, F is the
smallest normal subgroup of G such that the quotient is abelian. One can show that the
first homology group H1(M) is isomorphic to the fundamental group π1(M) divided by its
commutator subgroup.

As an aside, I would like to mention another important group associated to topology in three
dimensions, the knot group. Consider two sets of points {A1, A2, ..., AN} and {B1, B2, ..., BN} in
three dimensions, and connect them pairwisely by N ropes. We allow homotopy transformations
of configurations of the ropes. Configurations of ropes natually make a group by multiplication,
the knot group. There is the identity connecting A1 to B1, etc in the straight fashion. σi
connects Ai to Bi+1 and Ai+1 to Bi. σ

−1

i also does so but with opposite orientation. The knot
group is generated {σi}i=1,...,N−1 with the two set of relations,

σiσk = σkσi (i+ 1 < k), σiσi+1σi = σi+1σiσi+1.

Higher Homotopy Groups
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A natural generalization of a loop is the n-sphere. So, we try to classify continuous maps
from Sn to M . A continuous map α from the n-cube In = [0, 1]×[0, 1]×· · ·×[0, 1] toM such that
α : ∂In → x0 is called an n-loop with base x0. We say that two n-loops, α and β, are homotopic
if there is a continuous family of n-loops H(s) such that H(s = 0) = α and H(s = 1) = β. The
set of homotopically equivalent classes [α] of n-loops defines the n-th homotopy group πn(M,x0).
Again, if M is archwise connected, the homotopy group can be defined without referring to the
base point x0. Higher homotopy groups are all abelian.

Homotopy Type

Homotopy of maps

A pair of continuous maps, f, g : X → Y , are homotopic if there is a continuous map
H : [0, 1] ×X → Y such that H(s = 0) = f and H(s = 1) = g.

Homotopy of spaces

Two topological spaces are of the same homotopy type iff there are continuous maps, f :
X → Y and g : Y → X such that f ◦ g is homotopic to the identity map on Y and g ◦ f is
homotopic to the identity on X. For example, R is homotopic to a set consisting of one point
p ∈ R.

A subspace R of M is called a deformation retract of M if there is a continuous map
H : [0, 1] × M → M such that H(s = 0) is the identity map on M , and H(s = 1) maps M
to R and acts as the identity on R. In this case, M and R are of the same homotopy type.
(R is called a strong deformation retract if H(s) leaves points in R fixed for all s ∈ [0, 1].) In
particular, if p ∈ M is a deformation retract of M , then M is called contractible.

If two topological spaces are of the same homotopy type, they have the same homotopy
groups.

Question 4: Show that the fundamental group of a contractible space is trivial.

Homotopy Groups of Spheres

When 0 < i < n, any continuous map from Si to Sn is homotopic to a constant map, and
πi(S

n) is trivial. As for πn(S
n), there is the identity map f : Sn → Sn, and we can then consider

[f ] ∗ [f ] ∗ · · · ∗ [f ], which wrap Sn multiple times. In fact, πn(S
n) = Z, parametrized by the

winding number.

More interesting is πi(S
n) with i > n. The first non-trivial example is π3(S

2), namely
classification of maps from S3 → S2. We have encountered this earlier in this course — the
Hopf fibration. There, we regarded S3 as the total space of fiber bundle over S2. For a fiber
bundle, there must be a projection map from the total space to the base. The Hopf fibration is
characterized by an integer n, which we identified as the monopole number. In fact, π3(S

2) = Z.

Homology groups Hi(S
n) for i > n are all trivial. In contrast, πi(S

n) for i > n are complex
and difficult to compute.

Stable region
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π4(S
3) = π5(S

4) = π6(S
5) = · · · = Z2,

π6(S
4) = π7(S

5) = π8(S
6) = · · · = Z2,

π8(S
5) = π9(S

6) = π10(S
7) = · · · = Z24,

π10(S
6) = π11(S

7) = π12(S
8) = · · · = 0,

· · · . (2)

In general, π2k+n(S
k+1+n) (k = 2, 3, 4, ...;n = 0, 1, 2, 3...) are called stable homotopy groups of

spheres, and they depend only on k.

Homotopy Groups of Groups

We will discuss topology of Lie groups in the next week. Here we will summarize some basic
facts about their homotopy groups.

Suppose M is a topological space with π0(M) = π1(M) = 0. Such a space is called simply
connected. Suppose that a group G acts on M , i.e. each g ∈ G gives a homeomorphism on M ,
and that the quotient M/G is smooth. The fundamental group of the quotient is given by,

π1(M/G) = π0(G).

In particular, if G is a discrete group, π0(G) = G and thus π1(M/G) = G. For example, for
M = R and G = Z, we have π1(S

1) = π1(R/Z) = Z.

Bott periodicity

For the unitary group,

πk(U(n)) = πk(SU(N)) = 0 (k : even), Z (k : odd),

when k > 1 and n ≥ (n + 1)/2. This proporty was discovered by Raoul Bott and is called the
Bott periodicity. It is closely related to the behavior of the homotopy groups of spheres in the
stable region. There are similar periodicities for the orthogonal and symplectic groups.

It is not possible to end a lecture on homotopy without referring to the Poincare conjecture
in three dimensions. Poincare initially conjectured that any three-dimensional manifold with the
same betti number as those of the 3-sphere must be homeomorphic to the 3-sphere. However,
he later found a counter-example, the first example of what are now called homology spheres.
He then revised his conjecture as: Every simply connected, closed 3-manifold is homeomorphic
to the 3-sphere.

The generalized Poincare conjecture has been proven in higher dimensions. In 1961, Stephen
Smale proved the conjecture for dimensions greater than four. The four-dimensional conjecture
was proven by Michael Freedman.

It should be noted that the conjecture is about homeomorphism and not about diffeomor-
phism. For example, Milnor’s exotic spheres show that the smooth Poincare’ conjecture is false
in dimension seven.

Finally, in 2002-2003, Grigori Perelman proved the original three-dimensional conjecture, by
refinding the technique of the Ricci flow conceived by Richard Hamilton.
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