-'L-"'IJI L g

Ph y5570

.-lr'_r'-f"l"-

@l}bygﬁ@g&my’@@@my Deg@@% |

CollegeXofiScience

King Seldie] @@f@ﬁﬁy '

Nasser S Alzayed




Chapter 7: Energy Bands
Kronig-Penny Model

1 This model solves for periodic potential in a form of a square-well
array:

yFx)

Lr.| ]

—dAx + by b 0 aa-~h X——

1 Schrodinger wave equation for this potential can take the form:

he d?
oyt Xy =y (11)

where U(x) is the potential energy and € is the energy eigenvalue.
We have 2 regions: O<x<a(U=0)and-b<x<0 (U#0)
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Chapter 7: Energy Bands
Kronig-Penny Model

[ For the first region we have the wave function:

w =Ae"™ +Be ™™ (12)
This is a combination of plane waves traveling to the right and

to the left, with energy:

21/ 2
=R (13)
2m
[ In the 2" region, wave function takes the form:
y =Ce™¥ +De ™ (14)
with energy:
2/ 2
U, —s=19 (15)
2m
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Chapter 7: Energy Bands
Kronig-Penny Model

 Solution of this equation shall be on the Bloch form (7) because it

is a periodic potential.
 Thus the solution in the region a<x<a+b must be related to the
solution (14) in the region -b<x<0 by the Bloch theorem:

W (r)zuk(r)eik'Ir (7)
w@a<x <a+b) = y(b <x <0Q)e™E® (16)
 The constants A, B, C, D are chosen so that ¥ and ¥’ are

continuous at x=0 and x=a. same as in square potential wells.
1 At x =0 we have (for both conditions): (12) + (14):

A+B=C+D (17)
Derivatives of (12) and (14) at x = 0 provides:
IK(A-B)=Q(C -D) (18)
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Chapter 7: Energy Bands
Kronig-Penny Model

[ for the case of x = a; and applying continuity of ¥ and &’ we will
get:

Ae™ +Be ™ =(Ce™ +De¥ )™ (29)

iK (Ae™® —Be ™) =Q(Ce ™ —De®)e @™ (20)

[ Solving equations from (17) to (20) can be done by putting all

coefficients of A, B, C, D in a determinant. However, such solution
is very difficult. We will only write down the final equation:

2 2
{QZQIE }sinth sin Ka + coshQb cos Ka = cosk (a+b) (21a)

d to simplify the solution; we represent the potential by a Delta
Function. Let: b 2 0 and U= oo
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Chapter 7: Energy Bands
Kronig-Penny Model

J We do some approximation:
Q>K 0Qbx«xl

sinhQb — Qb
coshQb —»1
cosk (a+b) — coska

notice that: Q “ > K *, hence: (21a) =

2
2Q Qb sin Ka + cos Ka = coska
P |.
{—}sm Ka+cosKa =coska (21b)
Ka
2
il ® = L1
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Chapter 7: Energy Bands
Kronig-Penny Model

1 The ranges of K for which this equation has solutions are plotted
in Fig. 5, for the case P = 3m/2. The corresponding values of the
energy are plotted in Fig. 6. Note the energy gaps at the zone

boundaries.
¢ Il - - EDL 'I'
4(P/Kn) sin Ka + cos Ka
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Figure 5 Plot of the function (F/Ka) sin Ka + cos Ka, for P = 37/2. The allowed values of the e
energy ¢ are given by those ranges of Ka = (2me/h*)a for which the function lies hetween *1. “'___,'f?
For other values of the energy there are no traveling wave or Bloch-like solutions to the wave T 2 S =
equation, so that forbidden gaps in the energy spectrum are formed. ka
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Chapter 7: Energy Bands
WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL

J We considered in Fig. 3 the approximate form we expect for the
solution of the Schrodinger equation if the wave vector is at a
zone boundary, as at k = tmt/a.

dHere, we treat in detail the wave equation for a general potential,
at general values of k.

U Let U(x) denote the potential energy of an electron in a linear
lattice of lattice constant a. Potential energy is invariant under
the lattice translation. Hence: U(x ) = U(x + a).

1 A function invariant under a crystal lattice translation may be
expanded as a Fourier series in the reciprocal lattice vectors G.

1 As a rule: There is periodicity : There is Fourier Transform

J We write the Fourier series for the potential energy as:

U(x)=> U™ (22)
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Chapter 7: Energy Bands
WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL

] Please review Fourier Analysis.

d For actual crystal potentials; the values of the coefficients U,
tend to decrease rapidly with increasing magnitude of G. For a
coulomb potential: U; decreases as 1/G?

 In equation (22), we did not specify the x-values. We want to use
only real values. Accordingly: (22) can be rewritten as:

U(x)= U.@E+e™)=2 U . cosGx (23)
G>0 G G>0— G

] The wave equation of an electron in the crystal is Hiy = ey where
H is the Hamiltonian and ¢is the energy eigenvalue.
 The full equation is then:

2

{p—w (x)}w(X) ={p—+ZU (x)e"™ }”(X) =&y (X) (24)

2m 2m
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Chapter 7: Energy Bands
WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL

 Equation (24) is written in the one-electron approximation in
which the orbital y(x) describes the motion of one electron in the
potential of the ion cores and in the average potential of the
other conduction electrons.

] The wavefunction y(x) may be expressed as a Fourier series
summed over all values of the wavevector permitted by the
boundary conditions, so that:

y=>C(k)e"™ (25)

(d The set of values of k has the form 2nn/L.

1 To solve the wave equation, substitute (25) in (24) to obtain a set
of linear algebraic equations for the Fourier coefficients.

J We will take the solution as term by term:
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Chapter 7: Energy Bands
WAVE EQUATION OF ELECTRON IN A PERIODIC POTENTIAL

 The kinetic energy term is:

p2 1 d ) _hzdzl// hz 2 ikx
—y(X)=—1|-1h— = k“C(k)e
2m v(x) Zm( dx y(x)= 2m dx * 2mZ ()

and the potential energy term is:

U (x)w(x)=(;uee‘“ jw(x) =22 U C (k)™

The full Schrodinger Eq. becomes:

SR ()™ + T TULC (kR =3 C ()™
k G k k

For 1 K value, this equation becomes:

h'k 2
2m

ikx

(1)

(i)

(26)

(26)
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Chapter 7: Energy Bands

Solution of the Central Equation

 Each Fourier component must have the same coefficient on both
sides of the equation. Thus we have the central equation:

(4 —€)C(k)+> UC(k-G)=0 (27)
with :
A, =h*k?/2m (28)

U Eq. (27) is the Algebraic form of the well know Schrodinger
equation in a periodic potential (24).

[ It is not easy to solve it, but usually one can use only few terms.

(1 No. of solutions of this equation = no. of equations it has = No. of
Fourier coefficients C(K — G).
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Chapter 7: Energy Bands

Solution of the Central Equation

U Eq. (27) represents a set of simultaneous linear equations that
connect the coefficients C(k - G) for all reciprocal lattice vectors G.
It is a set because there are as many equations as there are

coefficients C.

[ To solve it, the determinant of the coefficients must vanish.

 As an application: for the case when G = g (Shortest values of G):

Ex_oqg —& U,

U, E_g —€
0 U,
0 0
0 0

[ The solution of the determinant (32) gives a set of energy

eigenvalues ¢, .

0 0 0
U, 0 0
g —¢& U, 0

U Eig —€ U

g

0 U

g

g gk+2g —&

C(k —2g) |
C(k-9)
C (k)
Ck+g)

C(k+29)

=0

(32)

King Saud University, Physics Dept. Phys. 570, Nasser S. Alzayed (Nalzayed@ksu.edu.sa)



Chapter 7: Energy Bands

Empty Lattice Approximation

(dBand structures are usually plotted as energy versus wavevector
in the first Brillouin zone. When wavevectors are outside this
zone, they are carried back into the first zone by translation.

1 We look for a G such that a k' in the first zone satisfies: k '+G =k

1 where k is the free electron wavevector in the empty lattice.

(1 We can drop the ‘ from k since G can be - or +:

hZ

hZ
g(kx’ky’kz):%(k +G)2:R

| (k, +G, ) +(k, +G, ) +(k, +G,)* |

(1 We consider as an example free electron bands of a simple cubic
lattice. Suppose we want to exhibit the energy as a function of k
in the [100] direction. Let #°/2m =1 . We show several bands in
this empty lattice approximation with their energies £(000) at k =
0 and ¢(k,00) along the k, axis in the first zone:
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Chapter 7: Energy Bands

Empty Lattice Approximation

Band Gallr e{000) elk,00]

I e A e ] P e Tl e T T P e T i T e LA o T oL O S e g S S M T g i R Iy
1 (00 0 k

2.3 100,100 (27/a)* (k. = 27/a)*

456,7 010,010,001 ,001 (27/a)? k2 + (2msa)

89,1011 110,101,110,101 2(2mia )’ (k. + 2mia)® + (20/a)®
12,13,14,15 110,101,110,101 2(2mia)® (k, = 2w/a)® + (27/a)"
16,17,18,19 011,0T1,011,011 2(2rrfa)? Ir’* 9(2r/a)’
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Chapter 7: Energy Ba
Empty Lattice Approximat

Figure 8 Low-lying free electron energy bands
of the empty sc lattice, as transformed to the first
Brillouin zone and plotted vs, (k.00). The free
electron energy is &°(k + G)*/2m, where the G's
are given in the second colnmn of the table. The
bold curves are in the first Brillouin zone, with
—min = k, = w/a. Energy bands drawn in this
way are said to be in the reduced zone scheme.
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Empty Lattice Approxim

Energy
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Figure I1 Occupied states and band structures giving (a) an insulator, (b) a metal or a semimetal
because of band overlap, and (c) a metal because of electron concentration. In (b) the overlap
need not oceur along the same directions in the Brillovin zone. If the overlap is small, with rela-
tively few states involved, we speak of a semimetal.
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