J.u"_.m-n-l._l._._
(.

] d:rlﬂTflM
L i
el e =L o
ks hErErEs . il P &

e, :
T e
3.

i ||--|'I'I'-

L PR ES LR

- - oy j .; ]

l. . o - E — =
1 : i : e 0 ?%#.
: i . ._ -r,}‘ldﬁ i y m@
g | o e J
- g R 'rrl_ —_ = i | B | I'_-
L 1 F N L | -
'.1__,._'_._;_.-_ . =y E ' -.-I-
[ Ll Pl o ¥ i . E -Il I.-\' B
- ] e | - .. L] . 1'.._ I-.
[ ] iy
1 \ _-'I L r iy ' --I III." ! -
= F = . -| .'I- . o | .
- ] e = b
] . . i L i e ! -
f L < i . ] ey, ¥ 2
- ’ i - ; Ny
T ] e P I"'-| f s

*-.-.-'.,-':'_-.14',.":-!"..'.-- . -JW?:'-”'F”PJI .
L

P[}W@ﬁ@éﬁ ' iﬁ-‘_@_ 7
- College of

.
lll

. - ‘:-1._.:--.__—1:-_,‘ "'l._’_
e U

b

:—t-

1
_

E |
=

]

e Dt

-

— o T

'll-_\_ ""-.I‘-IF' wlim
=y

h -
. |
L

SRS

oy



mailto:nalzayed@ksu.edu.sa

EE ELECTRON GAS IN THREE DI

The number of orbitals per unit energy range: D(€) = density of
states.

N V (ngj (19)

N 37°\ h?

This leads to:
dN VvV (2m)**
D(¢) = PR ( 3 j £"% (20)

Equation (19):

3
INN = In¢&+const. Within a factor of the order of unity,

the number of orbitals per unit energy

Hence: range at the Fermi energy is the
dN 3 de dN 3N total number of conduction electrons
W = E? = D(¢) = de = 2 ¢ (21) divided by the Fermi energy.
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HEAT CAPACITY OF THE

The question that caused the greatest difficulty in the early
development of the electron theory of metals concerns the heat
capacity of the conduction electrons. Classical statistical mechanics
predicts that a free particle should have a heat capacity of %kg
where kg is the Boltzmann constant.

If N atoms each give one valence electron to the electron gas, and
the electrons are freely mobile, then the electronic contribution to
the heat capacity should be %Nk, , just as for the atoms of a
monatomic gas. But the observed electronic contribution at room
temperature is usually less than 0.01 of this value.

When we heat the specimen from absolute zero, not every electron
gains an energy ~kgT as expected classically, but only those
electrons in orbitals within an energy range k;T of the Fermi level
are excited thermally

| AT
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HEAT CAPACITY OF TH

If N is the total number of electrons, only a fraction of the order of
T/T: can be excited thermally at temperature T.

Each of these NT/T; electrons has a thermal energy of the order of
kgT. The total electronic thermal kinetic energy U is of the order of:

U, =N T—kBT (22)
TF
The electronic heat capacity Is given by:
Cy= T~ Nky 23)
oT T,

C,, is directly proportional to T, in agreement with the experiment.
At room temperature C, is smaller than the classical value 2Nk, by
a factor of the order of 0.01 or less, for T, ~5 X 10* K.

Hence: Classical value does not agree with experiment
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HEAT CAPACITY OF THE EL

* Classical Statistical Physics heat capacity of one electron: C= %k,

e Classical Statistical Physics heat capacity of N electrons: C = 2Nk,

e Experimental result of C = 1% of this value only

e Error in Classical theory was due to considering all electrons that
participate in conductivity as Free electrons.

*Fermi solved this puzzle: Only electrons that have energies of ~ kT
below Fermi Surface or higher participate in Heat Capacity.

e Hence: only NT/T, of electrons is important.

 All other electrons are not useful.

Electrons in this regi

Electrons in this region don’t
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EAT CAPACITY OF TH

= All Free electrons participate in Electrical Conductivity
 Butonly T/T; fraction participate in Heat Capacity

e This conclusion is a major indication of the success of the Fermi
Free Electron Gas.
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Deriving HEAT CAPACITY

* We want to derive an expression for the electronic heat capacity:

The increase AU =U (T ) —U (0) in the total cnergy of a system of N electrons
when heated from O to T is:

AU = ng (e)f (e)d e - I eD(e)de (24)
0 0
Total No of electrons inside Fermi sphere (or including outside where no electros):

N = T D(e)f (e)de= T D(e)de (25)
we can write (then multply both sides by &.:)

T jdg+jdg

{ j j jD(s)f (g)ngg_gngD(g)dg (26)

King Saud University, Physics Dept. Phys. 570, Nasser S. Alzayed (Nalzayed@ksu.edu.sa)



Deriving HEAT CAPACITY OF T

(26) & (24): 6 terms:

AU = j(g—gF)D(g)f (£)d &+ j (& —&)[1-T (£)]D(e)d e (27)
& 0

The first integral on the right-hand side of (27) gives the energy

needed to take electrons from g, to the orbitals of energy €>¢,, and

the second integral gives the energy needed to bring the electrons

to . from orbitals below €.

The product f(€)D(€)de in the first integral of (27) is the number of
electrons elevated to orbitals in the energy range de at an energy .
The factor [1 - f(€)] in the second integral is the probability that an
electron has been removed from an orbital .

The heat capacity is found on differentiating AU with respect to T.
The only temperature-dependent term in (27) is f(e)
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Deriving HEAT CAPACITY

The heat capacity of the electron gas is found on differentiating 8U
with respectto T.

du ¢ df
e =F=£de[s—eF]ﬁD<e> (28)
Fermi Dirac: f (&) = gi (x1)
e(KBTJ +1

LetD(s) > D(&-) In (28) and ¢ — - In Fermi Dirac Function:

Ca =D (&) j defe - eF] (29)
equation (x1) becomes.
f () =—— (x 2)

e(KBT J +1

King Saud University, Physics Dept. Phys. 570, Nasser S. Alzayed (Nalzayed@ksu.edu.sa)



Deriving HEAT CAPACIT

let kK, T —>:
1
f(g): (g_gF] (XB)
et 7+1

we then differentiate w.r.t z:

_(g_ng je(gﬁj (1) e(g_gpj

df (¢) | 4 | [ &—¢&F ‘
dr o —( -2 _( 2 j— —2 (X4)
e

cr=KT =dr=kgdT
1 1
— =k 5 —
dT dr
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Deriving HEAT CAPACIT

Rewriting Eq. (29):

E—g e[g—TgFj
)

C, =kg D(gF)Idg[g gF]( —

= — (30)

¢ c—e. Y e(g_’gFj
:ce,szD(gF)jdg( Fj
0

T

let : :(g_gFj:dx _de_de 4.k, Tdx
T T KgT

—we have k., T and k_ in (30) = kT :
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Deriving HEAT CAPACITY

Hence, we have:

X

e

Cy =kgTD (&) | dx x?

31
i [ex +1]2 D

T

for the lower limit of integral:

X =(“"_‘9F j:>x _9=% _ =% [ower limit in (30) = £=0]
T T T

as T -0, X —> -0
Using table of Integrals:

00 X 2
/4

dx x2—° 32
’[oxx[equ]2 2 (32)

(32) in (31): c, =%2kBZTD(5F) (33)
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Electronic HEAT CAPACIT

From eq. (21) above, we have:

3N
D(EF):Z—

=

3 N
B! F

E

with: T, =k—F, (33) —:

B

1 ., > T

T. =Const.

C

Recall that although T is called the Fermi temperature, it is not the
electron temperature, but only a convenient reference notation>

We shall compare this result with experimental data.
S
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Experimental Hear Capacity of Metals, L

At temperatures much below both the Debye temperature and the Fermi

temperature, the heat capacity of metals may be written as the sum of electron
and phonon contributions:

C=)T+AP
where yand A are constants characteristic of the material.
.. Electronic part is Linear to T (Agree with Fermi Free Electron Model)

While Phononic part is o: T’ (Agree with Debye model)

30

CT=208+257T2, o=

FPotassium n_____,ﬂ--ﬁ '

.-"'r.-..-r
o

/T, in m)fmel-K*
[t
2
T T T

2.1]1']

01 0.3 T 03
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