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Chapter 7: Energy Bands

Introduction

The free electron model of metals gives us good insight into the
heat capacity, thermal conductivity, electrical conductivity,
magnetic susceptibility, and electrodynamics of metals.

dBut the model fails to help us with other large questions:

> the distinction between metals, semimetals, semiconductors,
and Insulators

» the occurrence of positive values of the Hall coefficient

» the relation of conduction electrons in the metal to the
valence electrons of free Atoms

» many transport properties, particularly magneto transport

dHence, we need to modify Fermi Electron Model to be able to
answer these puzzles. We will see that little modification is just
adequate.
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Chapter 7: Energy Bands

Introduction

The difference between a good conductor and a good insulator is
striking. The electrical resistivity of a pure metal may be as low as
1019 Q.cm at 1 K, apart from the possibility of superconductivity.

The resistivity of a good insulator may be as high as 10%% Q.cm.

O This range of 1032 may be the widest of any common physical
property of solids.

1 Every solid contains electrons. The important question for
electrical conductivity is how the electrons respond to an applied
electric field.

[ electrons in crystals are arranged in energy bands.

(1 Bands are separated by band gaps (Forbidden Regions)

 Source of bands come from the interaction of the conduction
electron waves with the ion cores of the crystal
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Chapter 7: Energy Bands

Insulators, Metals and Semiconductors

 Insulator: if the allowed energy bands are either filled or empty,
for then no electrons can move in an electric field.

(1 Metal if one or more bands are partly filled.

d Semiconductor or a semimetal if one or two bands are slightly
filled or slightly empty.

Insulator Metal Semimetal Semiconductor|Semiconductor
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Chapter 7: Energy Bands

Modifications needed for Free Electron Model

1 To modify the Free Electron Model; we will assume that electron
is not totally free. It has to respect the periodicity of the crystal.

 This will directly lead to the important result: band gap.

1 Also; we introduce the concept of effective mass of electron m*
which may be larger or smaller than the free electron mass, or
may even be negative.

J Negative and Positive effective mass can directly explain for +tive
Hall coefficient.
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Chapter 7: Energy Bands
NEARLY FREE ELECTRON MODEL (1-D)

( On the free electron model the allowed energy values are
distributed essentially continuously from zero to infinity

W s
gk—ﬁ(kx vk} +k?) (1)
From boundary conditions over a cube of side L :
27 4r
k k k. =0;x—;£—:...... 2
X y Z L L ( )
wavefunctions are of the form: (1) =e™’ 3)

1 The band structure of a crystal can often be explained by the
nearly free electron model for which the band electrons are
treated as perturbed only weakly by the periodic potential of the
ion cores. This model answers almost all the qualitative questions
about the behavior of electrons in metals.
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Chapter 7: Energy Bands
Bragg Reflections

1 Bragg reflection of electron waves in crystals is the cause of
energy gaps. At Bragg reflection wavelike solutions of the
Schrodinger equation do not exist, as in Fig. 2 (Forbidden Region)

Second

|a)

Figure 2 (a} Plot of energy € versus wavevector k for a free electron. (b} Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E,
shown is associated with the first Bragg reflection at k = *#/q; other gaps are found at higher

energies at Xna/a, for integral values of n.
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Chapter 7: Energy Bands
NEARLY FREE ELECTRON MODEL

 Fig. 2, in (a) for entirely free electrons and in (b) for electrons
that are nearly free, but with an energy gap at k = t/a. The
Bragg condition (k + G)? = k? for diffraction of a wave of
wavevector k becomes in one dimension:

k=+1G =+""  (in1.D) (4)
2 a
1 where G = 2ntn/a is a reciprocal lattice vector and n is an integer.
The first reflections and the first energy gap occur at k = #rt/a. The
region in k space between -rt/a and rt/a is the first Brillouin zone
of this lattice. Other energy gaps occur for other values of the
integer n.

1 2nd Brillouin zone is located between: #2rt/a and so on.
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Chapter 7: Energy Bands
Bragg Reflections lead to Band Gap

1 Electron waves will move only inside the B.Z.
1 All waves stop and Reflect at the borders of the B.Z. (From
forbidden regions).
1 we will have 3 different types of Waves:
o Moving to the Right = (will be reflected to the left from rt/a)
o Moving to the Left < (will be reflected to the right from -ri/a)
o Standing waves (time independent. Do not move).
1 Consequently: Standing waves can be used to describe the case.
( We can form two different standing waves from the two traveling
waves:

e =cos(nx /a)+isin(zx /a) —
e™' =cos(zwx /a)—isin(zx /a) <«
or: e =cos(zx /a)ti sin(zx /a)
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Chapter 7: Energy Bands
NEARLY FREE ELECTRON MODEL

(1 Hence; we have 2 standing waves: Even (+) and odd (-):

)

+inx/a —inx/a

w(+)=e™ e =2 cos(nx /a)
w(—)=e —e =2i sin(zx /a)

1 In one dimension; solution to the Schrodinger equation at the
boundaries of Brillouin Zone are standing waves.

Origin of the Energy Gap

 The two standing waves W(+) and W(-) pile up electrons at
different regions, and therefore the two waves have different
values of the potential energy in the field of the ions of the
lattice. This is the origin of the energy gap.

 Waves traveling in different directions have different energies,
leading to energy gap.
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Chapter 7: Energy Bands
NEARLY FREE ELECTRON MODEL

U Let us consider the probability density p for both + and — (even
and odd) functions.

d p is expressed as: p=y y=|y|?

 For pure travelling wave: y = e =» p=y y=|y|2= e elx=1

L This mean that probability of finding electron = 100% (p = const.)

[ But in our case (Nearly Free Electron), p is not Const.

p() =y a cos2<”7’“>

X

p(-) =y () asin®(Z=)

a

1 Accordingly; for even functions (+): p = 1 only at specific values of
X; namely at: x =0, a, 23, ....
U For odd functions (-): p=1onlyat:x=1/2a,3/2a,5/2a ...
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Chapter 7: Energy Bands
NEARLY FREE ELECTRON MODEL

d Hence; even function probability has its values max (=1) when
the Pot. Energy is at lowest values (just at the lons).

( On the other hand; odd function probability has its values max
(=1) in the middle locations between the lons.

1 In other words: (+) function piles up electrons near the lons while
the (-) function piles up electrons in places mid-distance from two
ions.

 This leads to an energy gap between the two pools of electrons.

 If we calculate the expectation values (average energy) in these
three cases: +, -, and Free electron (travelling wave): we have:

U that of p(+) is lower than that of Free Electron

U that of p(-) is above that of Free Electron.

 Result is: E, difference in energy between the p(+) and p(-)

M This is the origin of the Band Gap.
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NEARLY FREE ELECTRON MO

U, Potential Energy

NN T Y

y(+) piles up electronic
charge on the cores of the
positive ions, thereby

y(-) piles up charge in the region between the
ions, thereby raising the potential energy in

: ' (a) comparison with that seen by a traveling wave.
Iowermg the pote.ntlal . This figure is the key to understanding the
energy in comparison with origin of the energy gap
the average potential , Probability Density
energy seen by a traveling o
wave. (=)l

-
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Chapter 7: Energy Bands
Magnitude of the Energy Gap

 Let us suppose that the potential energy of an electron in the
crystal at point x is:

a

Ukx)=U cos(z—ﬂxj

The first-order energy difference between the two standing wave states is:
1
2 2
E, = [Ue)| ) -y |as
0

~N

27 5, TX . 2 TTX
:jU cos| —x || cos" ——sIin" — x

a a a

U (6)

(d We see that the gap is equal to the Fourier component of the
crystal potential.
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Chapter 7: Energy Bands
BLOCH FUNCTIONS

 F. Bloch proved the important theorem that the solutions of the
Schrodinger equation for a periodic potential must be of a special
form:

v, (r)=u, (r)e™” (7)

3 u,(r) has same periodicity of the crystal with u,(r) = u,(r +T)
! T is the translation vector of the lattice in normal space.

d Eq. (7) means that:

The elgenfunctions of the wave equation for a periodic potential are the
proauct of a plane wave exp(ik.r) times a function uyr) with the
periodicity of the crystal lattice

[ Bloch functions can he assembled into wave packets to represent
electrons that propagate freely through the potential field of the ion

cores.
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Proof of BLOCH FUNCTIONS

( We consider N identical lattice points on a ring of length Na. The
potential energy is periodic in a, with U(x) = U(x + sa), where s is
an integer.

1 symmetry of the ring leads to:

y(x +a)=Cy(x) (8)

where C is a constant. Then, on going once around the ring:

w(x +Na)=y(x)=C"y(x)
bececause v (x) must be single-valued.

It follows that C is one of the N roots of unity, or:
C =" §=0,12,..N -1 (9)
satisfies (8), provided that U K (x ) has the periodicity a, so that U k (x)=U K (x +a).

This is the Bloch result (7).
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