

- ☐ The free electron model of metals gives us good insight into the heat capacity, thermal conductivity, electrical conductivity, magnetic susceptibility, and electrodynamics of metals.
- ☐ But the model fails to help us with other large questions:
 - the distinction between metals, semimetals, semiconductors, and Insulators
 - > the occurrence of positive values of the Hall coefficient
 - the relation of conduction electrons in the metal to the valence electrons of free Atoms
 - > many transport properties, particularly magnetotransport
- ☐ Hence, we need to modify Fermi Electron Model to be able to answer these puzzles. We will see that little modification is just adequate.

☐ Every solid contains electrons. The important question for
electrical conductivity is how the electrons respond to an applied electric field. ☐ electrons in crystals are arranged in energy bands. ☐ Bands are separated by band gaps (Forbidden Regions) ☐ Source of bands come from the interaction of the conduction electron waves with the ion cores of the crystal

- ☐ Insulator: if the allowed energy bands are either filled or empty, for then no electrons can move in an electric field.
- ☐ Metal if one or more bands are partly filled.
- ☐ Semiconductor or a semimetal if one or two bands are slightly filled or slightly empty.

☐ To modify the Free Electron Model; we will assume that electron
is not totally free. It has to respect the periodicity of the crystal.
☐ This will directly lead to the important result: band gap.
\square Also; we introduce the concept of effective mass of electron m^*
which may be larger or smaller than the free electron mass, or
may even be negative.
☐ Negative and Positive effective mass can directly explain for +tive
Hall coefficient.