

The momentum of a free electron is related to the wavevector by $m\mathbf{v} = \hbar\mathbf{k}$. In an electric field E and magnetic field B the force F on an electron of charge -e can be written as:

$$F = m\frac{dv}{dt} = \hbar\frac{dk}{dt} = -e\left[E + \frac{1}{c}v \times B\right]$$
(39)

This equation is the Newton's second law of motion for the electron of charge -e and mass m_e in both of E and B. We want to find the Electrical Conductivity (From Ohm's Law). Hence, we set B = 0 (no magnetic Field):

$$\hbar \frac{dk}{dt} = -e \left[E \right] \implies dk = -eEdt / \hbar$$

by intigrating both sides:

$$k(t) - k(0) = -eEt / \hbar \tag{40}$$

If the force $\mathbf{F} = -e\mathbf{E}$ is applied at time t = 0 to an electron gas that fills the Fermi sphere centered at the origin of k space, then at a later time t the sphere will be displaced to a new center at:

$$\delta k = -eEt / \hbar \tag{41}$$

Notice that the Fermi sphere is displaced as a whole because every electron is displaced by the same δk .

Because of collisions of electrons, the displaced sphere may be maintained in a steady state in an electric field. If the collision time is τ , the displacement of the sphere is given by (41) with $t = \tau$. The velocity is: $\mathbf{v} = \mathbf{P}/\mathbf{m} = \hbar \mathbf{k} / \mathbf{m} = -\mathrm{eE} \, \tau / \mathbf{m}$.

If **E** = constant; there are n electrons of charge -e per unit volume, the electric current density is:

$$j = nqv = n(-e)v = n(-e)(-eE\tau/m) = ne^2\tau E/m$$
 (42)

King Saud University, Physics Dept. Phys. 570, Nasser S. Alzayed (Nalzayed@ksu.edu.sa)

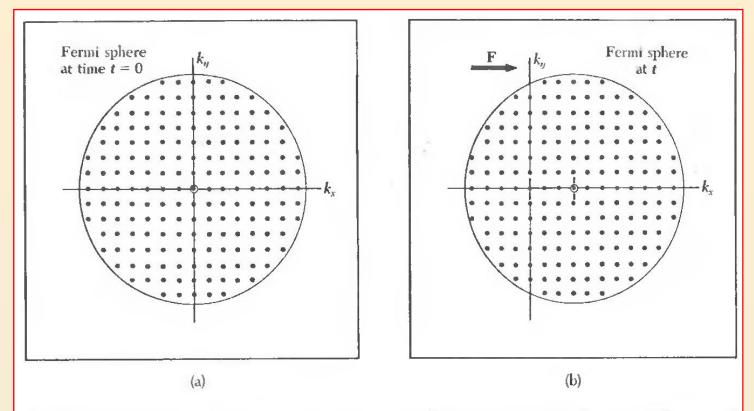


Figure 10 (a) The Fermi sphere encloses the occupied electron orbitals in k space in the ground state of the electron gas. The net momentum is zero, because for every orbital k there is an occupied orbital at -k. (b) Under the influence of a constant force F acting for a time interval t every orbital has its k vector increased by $\delta k = Ft/\hbar$. This is equivalent to a displacement of the whole Fermi sphere by δk . The total momentum is $N\hbar\delta k$, if there are N electrons present. The application of the force increases the energy of the system by $N(\hbar\delta k)^2/2m$.

Equation (42) is called Ohm's Law.

We can find the electrical conductivity σ defined by $\mathbf{j} = \sigma \mathbf{E}$, so by (42):

$$\sigma = \frac{ne^2\tau}{m} \tag{43}$$

The electrical resistivity ρ is defined as the reciprocal of the conductivity, so that: (see table 3)

$$\rho = \frac{1}{\sigma} = \frac{m}{ne^2 \tau} \tag{44}$$

It is easy to understand the result (43). Charge transported is proportional to the density ne; e/m is because the acceleration is proportional to \mathbf{e} and inversely proportional to the mass \mathbf{m} .

Li 1.07 9.32	Be 3.08 3.25		Conductivity in units of 10 ⁵ (ohm-cm) ⁻¹ . Resistivity in units of 10 ⁻⁶ ohm-cm.							F	Ne
Na 2.11 4.75	Mg 2.33 4.30		Cr	Mn	Fe	Co	Ni	Cu	S Supplied to the supplied to	CI	Ar
K 1.39 7.19	Ca 2.78 3.6	50° 49.9	0.78	0.072	1.02° 9.8	1.72	1.43 7.0	5.88 1.70	Se	Br	Kr
Rb 0.80 12.5	Sr 0.47 21.5	o b	Мо	Тс	Ru	Rh	Pd	Ag	Те	1	Xe
Cs 0.50 20.0	Ba 0.26 39	69″ 0 71.5	1.89 5.3	~0.7 ~14.	1.35 7.4	2.08° 4.8	0.95 [%] 10.5	6.21 1.61	Po 0.22 46.	At	Rn
Fr	Ra	ā	W	Re	Os	lr	Pt	Au	0.16 0	b Lu	19
		76	1.89° 5.3	0.54 18 6	1.10	1.96 5.1	0.96 10.4	4.55 2.20	Md N	lo L	

(N. Alzayed) 570 Phys (Solid State Physics) Physics & Astronomy, College of Science - King Saud University

- •According the Table 3, conductivity of cupper could be:
- 5.88x10⁵ / Ω .cm at room temp.
- •This value could be as high as 10⁵ times larger at low temperatures.
- •Hence: cupper crystals become more pure when cooled and vise versa. This applies to all crystals.
- •This leads to large increase in relaxation time t that can reach values: 2x10⁻⁹ s at very low temp.
- •We have a quantity that depends on **t** which is ℓ (mean free path) which represents the mean distance between every tow collisions.
- ℓ is expressed as: $\ell = \mathbf{v_f} \tau$

if the electric field were switched off; the momentum distribution would relax back to its ground state with the net relaxation rate:

$$\frac{1}{\tau} = \frac{1}{\tau_L} + \frac{1}{\tau_i} \tag{45}$$

where τ_L and τ_i are the collision times for scattering by phonons and by imperfections, respectively.

Total resistance from phonons and impurities is:

$$\rho = \rho_L + \rho_i \tag{46}$$

First term is independent of impurities (when their concentration is small).

and 2nd term is independent of temperature.

Chapter 6: Free Electron Fermi Gas

Resistance of Potassium

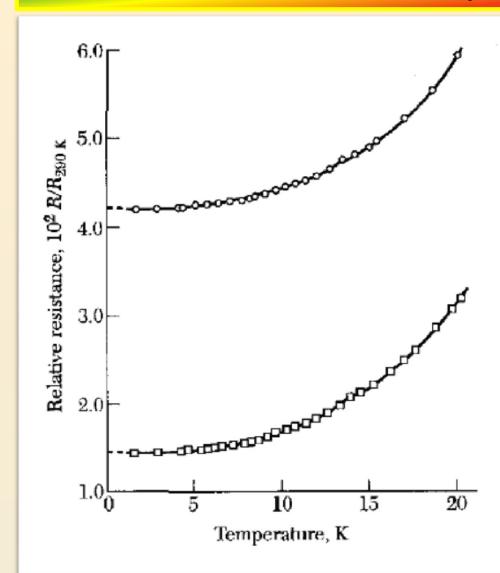


Figure 12 Resistance of potassium below 20 K, as measured on two specimens by D. MacDonald and K. Mendelssohn. The different intercepts at 0 K are attributed to different concentrations of impurities and static imperfections in the two specimens.

The relation $\ell = \mathbf{v_F} \mathbf{\tau}$ shows clearly that Fermi velocity $\mathbf{v_F}$ is the same as the velocity of electrons in the conductor because all collisions involve only electrons near the Fermi surface.

From Table 1 we have $v_F = 1.57 \times 10^8 \text{ cm S}^{-1}$ for Cu, thus the mean free path is $\ell(4 \text{ K}) = 0.3 \text{ cm}$. Mean free paths as long as 10 cm have been observed in very pure metals in the liquid helium temperature range.

Since v_F is very high as we showed previously; and because ℓ is large (as large as 10 cm) then we expect that τ is very small. Usually this time is opposite to Fermi velocity.

Chapter 6: Free Electron Fermi Gas MOTION of electrons IN MAGNETIC FIELDS

When electrons move under both of B and E:

$$F = -e\left(\vec{E} + \frac{1}{c}\vec{\mathbf{v}} \times \vec{\mathbf{B}}\right) \tag{49}$$

1st term: eE is coulumbic force, 2nd term is Lorentz formce.

if mv=
$$\hbar \delta \mathbf{k}$$
 then we have: $\mathbf{m} \left(\frac{d}{dt} + \frac{1}{\tau} \right) \mathbf{v} = -e \left(\vec{E} + \frac{1}{c} \vec{\mathbf{v}} \times \vec{\mathbf{B}} \right)$ (50)

if B lie along the z axis. Then the component equations of motion are:

$$m\left(\frac{d}{dt} + \frac{1}{\tau}\right)v_{x} = -e\left(E_{x} + \frac{B}{c}v_{y}\right)$$

$$m\left(\frac{d}{dt} + \frac{1}{\tau}\right)v_{y} = -e\left(E_{y} + \frac{B}{c}v_{x}\right)$$

$$m\left(\frac{d}{dt} + \frac{1}{\tau}\right)v_{z} = -eE_{z}$$
(51)

Chapter 6: Free Electron Fermi Gas MOTION of electrons IN MAGNETIC FIELDS

In the steady state in a static electric field the time derivatives are zero, so that the drift velocity is:

$$v_{x} = \frac{-e\tau E_{x}}{m} - \omega_{c}\tau v_{y}$$

$$v_{y} = \frac{-e\tau E_{y}}{m} + \omega_{c}\tau v_{x}$$

$$v_{z} = \frac{-e\tau E_{z}}{m}$$
(52)

where
$$\omega_c = \frac{eB}{mc}$$
 is the cyclotron frequency

This means that when electron moves in the existence of magnetic field B, it will rotate with this frequency. We notice the linear dependence on B, when B increases w will increase.

Chapter 6: Free Electron Fermi Gas Hall Effect

Since we are talking about motion of electrons under the effect of B, let us imagine that these electrons move inside a conductor. The Hall field is the electric field developed across two faces of a conductor, in the direction jxB, when a current j flows across a magnetic field B.

** Let us consider a conductor in a form of rectangular parallelepiped with current flowing in x-direction. Hence we have: E_x .

We also have a B perpendicular on this conductor. Current cannot move in y direction $\rightarrow v_y = 0$. Hence, 2^{nd} equation in (52) = 0.

Accordingly; we have:

Chapter 6: Free Electron Fermi Gas

Deriving Hall Effect

$$0 = -\frac{e\tau}{m} E_{y} + \omega_{c} \tau v_{x} = -\frac{e\tau}{m} E_{y} + \frac{eB\tau}{mc} v_{x}$$

$$\Rightarrow E_{y} = \frac{B}{c} v_{x} = \frac{B}{c} \left[-\frac{e\tau}{m} E_{x} \right] \Rightarrow E_{y} = -\frac{eB\tau}{mc} E_{x}$$
(53)

Hall coefficient is defined as:

$$R_H = \frac{E_y}{j_x B} \tag{54}$$

using: $j_x = \frac{ne^2 \tau E_x}{m}$ we can get:

$$R_H = -\frac{eB\tau E_x/mc}{ne^2\tau E_x/m} = -\frac{1}{nec}$$
 (55)

Hence; R_H is negative for free electron.

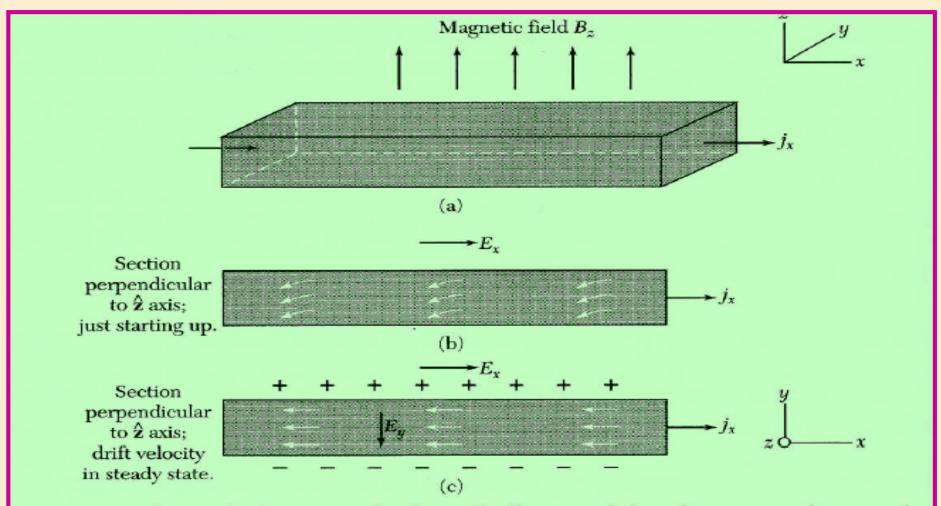
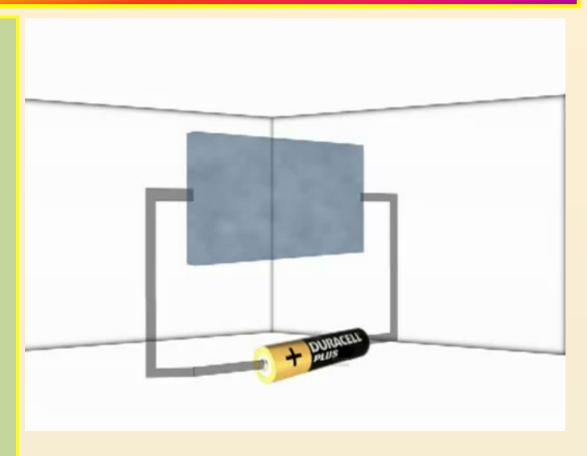


Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular cross-section is placed in a magnetic field B_z , as in (a). An electric field E_x applied across the end electrodes causes an electric current density j_x to flow down the rod. The drift velocity of the negatively-charged electrons immediately after the electric field is applied as shown in (b). The deflection in the -y direction is caused by the magnetic field. Electrons accumulate on one face of the rod and a positive ion excess is established on the opposite face until, as in (c), the transverse electric field (Hall field) just cancels the Lorentz force due to the magnetic field.

Table 4 Comparison of observed Hall coefficients with free electron theory


[The experimental values of R_H as obtained by conventional methods are summarized from data at room temperature presented in the Landolt-Bornstein tables. The values obtained by the helicon wave method at 4 K are by J. M. Goodman. The values of the carrier concentration n are from Table 1.4 except for Na, K, Al, In, where Goodman's values are used. To convert the value of R_H in CGS units to the value in volt-em/amp-gauss, multiply by 9×10^{11} ; to convert R_H in CGS to m^3 /coulomb, multiply by 9×10^{13} .]

Metal	Method	Experimental R_H , in $10^{-24}{ m CGS}$ units	Assumed carriers per atom	Calculated 1/nec, in 10 ⁻²⁴ CGS units
Li	conv.	-1.89	1 electron	-1.48
Na	helicon	-2.619	1 electron	-2.603
	conv.	-2.3		
K	helicon	-4.946	1 electron	-4.944
	conv.	-4.7		
Rb	conv.	-5.6	1 electron	-6.04
Cu	conv.	-0.6	1 electron	-0.82
Ag	conv.	-1.0	1 electron	-1.19
Au	conv.	-0.8	1 electron	-1.18
Ве	conv.	+2.7	_	_
Mg	conv.	-0.92	—	<u> </u>
Al	helicon	+1.136	1 hole	+1.135
In	helicon	+1.774	1 hole	+1.780
As	conv.	+50.	_	
Sb	conv.	-22.	—	_
Bi	conv.	-6000 .	_	

Chapter 6: Free Electron Fermi Gas

Hall Effect Animation

- \square From table we notice that: the lower the concentration, the greater R_H .
- \square Measuring R_H is important for measuring the carrier concentration.
- Eq. (55) follows from the assumption that τ for all electrons are equal, independent of the velocity of the electron.

Chapter 6: Free Electron Fermi Gas THERMAL CONDUCTIVITY OF METALS

Thermal conductivity coefficient K is defined as:

$$j_u = -K \frac{dT}{dx}$$

 J_u is the Thermal Energy Flux (Amount of thermal energy flown cross unit area in 1 sec. From previous lectures:

$$C_{el} = \frac{1}{2}\pi^{2}Nk_{B}\frac{T}{T_{F}} \quad with : T_{F} = \frac{\varepsilon_{F}}{k_{B}} \quad \Rightarrow C_{el} = \frac{1}{2}\pi^{2}Nk_{B}\frac{T}{\varepsilon_{F}}k_{B}$$
from Chapt. 5: $K = \frac{1}{3}Cvl$

$$\Rightarrow K_{el} = \frac{1}{3} \cdot \frac{1}{2}\pi^{2}Nk_{B}\frac{T}{\varepsilon_{F}}k_{V}l = \frac{1}{3} \cdot \frac{1}{2}\pi^{2}Nk_{B}\frac{T}{mv_{F}^{2}} \cdot 2.k_{B}v_{F}l$$

$$\Rightarrow K_{el} = \frac{\pi^{2}nk_{B}^{2}T\tau}{2m} \quad (n \text{ for } N \text{ and } l = v_{F}\tau)$$

(56)

Chapter 6: Free Electron Fermi Gas *THERMAL CONDUCTIVITY OF METALS*

☐Do the electrons or the phonons carry the greater part of the
heat current? in a metal?
☐ In pure metals the electronic contribution is dominant at all
temperatures.
☐ In impure metals or in disordered alloys, the electron mean free
path is reduced by collisions with impurities, and the phonon
contribution may be comparable with the electronic
contribution.