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In this lecture, you will learn the following items:

• How to compute the Spearman rank-order correlation

coefficient.

• How to compute the point-biserial correlation coefficient.

OBJECTIVE



INTRODUCTION

The statistical procedures in this chapter are quite

different from those in the last several chapters. Unlike

this chapter, we had compared samples of data. This

lecture, however, examines the relationship between

two variables.

In other words, this lecture will address how one

variable changes with respect to another.



The relationship between two variables can be

compared with a correlation analysis. If any of the

variables are ordinal or dichotomous, we can use a

nonparametric correlation.

The Spearman rank-order correlation, also called the

Spearman’s ρ, is used to compare the relationship

between ordinal, or rank-ordered, variables.

The point-biserial and biserial correlations are used

to compare the relationship between two variables if

one of the variables is dichotomous. The parametric

equivalent to these correlations is the Pearson product-

moment correlation.



In this lecture, we will describe how to perform and

interpret a Spearman rank-order, point-biserial, and

biserial correlations.



THE CORRELATION COEFFICIENT

When comparing two variables, we use an obtained value

called a correlation coefficient. A population’s correlation

coefficient is represented by the Greek letter rho, ρ. A

sample’s correlation coefficient is represented by the

letter r.

We will describe two types of relationships between

variables. A direct relationship is a positive

correlation with an obtained value ranging from 0 to

1.0.



As one variable increases, the other variable also

increases. An indirect, or inverse, relationship is a

negative correlation with an obtained value ranging

from 0 to −1.0. In this case, one variable increases as

the other variable decreases.

In general, a significant correlation coefficient also

communicates the relative strength of a relationship

between the two variables. A value close to 1.0 or −1.0

indicates a nearly perfect relationship, while a value

close to 0 indicates an especially weak or trivial

relationship. A more detailed description of a

correlation coefficient’s relative strength is presented.



Table 1 summarizes his findings.



There are three important caveats to consider when

assigning relative strength to correlation coefficients,

however.

First, Cohen’s work was largely based on behavioral

science research. Therefore, these values may be

inappropriate in fields such as engineering or the natural

sciences.

Second, the correlation strength assignments vary for

different types of statistical tests.

Third, r-values are not based on a linear scale. For

example, r = 0.6 is not twice as strong as r = 0.3.



COMPUTING THE SPEARMAN RANK-ORDER 

CORRELATION COEFFICIENT

The Spearman rank-order correlation is a statistical

procedure that is designed to measure the relationship

between two variables on an ordinal scale of

measurement if the sample size is n ≥ 4. Use Formula 1

to determine a Spearman rank-order correlation

coefficient rs if none of the ranked values are ties.

Sometimes, the symbol rs is represented by the Greek

symbol rho, or ρ:

where n is the number of rank pairs and Di is the

difference between a ranked pair.



If ties are present in the values, use Formula 2,

Formula 3, and Formula 4 to determine rs:

If there are no ties in a variable, then T = 0.



Use Formula 5 to determine the degrees of freedom

for the correlation:

df = n − 2 (5)

where n is the number of paired values.



After rs is determined, it must be examined for

significance. Small samples allow one to reference a

table of critical values, such as (Table B.7).

However, if the sample size n exceeds those available

from the table, then a large sample approximation may

be performed.



Example

Spearman Rank-Order Correlation (Small Data Samples without Ties)

Eight men were involved in a study to examine the resting heart
rate regarding frequency of visits to the gym. The assumption is
that the person who visits the gym more frequently for a
workout will have a slower heart rate.

Table 2 shows the number of visits each participant made to
the gym during the month the study was conducted. It also
provides the mean heart rate measured at the end of the week
during the final 3 weeks of the month.





The values in this study do not possess characteristics of a
strong interval scale.

For instance, the number of visits to the gym does not
necessarily communicate duration and intensity of physical
activity. In addition, heart rate has several factors that can
result in differences from one person to another. Ordinal
measures offer a clearer relationship to compare these values
from one individual to the next.

Therefore, we will convert these values to ranks and use a
Spearman rank-order correlation.



1. State the Null and Research Hypothesis 

The null hypothesis states that there is no correlation between
number of visits to the gym in a month and mean resting heart
rate. The research hypothesis states that there is a correlation
between the number of visits to the gym and the mean resting
heart rate.





3. Choose the Appropriate Test Statistic

As stated earlier, we decided to analyze the variables using an
ordinal, or rank, procedure. Therefore, we will convert the values
in each variable to ordinal data. In addition, we will be
comparing the two variables, the number of visits to the gym in
a month and the mean resting heart rate. Since we are
comparing two variables in which one or both are measured on
an ordinal scale, we will use the Spearman rank-order
correlation.



4. Compute the Test Statistic 

First, rank the scores for each variable separately as shown in
Table 3. Rank them from the lowest score to the highest score
to form an ordinal distribution for each variable.



To calculate the Spearman rank-order correlation coefficient, we
need to calculate the differences between rank pairs and their
subsequent squares where D = rank (mean heart rate) − rank
(number of visits).

It is helpful to organize the data to manage the summation in
the formula (Table 4).



Next, compute the Spearman rank-order correlation coefficient:





6. Compare the Obtained Value with the Critical Value 

The critical value for rejecting the null hypothesis is 0.738 and 
the obtained value is |rs| = 0.619.

If the critical value is less than or equal to the obtained value,
we must reject the null hypothesis. If instead, the critical value
is greater than the obtained value, we must not reject the null
hypothesis. Since the critical value exceeds the absolute value
of the obtained value, we do not reject the null hypothesis.



7. Interpret the Results

We did not reject the null hypothesis, suggesting that there is
no significant correlation between the number of visits the
males made to the gym in a month and their mean resting
heart rates.



8. Reporting the Results

The reporting of results for the Spearman rank order correlation
should include such information as the number of participants
(n), two variables that are being correlated, correlation
coefficient (rs), degrees of freedom (df), and p-value’s relation to
.

For this example, eight men (n = 8) were observed for 1 month.
Their number of visits to the gym was documented (variable 1)
and their mean resting heart rate was recorded during the last 3
weeks of the month (variable 2). These data were put in ordinal
form for purposes of the analysis. The Spearman rank-order
correlation coefficient was not significant (rs(6) = −0.619, p >
0.05). Based on this data, we can state that there is no clear
relationship between adult male resting heart rate and the
frequency of visits to the gym.



Example:

Sample Spearman Rank-Order Correlation 
(Small Data Samples with Ties)

The researcher repeated the experiment in the previous
example using females. Table 5 shows the number of visits each
participant made to the gym during the month
of the study and their subsequent mean heart rates.





As with the previous example, the values in this study do not
possess characteristics of a strong interval scale, so we will use
ordinal measures.

We will convert these values to ranks and use a Spearman
rank-order correlation.

Steps 1–3 are the same as the previous example. Therefore,
we will begin with step 4.



4. Compute the Test Statistic

First, rank the scores for each variable as shown in Table 6.
Rank the scores from the lowest score to the highest score to
form an ordinal distribution for each variable.



To calculate the Spearman rank-order correlation coefficient,
we need to calculate the differences between rank pairs and
their subsequent squares where D = rank (mean heart rate) −
rank (number of visits). It is helpful to organize the data to
manage the summation in the formula (Table 7).





Next, compute the Spearman rank-order correlation
coefficient.

Since there are ties present in the ranks, we will use formulas
that account for the ties. First, use Formula 3 and Formula 4.
For the number of visits, there are two groups of ties.
The first group has two tied values (rank = 4.5 and t = 2) and
the second group has
three tied values (rank = 8 and t = 3):



For the mean resting heart rate, there are no ties. Therefore,
Ty = 0.

Now, calculate the Spearman rank-order correlation
coefficient using Formula 2:





6. Compare the Obtained Value with the Critical Value

The critical value for rejecting the null hypothesis is 0.560 and
the obtained value is |rs| = 0.860.

If the critical value is less than or equal to the obtained value,
we must reject the null hypothesis. If instead, the critical value
is greater than the obtained value, we must not reject the null
hypothesis. Since the critical value is less than the absolute
value of the obtained value, we reject the null hypothesis.



7. Interpret the Results

We rejected the null hypothesis, suggesting that there is a
significant correlation between the number of visits the
females made to the gym in a month and their mean resting
heart rates.





COMPUTING THE POINT-BISERIAL AND BISERIAL CORRELATION 
COEFFICIENTS

The point-biserial and biserial correlations are statistical
procedures for use with dichotomous variables. A dichotomous
variable is simply a measure of two conditions.

A dichotomous variable is either discrete or continuous. A
discrete dichotomous variable has no particular order and might
include such examples as gender (male vs. female) or a coin toss
(heads vs. tails). A continuous dichotomous variable has some
type of order to the two conditions and might include
measurements such as pass/fail or young/old. Finally, since the
point-biserial and biserial correlations each involves an interval
scale analysis, they are special cases of the Pearson product-
moment correlation.



Correlation of a Dichotomous Variable and an Interval
Scale Variable

The point-biserial correlation is a statistical procedure to
measure the relationship between a discrete dichotomous
variable and an interval scale variable. Use Formula 8 to
determine the point-biserial correlation coefficient rpb:



The biserial correlation is a statistical procedure to measure the
relationship between a continuous dichotomous variable and an
interval scale variable. Use Formula 11 to determine the biserial
correlation coefficient rb:





You may use Table B.1 or Formula 2 to find the height of
the unit normal curve ordinate, y:

Formula 13 is the relationship between the point-biserial and
the biserial correlation coefficients. This formula is necessary
to find the biserial correlation coefficient because SPSS only
determines the point-biserial correlation coefficient:



After the correlation coefficient is determined, it must be
examined for significance.

Small samples allow one to reference a table of critical values,
such as Table B.8.

However, if the sample size n exceeds those available from the
table, then a large sample approximation may be performed.



Correlation of a Dichotomous Variable and
a Rank-Order Variable

As explained earlier, the point-biserial and biserial correlation
procedures earlier involve a dichotomous variable and an
interval scale variable. If the correlation was a dichotomous
variable and a rank-order variable, a slightly different approach
is needed.

To find the point-biserial correlation coefficient for a discrete
dichotomous variable and a rank-order variable, simply use the
Spearman rank-order described earlier and assign arbitrary
values to the dichotomous variable such as 0 and 1.
To find the biserial correlation coefficient for a continuous
dichotomous variable and a rank-order variable, use the same
procedure and then apply Formula 13 given earlier.



Example 
Point-Biserial Correlation (Small Data Samples)

A researcher in a psychological lab investigated gender
differences. She wished to compare male and female ability to
recognize and remember visual details. She used
17 participants (8 males and 9 females) who were initially
unaware of the actual experiment.

First, she placed each one of them alone in a room with various
objects and asked them to wait. After 10 min, she asked each of
the participants to complete a 30 question posttest relating to
several details in the room.

Table 8 shows the participants’ genders and posttest scores.





The researcher wishes to determine if a relationship exists
between the two variables and the relative strength of the
relationship.

Gender is a discrete dichotomous variable and visual detail
recognition is an interval scale variable. Therefore, we will use
a point-biserial correlation.



1. State the Null and Research Hypothesis

The null hypothesis states that there is no correlation between
gender and visual detail recognition. The research hypothesis
states that there is a correlation between gender and visual
detail recognition.





3. Choose the Appropriate Test Statistic 

As stated earlier, we decided to analyze the relationship
between the two variables. A correlation will provide the
relative strength of the relationship between the two variables.
Gender is a discrete dichotomous variable and visual detail
recognition is an interval scale variable.

Therefore, we will use a point-biserial correlation.



4. Compute the Test Statistic

First, compute the standard deviation of all values from the
interval scale data. It is helpful to organize the data as shown
in Table 9.





Using the summations from Table 9, calculate the mean and the 
standard deviation for the interval data:

Next, compute the means and proportions of the values
associated with each item from the dichotomous variable. The
mean males’ posttest score was



The mean females’ posttest score was

The males’ proportion was

The females’ proportion was



Now, compute the point-biserial correlation coefficient using 
the values computed earlier:

The sign on the correlation coefficient is dependent on the
order we managed our dichotomous variable. Since that was
arbitrary, the sign is irrelevant. Therefore, we use the absolute
value of the point-biserial correlation coefficient:





6. Compare the Obtained Value with the Critical Value

The critical value for rejecting the null hypothesis is 0.482 and
the obtained value is |rpb| = 0.637.

If the critical value is less than or equal to the obtained value,
we must reject the null hypothesis. If instead, the critical value
is greater than the obtained value, we must not reject the null
hypothesis. Since the critical value is less than the absolute
value of the obtained value, we reject the null hypothesis.



7. Interpret the Results

We rejected the null hypothesis, suggesting that there is a
significant and moderately strong correlation between gender
and visual detail recognition.





SUMMARY

The relationship between two variables can be compared with a
correlation analysis.
If any of the variables are ordinal or dichotomous, a
nonparametric correlation is useful. The Spearman rank-order
correlation, also called the Spearman’s , is used
to compare the relationship involving ordinal, or rank-ordered,
variables. The point biserial and biserial correlations are used to
compare the relationship between two variables if one of the
variables is dichotomous. The parametric equivalent to these
correlations is the Pearson product-moment correlation.

In this lecture, we described how to perform and interpret a
Spearman rank order, point-biserial, and biserial correlations.


